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A quantum electrodynamic (QED) calculation of the interaction of an excited-state atom with
a ground-state atom is performed. For an excited reference state and a lower-lying virtual state,
the contribution to the interaction energy naturally splits into a pole term, and a Wick-rotated
term. The pole term is shown to dominate in the long-range limit, altering the functional form
of the interaction from the retarded 1/R7 Casimir–Polder form to a long-range tail–provided by
the Wick-rotated term–proportional to cos[2(Em − En)R/(~c)]/R

2, where Em < En is the energy
of a virtual state, lower than the reference state energy En, and R is the interatomic separation.
General expressions are obtained which can be applied to atomic reference states of arbitrary angular
symmetry. A careful treatment of the pole terms in the Feynman prescription for the atomic
polarizability is found to be crucial in obtaining correct results.

I. INTRODUCTION

Recently, the long-range tails of the interaction be-
tween an excited-state and a ground-state atom [1–5] as
well as those of the interaction between an excited 2S
state with a conducting wall [6], have received consid-
erable attention. The question behind the investigation
concerns the existence of long-range tails for excited ref-
erence states, for which partially conflicting results have
been obtained in the past [7–9].

In this article, we reconsider the derivation of the long-
range interaction, with a particular emphasis on the in-
teraction of an excited-state atom with another ground-
state atom, their separation being large compared to
the Bohr radius. We follow a method that deduces the
long-range interaction from the scattering amplitude [see
Chap. 85 of Ref. [10]]. This method demands the use
of the Feynman prescription for the Green functions of
the photon field, and the time-ordered product of atomic
dipole operators.

We also aim to generalize the recent treatments in
Refs. [1, 2] to reference states of arbitrary symmetry, and
to clarify the role of the virtual-state energy in the cal-
culation of the final expressions, without any approxima-
tions. In our formalism, we aim to calculate the long-
range tails of the van der Waals and Casimir–Polder en-
ergy shifts on the basis of a unified formalism, which can
be applied to both ground-state and excited-state inter-
actions, with atomic state of arbitrary symmetry. The
general idea is to use the matching of the forward scat-
tering amplitude from quantum electrodynamics (QED),
against the effective potential that describes the long-
range interaction.

The paper is organized as follows. In Sec. II, we recon-
sider the derivation of the van der Waals and Casimir–
Polder interaction from first principles, using the match-
ing of the S matrix element with the effective interaction
potential. Applications are discussed in Sec. III. First, in
order to check our results and connect them to the liter-
ature, we rederive the familiar form of the ground-state
interaction in Sec. III A, and verify the van der Waals

close-range limit in Sec. III B. General excited states are
treated in Sec. III C, and the expressions are specialized
to excited S states in Sec. III D. Finally, conclusions are
reserved for Sec. IV.

II. DERIVATION

A. S–Matrix and Matching with Effective
Interaction

We consider two atom in states ψA(~rA) and ψB(~rB)
which scatter into states ψ′

A(~rA) and ψ′
B(~rB) under the

action of a potential U(~rA, ~rB , ~R). Here, the relative co-

ordinates are ~rA = ~xA − ~RA and ~rB = ~xB − ~RB where
~RA and ~RB are the coordinates of the nucleus. Their
distance is ~R ≡ ~RA − ~RB. We denote the initial state
by i (atoms are in states ψA and ψB, respectively) and
the final state by the subscript f (atoms are in states ψ′

A

and ψ′
B). The corresponding S-matrix element reads as

follows [11],

SA′B′AB = − i

~

∫

d3rA

∫

d3rB ψ′∗
A (~rA)ψ

′∗
B (~rB)

× U(~rA, ~rB, ~R)ψA(~rA)ψB(~rB) (1)

×
∫

dt exp

[

− i

~
(E1 + E2 − E′

1 − E′
2) t

]

= − i

~
T

∫

d3rA

∫

d3rB ψ′∗
A (~rA)ψ

′∗
B (~rB)

× U(~rA, ~rB, ~R)ψA(~rA)ψB(~rB) , (2)

where we have assumed energy conservation (E1 +E2 =
E′

1 + E′
2) and denoted the (long) time interval over

which the transition from initial to final state occurs,
as
∫

dt = T . The matching of the effective perturbative
Hamiltonian Heff and the S matrix element thus is

〈ψ′
A, ψ

′
B |Heff |ψA, ψB〉 = 〈ψ′

A, ψ
′
B|U(~rA, ~rB, ~R)|ψA, ψB〉

=
i~

T
SA′B′AB . (3)
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On the level of a scattering matrix element, the matching
is obtained in an “averaged” sense, where the “averaging”
(i.e., the integration) occurs over the wave functions of
the initial and final states of the two-atom system. In the
following, we shall concentrate on the forward scattering,
i.e., |ψA′〉 = |ψA〉, |ψB′〉 = |ψB〉.

B. Interaction Hamiltonian

We are inspired by the derivation outlined in Chap. 85
of Ref. [10]. We shall use time-dependent QED pertur-
bation theory, where the interaction is formulated in the
interaction picture [11, 12]. This means that the second-
quantized operators in the interaction Hamiltonian have
a time dependence which is generated by the action of the
free Hamiltonian [13]. We shall use a second-quantized
approach for the operators describing the electromag-
netic field, so that a time-ordered product of the four-
vector potential operators results in the Feynman prop-
agator of the photon [11]. For the position operators
of the atomic electrons, though, we use a first-quantized
approach, i.e., we treat these on the level of quantum
mechanics, without the introduction of fermion creation
and annihilation operators.
The interaction Hamiltonian in the dipole approxima-

tion then is

V (t) = − ~E(~xA, t) · ~dA(t)− ~E(~xB , t) · ~dB(t)
≈ − ~E(~RA, t) · ~dA(t)− ~E(~RB , t) · ~dB(t) , (4)

where ~di = e~ri is the dipole operator for atom i (for
atoms with more than one electron, one has to sum over

all the electrons in the atoms i = A,B). The ~RA and
~RB are the positions of the atomic nuclei. A clarify-
ing remark is in order: In the standard formulation of
quantum electrodynamics, one would use the interaction

Hamiltonian density H = jµAµ, where j
µ = ψ̂ γµ ψ̂ is

the fermionic current operator, γµ are the Dirac γ matri-
ces, and the Aµ is the four-vector potential [11, 12]. The

fermionic field operator ψ̂ contains the fermionic creation
and annihilation operators. However, in the nonrelativis-
tic limit, one may renounce on the quantization of the
fermion field, and treat the electronic degrees of freedom
using first quantization [13, 14].
The fourth-order contribution to the S-matrix is (the

full matrix, not a single element)

S(4) =
(−i)4

4! ~4

∫

dt1

∫

dt2

∫

dt3

∫

dt4

×T[V (t1)V (t2)V (t3)V (t4)] , (5)

where T denotes the time ordering of all operators, per-
taining both to the atomic as well as the field degrees
of freedom. According to the Wick theorem, the time-
ordered product is equal to the normal ordered product,

|ψA〉
|vA〉

|ψA〉

|ψB〉
|vB〉

|ψB〉

(a)

|ψA〉
|vA〉

|ψA〉

|ψB〉
|vB〉

|ψB〉

(b)

FIG. 1. Feynman diagrams for the excited-state long-range
interaction of an atom in state |ψA〉 (excited) with a ground-
state atom B, in state |ψB〉. Figure (a) is the ladder diagram,
while (b) displays the crossed-ladder graph. The power of us-
ing the Feynman propagator in the calculation lies in the fact
that all the different time orderings of the electron-photon
vertices, which are otherwise relevant to time-ordered pertur-
bation theory [14], can be summarized in only two diagrams.

plus all contractions. We need to calculate the fourth-
order S matrix element 〈ψ, 0|S(4)|ψ, 0〉 for forward scat-
tering of the atomic reference state |ψ〉 = |ψA, ψB〉 =
|ψA〉 ⊗ |ψB〉 with the vacuum |0〉 of the electromagnetic
field (the product state is |ψ, 0〉). After the subtraction
of terms which pertain to the self-energies of the atoms,
one obtains four contributions which are proportional to

C1 ≡ 〈ψA|T dAi(t1) dAk(t3)|ψA〉
× 〈ψB |T dBj(t2) dBℓ(t4))|ψB〉 , (6a)

C2 ≡ 〈ψA|T dAi(t1) dAℓ(t4)|ψA〉
× 〈ψB |T dBj(t2) dBk(t3)|ψB〉 , (6b)

C3 ≡ 〈ψB|T dBi(t1) dBℓ(t4)|ψB〉
× 〈ψA|T dAj(t2) dAk(t3)|ψA〉 , (6c)

C4 ≡ 〈ψB|T dBi(t1) dBk(t3)|ψB〉
× 〈ψA|T dAj(t2) dAℓ(t4)|ψA〉 . (6d)

Contributions C2 and C4 correspond to the crossed-
ladder diagram (in the language of Feynman diagrams,
see Fig. 1), whereas C1 and C3 correspond to the two-
photon ladder exchange. The contributions of atoms A
and B to the atomic reference state are denoted as |ψA〉
and |ψB〉, respectively. All terms C1, C2, C3, and C4

lead to equivalent contributions, and we finally arrive at

〈ψ, 0|S(4)|ψ, 0〉 = 1

2 ~4

∫

dt1

∫

dt2

∫

dt3

∫

dt4

× 〈0|T
[

Ei(~RA, t1)Ej(~RB, t2)
]

|0〉

× 〈0|T
[

Ek(~RA, t3)Eℓ(~RB, t4)
]

|0〉

× 〈ψA |T dAi(t1) dAk(t3)|ψA〉
× 〈ψB |T dBj(t2) dBℓ(t4)|ψB〉 . (7)
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C. Temporal Gauge and Propagator

The time-ordered product of electric-field operators
can be evaluated as follows,

DE
ik(x1 − x2) =

〈

0
∣

∣

∣T
[

Ei(~RA, t1)Ek(~RB , t2)
]∣

∣

∣ 0
〉

. (8)

With ~E = −∂t ~A, we have for the “electric-field propaga-
tor” DE

ik(x1 − x2),

DE
ik(x1 − x2) =

(

− ∂

∂t1

) (

− ∂

∂t2

)

×
〈

0
∣

∣

∣T
[

Ai(~RA, t1)Ak(~RB, t2)
]∣

∣

∣ 0
〉

. (9)

One can relate the time-ordered product of field opera-
tors to the photon propagator,

〈0 |T Aµ(x)Aν (x
′)| 0〉 = −iDµν(x− x′) . (10)

We resort to the Fourier representation for the tempo-
ral gauge (also known as the Weyl gauge, with vanishing
scalar component D00 = 0 and Di0 = D0i = 0). Accord-
ing to Eq. (76.14) of Ref. [10], one has

Dik(ω,~k) = − ~

4πǫ0c2
1

(

ω
c

)2 − ~k2 + iǫ

(

δik − c2
ki kk
ω2

)

.

(11)
According to Eq. (76.16) of Ref. [10], the propagator in
the mixed frequency-position representation is given by

Dik(ω, ~R) = −
(

δik + c2
∇i ∇k

ω2

)

D(ω, ~R) , (12)

where

D(ω, ~R) = − ~

4πǫ0c2
ei
√
ω2+iǫR/c

R
, (13)

and ǫ is an infinitesimal parameter used in the frequency-
coordinate representation of the the Feynman propaga-
tor. In the following, we shall use the nonstandard defi-
nition

|ω| ≡
√

ω2 + iǫ (14)

for complex photon frequency ω. We carry out the dif-
ferentiations with the result,

∇i ∇k
ei

|ω|
c

R

R
=
(ω

c

)2

δik

(

− c2

ω2R2
+

ic

|ω|R

)

ei
|ω|
c

R

R

+
(ω

c

)2 RiRk

R2

(

3c2

ω2 r2
− 3ic

|ω|R − 1

)

ei
|ω|
c

R

R
. (15)

The temporal gauge photon propagator in the mixed rep-
resentation becomes

Dik(ω, ~R) =
~

4πǫ0c2

[

δik

(

1 +
ic

|ω|R − c2

ω2R2

)

ei
|ω|
c

R

R

+
RiRk

R2

(

−1− 3ic

|ω|R +
3c2

ω2R2

)

ei
|ω|
c

R

R

]

=
~

4πǫ0c2

[

αik + βik

(

ic

|ω|R − c2

ω2R2

)]

ei
|ω|
c

R

R
,

(16a)

where

αik = δik − RiRk

R2
, βik = δik − 3

RiRk

R2
. (16b)

The photon propagator, which is the propagator for the

vector potential ~A, can be translated into the propagator
for the electric field by differentiation with respect to
time,

DE
ik(x1 − x2) =

∂

∂t1

∂

∂t2
〈0|T Ai(~RA, t1)Ak(~RB, t2)|0〉

=
∂

∂(t1 − t2)

∂

∂(t2 − t1)
(−iDik(x1 − x2))

= i
∂2

∂t2
Dik(x) , x = x1 − x2 .

(17)

If we work in the mixed representation, we can implement
the differentiation with respect to time in the Fourier
integral as follows,

DE
ik(t,

~R) = 〈0|T Ei(~RA, t1)Ek(~RB, t2)|0〉

= − i

∫

dω

2π
ω2Dik(ω, ~R) e

−iωt . (18)

Now, let us proceed to the time-ordered product of dipole
operators, which is given as follows (for atom A),

αA,ik(t1 − t2) =
i

~
〈ψA |T(dAi(t1) dAk(t2)|ψA〉

=
i

~
〈ψA |T(dAi(t1 − t2) dAk(0)|ψA〉 ,

(19)

and analogously for atom B.
Now, according to the prescription that Fourier trans-

formation is a summation over exponentials with fre-
quency factors exp(−iωt),

αA,ik(t) =

∫ ∞

−∞

dω

2π
e−iωt αA,ik(ω) , (20)

we write

〈ψA |T dAi(t1) dAk(t2)|ψA〉 = −i~αA,ik(t1 − t2)

= −i~

∫ ∞

−∞

dω

2π
e−iω(t1−t2) αA,ik(ω) . (21)
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The time-ordered product of dipole operators can be eval-
uated in terms of the polarizability of the atom, with the
poles being displaced according to the Feynman prescrip-
tion (so that the integrals converge),

αA,ik(ω) =

∫ ∞

−∞
dt eiωt αA,ik(t)

=
i

~

∑

v

∞
∫

0

dt e−
i

~
(Ev−EA−~ω−iǫ) t

× 〈ψA |dAi| vA〉 〈vA |dAk|ψA〉

+
i

~

∑

v

0
∫

−∞

dt e
i

~
(Ev−EA+~ω−iǫ) t

× 〈ψA |dAk | vA〉 〈vA |dAi|ψA〉

=
∑

vA

( 〈ψA |dAi| vA〉 〈vA |dAk|ψA〉
Ev,A − ~ω − iǫ

+
〈ψA |dAi| vA〉 〈vA |dAk|ψA〉

Ev,A + ~ω − iǫ

)

, (22)

where ǫ > 0 and

Ev,A = EvA − EA (23)

is the difference between the virtual-state energy
EvA and the reference-state energy EA of atom A.
In the last step of Eq. (22), we have used
the fact that the polarizability has to be purely
real rather than complex for real driving fre-
quency ω, thus replacing 〈ψA |dAk| vA〉 〈vA |dAi|ψA〉 →
〈ψA |dAi| vA〉 〈vA |dAk|ψA〉 in the second term. In as-
signing the time dependence of the atomic dipole oper-
ators, we have taken into account the Heisenberg equa-

tion of motion, ~
d
dt
~dA(t) = i [HA, ~dA(t)], where HA is

the Schrödinger Hamiltonian of atom A. The poles in
the polarizability αA,ik are displaced according to the
Feynman prescription. Poles occur at ~ω = Ev,A − iǫ
and at ~ω = −Ev,A + iǫ. If the virtual state is displaced
toward lower energy, i.e., Ev,A < 0, then the pole at
~ω = −Ev,A + iǫ migrates into the first quadrant of the
complex plane.
The “correct” prescription for the placement of the

poles of the energy denominator of the polarizability
has recently been controversially discussed in the liter-
ature [15–19]. A different prescription, which puts the
poles into the lower half of the complex plane, has re-
cently been used in Ref. [20]. In this latter study, one
considers the relative permittivity ǫr(ω) of a dilute gas
and its relation to the dynamic dipole polarizability α(ω)
of the gas atoms,

ǫr(ω) = 1 +
NV

ǫ0
αR(ω) , (24)

where αR(ω) denotes the polarizability in a pole prescrip-
tion corresponding to the retarded Green function, i.e.,

with a sign change (−iǫ → +iǫ) in the second term on
the right-hand side of Eq. (22). Furthmore, NV is the
number density of atoms. These considerations are valid
upon an interpretation of the dielectric constant in terms
of the retarded Green function GR which describes the
relation of the dielectric displacement ~D(~r, t) to the elec-

tric field ~E(~r, t),

~D(~r, t) = ǫ0 ~E(~r, t) + ǫ0

∫ ∞

0

dτ GR(τ) ~E(~r, t− τ) . (25)

The Fourier transform is

GR(ω) =
NV

ǫ0
αR(ω) , (26)

where αR(ω) denotes the “retarded” polarizability. The
retarded prescription is thus required for the dielectric
function ǫr(ω) = 1+GR(ω). The answer to the question
regarding the “correct” placement of the poles of the po-
larizability [15–19] thus is as follows: Namely, there is no
universally “correct” displacement for the poles from the
real axis. Instead, the correct placement depends on the
form of the Green function represented by the polariz-
ability, in the context of a particular application. If the
retarded Green function is needed, then all poles should
be displaced into the lower half of the complex plane,
while the Feynman prescription is relevant for the current
calculation, in which the time-ordered product of dipole
operators is sought. Neither the retarded nor the Feyn-
man prescription are universally “correct”; it depends on
the context in which the calculation is being performed.
We now reformulate Eq. (7), with the help of Eqs. (16)

and (21),

〈ψ, 0|S(4)|ψ, 0〉 = 1

2 ~4

∫

dt1

∫

dt2

∫

dt3

∫

dt4

×
(

−i

∫

dω1

2π
ω2
1 Dij(ω1, ~R) e

−iω1(t1−t2)

)

×
(

−i

∫

dω2

2π
ω2
2 Dkℓ(ω2, ~R) e

−iω2(t3−t4)

)

×
(

−i

∫

dω3

2π
~αA,ik(ω3) e

−iω3(t1−t3)

)

×
(

−i

∫

dω4

2π
~αB,jℓ(ω4) e

−iω4(t2−t4)

)

. (27)

One now carries out the dti integrations one after the
other, with the results

∫

dt2 → 2π δ(ω1 − ω4), then
∫

dt3 → 2π δ(ω2 − ω3), and
∫

dt4 → 2π δ(ω2 + ω4). As
a result, the condition ω1 = ω4 = −ω2 = −ω3 is imple-
mented in the final result, yielding

〈ψ, 0|S(4)|ψ, 0〉 = 1

2~2

∫

dt1

∫

dω1

2π
ω2
1(−ω1)

2

×Dij(ω1, ~R)Dkℓ(−ω1, ~R)αA,ik(−ω1)αB,jℓ(ω1)

=
T

2 ~2

∫

dω

2π
ω4Dij(ω, ~R)Dkℓ(ω, ~R)

× αA,ik(ω)αB,jℓ(ω) , (28)
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where we use the invariance of the photon propagator
and of the polarizability under the transformation ω ↔
−ω [see Eqs. (16) and (22)]; we reemphasize that this
invariance only holds if the Feynman prescription is used.

D. Energy Shift

Using Eq. (3), we obtain the diagonal matrix element
of the effective Hamiltonian, and thus, the direct term of
the energy shift ∆E(dir), as

∆E(dir) = 〈ψAψB|Heff |ψAψB〉

=
i

2 ~

∫ ∞

−∞

dω

2π
ω4Dij(ω, ~R)Dkℓ(ω, ~R)

× αA,ik(ω)αB,jℓ(ω) . (29a)

This general result can be applied to states of arbitrary
symmetry, and is not restricted to ground-state atoms.
Invoking the full symmetry of the integrand under a sign
change of ω, one may write

∆E(dir) =
i

~

∫ ∞

0

dω

2π
ω4Dij(ω, ~R)Dkℓ(ω, ~R)

× αA,ik(ω)αB,jℓ(ω) . (29b)

For convenience, we recall the definition of Dij(ω, ~R) ac-
cording to Eq. (16), and the definition of αA,ij(ω) ac-
cording to Eq. (22),

Dij(ω, ~R) =
~ei

|ω|
c

R

4πǫ0c2R

[

αij + βij

[

ic

|ω|R − c2

ω2R2

]]

,

αij = δij −
RiRj

R2
, βij = δij − 3

RiRj

R2
,

αA,ij(ω) =
∑

vA

( 〈ψA |dAi| vA〉 〈vA |dAj |ψA〉
Ev,A − ~ω − iǫ

+
〈ψA |dAj | vA〉 〈vA |dAi|ψA〉

Ev,A + ~ω − iǫ

)

. (29c)

Of course, the tensor structures αij and βij need to be
distinguished from the polarizabilities αA and αB.
It is a feature of the time-ordered product of dipole and

field operators that all possible time orderings in time-
ordered perturbation theory (see Fig. 1 of Ref. [8]) are
automatically taken into account using a single propaga-
tor.

E. Mixing Term

In the case of two identical atoms, an additional in-
teraction energy term exists which needs to be taken
into account. Here, the states |ψA〉 and |ψB〉 are ob-
viously not tied to any of the atoms, but rather, atom A

may assume state |ψB〉, and atom B may assume state
|ψA〉 after the interaction. The eigenstates of the van
der Waals Hamiltonian in this case are states of the form
(1/

√
2) (|ψA, ψB〉 ± |ψB, ψA〉) with an energy

∆E = ∆E(dir) ±∆E(mix) , (30)

where ∆E(dir) is given by Eq. (29), and ∆E(mix) is ob-
tained by calculating the S-matrix element of an ini-
tial state |ψ〉 = |ψA〉 ⊗ |ψB〉 and the final state |ψ′〉 =
|ψB〉 ⊗ |ψA〉. In order to calculate the mixing term, one
repeats all steps leading from Eq. (1) to Eq. (29), for the
out state |ψ′〉 and the in state |ψ〉. The result is

∆E(mix) =
i

~

∫ ∞

0

dω

2π
ω4Dij(ω, ~R)Dkℓ(ω, ~R)

× αAB,ik(ω)α
∗
AB,jℓ(ω) . (31)

The definition ofDij(ω, ~R) has been recalled in Eq. (29c).
The mixed polarizabilities αAB,ij(ω) and αAB,ij(ω) are
given as follows,

αAB,ij(ω) =
∑

vA

( 〈ψA |dAi| vA〉 〈vA |dAj |ψB〉
Ev,A − ~ω − iǫ

+
〈ψA |dAj | vA〉 〈vA |dAi|ψB〉

Ev,A + ~ω − iǫ

)

,

αAB,ij(ω) =
∑

vB

( 〈ψA |dBi| vB〉 〈vB |dBj |ψB〉
Ev,B − ~ω − iǫ

+
〈ψA |dBj | vB〉 〈vB |dBi|ψB〉

Ev,B + ~ω − iǫ

)

. (32)

Here, the designations of the dipole transition operators
in regard to the atoms A and B, i.e., as dAi and dBi, con-
stitute mere conveniences; for the mixing term to exist,
the two atoms have to be identical and |ψA〉 and |ψB〉
are different states of the same atom. The important
feature which differentiates αAB,ij(ω) from αAB,ij(ω), in
the case of identical atoms, is the different reference state
energy in the denominator.

III. APPLICATIONS

A. Ground–State Interaction

For a reference S state of atom A, denoted as |ψA〉 =
|nAS〉, the polarizability tensor assumes the form

αA,ik(ω) =
δik
3

∑

vA

(

〈nAS|~dA|vAP 〉 · 〈vAP |~dA|nAS〉
Ev,A − ~ω − iǫ

+
〈nAS|~dA|vAP 〉 · 〈vAP |~dA|nAS〉

Ev,A + ~ω − iǫ

)

= δik αA(ω) , (33)
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where we denote S and P states by their respective sym-
metry (in this case, Ev,A = EvA − EA = E(vA P ) −
E(nAS), where the reference state energy is the one of
the S state with principal quantum number nA. This
leads to the following tensor structure in Eq. (29),

Dij(ω, ~R)Dij(ω, ~R) =

(

~

4πǫ0c2

)2
2 e2i

|ω|
c

R

R2

×
(

1 +
2i c

|ω|R − 5c2

(ωR)2
− 6i c3

(|ω|R)3 +
3c4

(ωR)4

)

.

A Wick rotation of the expression (29) then leads to

∆E(dir) = − ~

πc4(4πǫ0)2

∞
∫

0

dω e−2ωR/c ω
4

R2

×
(

1 +
2c

ω R
+

5c2

(ωR)2
+

6c3

(ωR)3
+

3c4

(ωR)4

)

× αA(1S; iω)αB(1S; iω) , (34)

where we indicate the atomic states relevant to the inves-
tigation, for clarity. The expression (29b) verifies known
results (see Chap. 85 of Ref. [10]).

B. Van der Waals (Close–Range) Limit

A classic result which needs to be verified is the close-
range limit. For R ≪ c/ω, where ω is a typical transition
wavelength, we find from the dominant term in Eq. (16)
in this limit,

Dij(ω, ~R) ≈ − ~

4πǫ0

βij
ω2R3

. (35)

For arbitrary angular symmetry of the reference state,
we thus have

∆E(dir) ≈ i~ βij βkℓ
2 (4πǫ0)2R6

∞
∫

−∞

dω

2π
αA,ik(ω)αB,jℓ(ω) , (36)

where it is advantageous to keep the integration limits as
−∞ and ∞. In view of the general result

~

∞
∫

−∞

dω

(

∑

±

1

Ev,A ± ~ω − iǫ

)(

∑

±

1

Ev,B ± ~ω − iǫ

)

=
4πi

Ev,A + Ev,B
, (37)

we have

∆E(dir) ≈ − 1

(4πǫ0)2
βij βkℓ
R6

∑

vA

∑

qB

1

Ev,A + Eq,B

× 〈ψA |dAi| vA〉 〈vA |dAk|ψA〉
× 〈ψB |dBj | qB〉 〈qB |dBℓ|ψB〉 . (38)

|ψA〉
|mA〉

|ψA〉

|ψB〉
|vB〉

|ψB〉

(a)

|ψA〉
|mA〉

|ψA〉

|ψB〉
|vB〉

|ψB〉

(b)

FIG. 2. The virtual resonant contribution due to a lower-
lying level |mA〉 leads to the pole term, which generates
the long-range interactions for excited states [see Eqs. (43b)
and (58b)].

We denote the virtual states of atom B as |q〉 as opposed
to |v〉. This is precisely the expression which would be
obtained using second order perturbation theory with the
van der Waals potential

V =
1

4π ǫ0

βij dAi dBj

R3
, (39)

which can be obtained by expanding the electrostatic po-
tential of the bound electrons and protons in both atoms
in the limit |~rA|, |~rB| ≪ R.

C. General Excited Reference States

1. Pole Term

Let |mA〉 be a virtual state of atom A, accessible by a
dipole transition, We now assume that at least one state
in atom A is energetically lower than the reference state,
i.e., Em,A < 0, while atom B is in the ground state.
For the pole term, in the decomposition (22), we restrict
the sum over virtual states vA to just one state whose
quantum numbers we denote by the multi-index mA (see
Fig. 2). A Wick rotation of the integration contour ω ∈
(0,∞) from Eq. (29b) to the imaginary axis then picks
up an additional pole term at

~ω = −Em,A + iǫ , Em,A < 0 , (40)

which we need to take into account. In consequence,
the interaction energy shift ∆E due to the energetically
lower virtual state energy with quantum numbers mA

(multi-index) naturally splits into a pole term Q(dir)
mA and

a Wick-rotated term W(dir)
mA ,

∆E(dir)
mA

= Q(dir)
mA

+W(dir)
mA

. (41)

The total direct term is

∆E(dir) =





∑

Em,A<0

Q(dir)
mA



+W(dir) , (42)
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where the Wick-rotated term W(dir) is obtained after
the summation over all virtual states (including those

of higher energy) and enters the expression in Eq. (45)
below. For the contribution from the pole, one finds by
Cauchy’s residue theorem that

Q(dir)
mA

= − Res
ω=−Em,A/~+iǫ

ω4

~
Dij(ω, ~R)Dkℓ(ω, ~R)

(

∑

±

〈ψA |dAi|mA〉 〈mA |dAk|ψA〉
Em,A ± ~ω − iǫ

)

αB,jℓ(ω)

= − 〈ψA |dAi|mA〉 〈mA |dAk|ψA〉
(4πǫ0)2R6

αB,jℓ

(

Em,A

~

)

exp

(

−2iEm,AR

~c

) [

βij βkℓ

(

1 + 2i
Em,AR

~c

)

−(2αij βkℓ + βij βkℓ)

(

Em,AR

~c

)2

− 2iαij βkℓ

(

Em,AR

~c

)3

+ αij αkℓ

(

Em,AR

~c

)4
]

= P(dir)
mA

− i

2
Γ(dir)
mA

. (43a)

Here, P(dir)
mA is the real part of the interaction energy, and Γ

(dir)
mA is the induced width. The identification of the width

term Γ
(dir)
mA follows the general paradigm that a bound-state energy can be written as E = ReE − i

2Γ, where Γ is the
width. One obtains

P(dir)
mA

= −〈ψA |dAi|mA〉 〈mA |dAk|ψA〉
(4πǫ0)2 R6

αB,jℓ

(

Em,A

~

)

{

cos

(

2
Em,AR

~c

)

[

βij βkℓ − (2αij βkℓ + βij βkℓ)

×
(

Em,AR

~c

)2

+ αij αkℓ

(

Em,AR

~c

)4
]

+ 2
Em,AR

~c
sin

(

2
Em,AR

~c

)

[

βij βkℓ − αij βkℓ

(

Em,AR

~c

)2
]}

. (43b)

The width term Γ
(dir)
mA can be obtained from P(dir)

mA by the substitution

cos

(

2Em,AR

~c

)

→ sin

(

2Em,AR

~c

)

, sin

(

2Em,AR

~c

)

→ − cos

(

2Em,AR

~c

)

, (43c)

and an overall factor two. It reads

Γ(dir)
mA

= −2
〈ψA |dAi|mA〉 〈mA |dAk|ψA〉

(4πǫ0)2 R6
αB,jℓ

(

Em,A

~

)

{

sin

(

2
Em,AR

~c

)

[

βij βkℓ − (2αij βkℓ + βij βkℓ)

×
(

Em,AR

~c

)2

+ αij αkℓ

(

Em,AR

~c

)4
]

− 2
Em,AR

~c
cos

(

2
Em,AR

~c

)

[

βij βkℓ − αij βkℓ

(

Em,AR

~c

)2
]}

. (43d)

The result (43b) is at variance with the corresponding
result given in Eq. (14) of Ref. [7], and with Eq. (4.1) of
Ref. [8]. It is in better agreement with recently published
results, such as Eq. (19) of Ref. [2] and Eq. (4) of Ref. [1]
(provided we average the latter over the interaction time
T > 2R/c). We have use a symmetry of the integrand
according to the replacement αij βkℓ+αkℓ βij+βij βkℓ →
2αij βkℓ+βij βkℓ in the cosine term in Eq. (43b), αij βkℓ+
αkℓ βij → 2αij βkℓ in the sine term. This is valid under
the same assumptions as those used in Eq. (22).

Written in terms of a sum over states for atom B, we
have

αB,jℓ

(

Em,A

~

)

=
∑

qB

〈ψB |dBj | qB〉 〈qB |dBℓ|ψB〉

×
(

1

Eq,B − Em,A
+

1

Eq,B + Em,A

)

. (43e)

The authors of Ref. [1] consider a situation with two
non-identical atoms, which have resonance energies ~ωA

and ~ωB mutually close. They define Em,A = −~ωA

(with manifestly positive ωA) and write Eq,B = ~ωB, as-
sume that ωA ≈ ωB, and define ∆AB = ~ωA − ~ωB with
|∆AB| ≪ ~ωA, ~ωB. Furthermore, they restrict the sum
over virtual states in Eq. (43e) to the resonant state, and
they keep only the term 1/(Em,A + Eq,B) in Eq. (43e),
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because under their assumptions [see Eq. (4) of Ref. [1]],

∣

∣

∣

∣

1

Em,A + Eq,B

∣

∣

∣

∣

=

∣

∣

∣

∣

− 1

∆AB

∣

∣

∣

∣

≫
∣

∣

∣

∣

1

Eq,B − Em,A

∣

∣

∣

∣

≈ 1

2~ωB
.

(44)
Our result, given in Eq. (43b), is much more general as
it includes nonresonant terms of atom B, which enter
the expression αB,jℓ (Em,A/~), and thus not restricted
to the special case of distinct atoms with mutually close
resonant frequencies.

2. Wick–Rotated Term

Let us now consider the Wick-rotated term from
Eq. (29), which has the following tensor structure,

W(dir) = − 1

~

∫ ∞

0

dω

2π
ω4Dij(iω, ~R)Dkℓ(iω, ~R)

× αA,ik(iω)αB,jℓ(iω)

= − ~

(4πǫ0)2 c4

∞
∫

0

dω

2π
e−2ωR/c ω

4

R2

×
[

αij +

(

c

ωR
+

c2

(ωR)2

)

βij

]

αA,ik(iω)

×
[

αkℓ +

(

c

ωR
+

c2

(ωR)2

)

βkℓ

]

αB,jℓ(iω).

(45)

Here, the full polarizabilities are to be used; i.e., the sum
over virtual states is not restricted to states with a lower
energy than that of the reference state, for atom A. Ac-
cording to the nonstandard definition (14), one has

|iω| =
√

(iω)2 + iǫ = iω , ω > 0 , (46)

and the Wick rotation can be carried out as usual.
It is now crucial to verify that, in the sum of the pole

term and the Wick-rotated term, the contribution of the
virtual state mA–which has lower energy than ψA–to the
nonretarded van der Waals energy (38) gives the expected
result. The Wick rotation performed in Eq. (45) is not
“innocent”; within the Wick-rotated integral, it changes
the sign of the contribution of the energetically lower
state to the van der Waals energy. A compensating term
is offered by the pole term, in a way to be discussed in
the following.
First, we approximate Eq. (45) for close range using

the asymptotic behavior of the photon propagator given
by Eq. (35). In view of the general result

~

∞
∫

−∞

dω

(

∑

±

1

Em,A ± i~ω

) (

∑

±

1

Eq,B ± i~ω

)

=
4π sgn (Em,A) sgn (Eq,B)

|Em,A|+ |Eq,B|
, (47)

an evaluation of the Wick-rotated integral in the short-
range limit leads to

W(dir)
mA

R→0
=

1

(4πǫ0)2R6

∑

qB

βij βkℓ
|Em,A|+ Eq,B

〈ψA |dAi|mA〉

× 〈mA |dAk|ψA〉 〈ψB |dBj | qB〉 〈qB |dBℓ|ψB〉

=
1

(4πǫ0)2R6

∑

qB

βij βkℓ
−Em,A + Eq,B

〈ψA |dAi|mA〉

× 〈mA |dAk|ψA〉 〈ψB |dBj | qB〉 〈qB |dBℓ|ψB〉 .
(48)

We have assumed that Em,A < 0; the result is not equal
to the contribution of the virtual state mA to the van der
Waals energy (38). The compensating term is obtained
by considering the short-range limit of the pole term,
which is obtained from Eq. (43b) in the limit R → 0,

P(dir)
mA

R→0
= − 1

(4πǫ0)2R6

(

∑

qB ,±

βijβkℓ
±Em,A + Eq,B

)

× 〈ψA|dAi|mA〉〈mA|dAk|ψA〉〈ψB |dBj |qB〉〈qB |dBℓ|ψB〉.
(49)

For completeness, we also note the short-range asymp-
totics of the width term,

Γ(dir)
mA

R→0
=

2[Em,A/(~c)]
3

3 (4πǫ0)2 R3

(

∑

qB ,±

βijβkℓ − 3αij βkℓ
±Em,A + Eq,B

)

× 〈ψA|dAi|mA〉〈mA|dAk|ψA〉〈ψB |dBj |qB〉〈qB |dBℓ|ψB〉.
(50)

The sum of the terms in Eqs. (48) and (49) restores
the van der Waals limit,

∆E(dir)
mA

= P(dir)
mA

+W(dir)
mA

R→0
= − 1

(4πǫ0)2R6

×
∑

qB

βij βkℓ
Em,A + Eq,B

〈ψA|dAi|mA〉〈mA|dAk|ψA〉

× 〈ψB|dBj |qB〉〈qB |dBℓ|ψB〉. (51)

This result precisely corresponds to what would be ex-
pected from second-order perturbation theory if the
Hilbert space of atom A were restricted in the two states
ψA and mA. Supplementing the energetically higher
states |vA〉 for atom A, given in the Wick-rotated form
Eq. (45), one restores the full van der Waals limit.
Let us now turn our attention to the long-range limit.

For the 1S–1S interaction, the classic result for very large
interatomic separation [21] calls for a Casimir-Polder
1/R7 asymptotics. This is only valid, as we now argue, if
both atoms are in their ground state. Indeed, in this sit-
uation, only the Wick-rotated contribution subsists, and
its asymptotics is indeed of the Casimir-Polder form. In
the general case, however, for arbitrary tensor structure,
we both have the Wick-rotated term



9

W(dir) R→∞
= − ~c

8π

αA,ik(0)αB,jℓ(0)

(4πǫ0)2 R7

× (3αijαkl + 5αijβkl + 5βijβkl) (52)

and the pole term which has the long-range asymptotics

P(dir)
mA

R→∞
= − 1

(4πǫ0)2R2

(

Em,A

~c

)4

cos

(

2
Em,AR

~c

)

× αijαkl 〈ψA |dAi|mA〉 〈mA |dAk|ψA〉

× αB,jℓ

(

Em,A

~

)

. (53)

The long-range form of the width term reads as

Γ(dir)
mA

R→∞
= − 2

(4πǫ0)2 R2

(

Em,A

~c

)4

sin

(

2
Em,AR

~c

)

× αijαkl 〈ψA |dAi|mA〉 〈mA |dAk|ψA〉

× αB,jℓ

(

Em,A

~

)

. (54)

This result confirms the existence of an extremely long-
range van der Waals interaction for excited states.

3. Mixing Terms

We now need to start from Eq. (31) for the mixing
term and analyze the pole term generated for a virtual
state of lower energy, in atom A, and the Wick-rotated
term, as well as its nonretarded limit. The mixing term is

relevant only for identical atoms. We recall that for iden-
tical atoms, the eigenstates of the van der Waals Hamilto-
nian are states of the form (1/

√
2) (|ψA, ψB〉 ± |ψB, ψA〉),

with an energy ∆E(dir)±∆E(mix), where ∆E(dir) is given
by Eq. (29), and ∆E(mix) by Eq. (31). We write the

contribution ∆E
(mix)
mA from an energetically lower state

|vA〉 = |mA〉 with Em,A < 0 as

∆E(mix)
mA

= Q(mix)
mA

+W(mix)
mA

. (55)

The total mixing term is obtained as the sum

∆E(mix) =





∑

Em,A<0

Q(mix)
mA



+W(mix) , (56)

where W(mix) is the total mixing term, summed over all
states, energetically lower as well as higher.
The generalization of Eq. (43a) to the mixed pole term

reads as follows,

Q(mix)
mA

= − Res
ω=−Em,A/~+iǫ

ω4

~
Dij(ω, ~R)

×Dkℓ(ω, ~R)

( 〈ψA |dAi|mA〉 〈mA |dAk|ψB〉
Em,A − ~ω − iǫ

+
〈ψA |dAi|mA〉 〈mA |dAk|ψB〉

Em,A + ~ω − iǫ

)

αAB,jℓ(ω) .

= P(mix)
mA

− i

2
Γ(mix)
mA

. (57)

For the pole term generated at ω = −Em,A+ iǫ, we need
the second term in round brackets, with the result

Q(mix)
mA

= − 〈ψA |dAi|mA〉 〈mA |dAk|ψB〉
(4πǫ0)2 R6

αAB,jℓ

(

Em,A

~

)

exp

(

−2iEm,AR

~c

) [

βij βkℓ

(

1 + 2i
Em,AR

~c

)

−(2αij βkℓ + βij βkℓ)

(

Em,AR

~c

)2

− 2iαij βkℓ

(

Em,AR

~c

)3

+ αij αkℓ

(

Em,AR

~c

)4
]

= P(mix) − i

2
Γ(mix) .

(58a)

The real part of the pole contribution to the mixing term is

P(mix)
mA

= −〈ψA |dAi|mA〉 〈mA |dAk|ψB〉
(4πǫ0)2R6

αAB,jℓ

(

−Em,A

~

)

{

cos

(

2
Em,AR

~c

)

[

βij βkℓ − (2αij βkℓ + βij βkℓ)

×
(

Em,AR

~c

)2

+ αij αkℓ

(

Em,AR

~c

)4
]

+ 2
Em,AR

~c
sin

(

2
Em,AR

~c

)

[

βij βkℓ − αij βkℓ

(

Em,AR

~c

)2
]}

. (58b)

The corresponding width term is

Γ(mix)
mA

= −2
〈ψA |dAi|mA〉 〈mA |dAk|ψB〉

(4πǫ0)2R6
αAB,jℓ

(

−Em,A

~

)

{

sin

(

2
Em,AR

~c

)

[

βij βkℓ − (2αij βkℓ + βij βkℓ)

×
(

Em,AR

~c

)2

+ αij αkℓ

(

Em,AR

~c

)4
]

− 2
Em,AR

~c
cos

(

2
Em,AR

~c

)

[

βij βkℓ − αij βkℓ

(

Em,AR

~c

)2
]}

. (58c)
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The mixed polarizability αAB,jℓ(ω) has been defined in
Eq. (32). The (total) Wick-rotated term from Eq. (56) is

W(mix) = − 1

~

∫ ∞

0

dω

2π
ω4Dij(iω, ~R)Dkℓ(iω, ~R)

× αAB,ik(iω)αAB,jℓ(iω) . (59)

The generalization of the energy shift ∆E given in
Eq. (51) to the mixing term, in the van der Waals range,
reads as follows,

∆E(mix)
mA

R→0
= − 1

(4πǫ0)2 R6

∑

qB

βij βkℓ
Em,A + Eq,B

×〈ψA|dAi|mA〉〈mA|dBk|ψB〉〈ψA|dAj |qB〉〈qB|dBℓ|ψB〉.
(60)

The mixing contribution to the width term, for close
range, is

Γ(mix)
mA

R→0
=

2[Em,A/(~c)]
3

3 (4πǫ0)2 R3

(

∑

qB ,±

βijβkℓ − 3αij βkℓ
±Em,A + Eq,B

)

× 〈ψA|dAi|mA〉〈mA|dBk|ψB〉〈ψA|dAj |qB〉〈qB|dBℓ|ψB〉.
(61)

In the long-range limit, the mixed Wick-rotated term is

W(mix) R→∞
= − ~c

8π(4πǫ0)2R7
(3αijαkl + 5αijβkl

+5βijβkl) αAB,ik(0)αAB,jℓ(0) . (62)

The mixed pole term has the leading long-range asymp-
totics

P(mix)
mA

R→∞
= − 1

(4πǫ0)2R2

(

Em,A

~c

)4

cos

(

2Em,AR

~c

)

× αijαkl 〈ψA |dAi|mA〉 〈mA |dAk|ψB〉

× αAB,jℓ

(

−Em,A

~

)

. (63)

Finally, the mixed width term is

Γ(mix)
mA

R→∞
= − 2

(4πǫ0)2 R2

(

Em,A

~c

)4

sin

(

2Em,AR

~c

)

× αijαkl 〈ψA |dAi|mA〉 〈mA |dAk|ψB〉

× αAB,jℓ

(

−Em,A

~

)

. (64)

Due to the symmetry of the wave function, the total in-
teraction energy ∆E(dir)±∆E(mix), as well as the Wick-
rotated term

W = W(dir) ±W(mix) (65)

and the pole and width terms,

PmA
= P(dir)

mA
±P(mix)

mA
, ΓmA

= Γ(dir)
mA

±Γ(mix)
mA

, (66)

are the sums of the direct and an exchange (mixing) con-
tributions.

D. Excited Reference S States

1. Pole Term for S States

For S states (i.e., when atom A is in a state with S
symmetry), a number of simplifications are possible, as
we can replace αA,ik(ω) → δik αA(ω) [see Eq. (33)]. We
restrict the discussion to the direct term. The interaction
energy (29) becomes

∆E(dir) =
i

~

∞
∫

0

dω

2π
ω4Dij(ω, ~R)Dji(ω, ~R)αA(ω)αB(ω).

(67)

The pole term for an energetically lower |mAP 〉 state
becomes

Q(dir) = − 2

3(4πǫ0)2R6
〈nAS|~dA|mAP 〉·〈mAP |~dA|nAS〉

× αB

(

Em,A

~

)

exp

(

−2iEm,AR

~c

)

×
[

3 + 6i
Em,AR

~c
− 5

(

Em,AR

~c

)2

−2i

(

Em,AR

~c

)3

+

(

Em,AR

~c

)4
]

. (68)

The real part is

P(dir) = − 2

3(4πǫ0)2R6
〈nAS|~dA|mAP 〉·〈mAP |~dA|nAS〉

× αB

(

Em,A

~

){

cos

(

2Em,AR

~c

)

×
(

3− 5

(

Em,AR

~c

)2

+

(

Em,AR

~c

)4
)

+
2Em,AR

~c
sin

(

2Em,AR

~c

)

(

3−
(

Em,AR

~c

)2
)}

.

(69)

The corresponding width term is

Γ(dir) = − 4

3(4πǫ0)2R6
〈nAS|~dA|mAP 〉 · 〈mAP |~dA|nAS〉

× αB

(

Em,A

~

){

sin

(

2Em,AR

~c

)

×
(

3− 5

(

Em,AR

~c

)2

+

(

Em,AR

~c

)4
)

−2Em,AR

~c
cos

(

2Em,AR

~c

)

(

3−
(

Em,AR

~c

)2
)}

.

(70)
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We recognize a number of prefactors also present in
Eq. (19) of Ref. [2] and recall the definition of the S-state
polarizability from Eq. (33). In the sum-over-states rep-
resentation, the polarizability relevant to the pole term
reads

αB

(

Em,A

~

)

=
1

3

∑

qB

〈nBS|~dB|qBP 〉 · 〈qBP |~dB|nBS〉

×
(

1

Eq,B − Em,A
+

1

Eq,B + Em,A

)

.

(71)

We recall that the pole term persists only for Em,A < 0.

2. Wick–Rotated Term for S States

For S states, the Wick-rotated term (45) becomes

W(dir) = − ~

πc4(4πǫ0)2

∞
∫

0

dω

π
e−2ωR/c ω

4

R2

×
(

1 +
2

ωR
+

5c2

(ωR)2
+

6c3

(ωR)3
+

3c4

(ωR)4

)

× αA(iω)αB(iω) . (72)

Irrespective of whether the virtual state |mA〉 is energet-
ically lower or higher than the reference state, the long-
range limit of W due to the virtual state P state |mAP 〉
is given as follows,

W(dir)
mA

≈ − 23

9π

~c

(4πǫ0)2
1

R7

× 〈ψAS|~dA|mAP 〉 · 〈mAP |~dA|ψAS〉
Em,A

×
∑

qB

〈ψBS|~dB|qBP 〉 · 〈qBP |~dB|ψBS〉
Eq,B

, R → ∞ . (73)

Restoring the sum over mA, one verifies that

W(dir) ≈ − 23

4π

~c

(4πǫ0)2
1

R7
αA(0)αB(0) , R → ∞ ,

(74)

where the static S-state polarizabilities are given by

αA(0) =
2

3

∑

vA

〈ψAS|~dA|vAP 〉 · 〈vAP |~dA|ψAS〉
Evn,A

, (75a)

αB(0) =
2

3

∑

qB

〈ψBS|~dB|qBP 〉 · 〈qBP |~dB|ψBS〉
Eq,B

. (75b)

IV. CONCLUSIONS

We have investigated the van der Waals interaction
between two atoms in a general setting, allowing for

one of the (conceivably identical) atoms to be in an ex-
cited state. The expressions obtained are widely appli-
cable. We employed the Feynman prescription propaga-
tors for the electromagnetic field, a prescription which
we saw naturally arises out of time-dependent pertur-
bation theory. Time-ordered expectation values of the
atomic dipole operators are used. Our result (29) has
been kept in fully tensorial form. Our derivation can
be applied to arbitrary angular symmetry of the atomic
reference states involved. The general result given in
Eq. (29) allows us to split the contribution of an ener-
getically lower state |mA〉 of the excited atom A into a
pole and a width term, given in Eqs. (43b) and (43d),
and a Wick-rotated term, given in Eq. (45). For an ener-
getically lower virtual state |mA〉, the short-range limit of
the Wick-rotated term has an interesting sign change [see
Eq. (48)] and would lead to a repulsive contribution to
the van der Waals interaction. However, the pole term
compensates this unphysical behavior and restores the
correct short-range limit [see Eqs. (49) and (51)]. The
additional mixing term incurred for identical atoms is
discussed in Eqs. (58b), (58c) and (59).

The formalism used here involves the matching of the
scattering amplitude to the effective Hamiltonian. The
use of Feynman propagators allows us to drastically re-
duce the number of diagrams which need to be consid-
ered (Fig. 1) in comparison to time-ordered perturbation
theory [1, 5], because all the possible time orderings of
the electron-photon vertices are already contained in the
Feynman formalism. The fully retarded result, and the
gerade-ungerade mixing term including all nonresonant
states, is included in one single, coherent formalism. In-
deed, it was the tremendous simplifications incurred by
the use of Feynman propagators which allowed the sim-
plified evaluation of loop integrals in the early days of
quantum electrodynamics [22].

We confirm that for a system involving an atom in
an excited state, the “retarded” 1/R7 Casimir-Polder
asymptotics [21] is never fully reached. Indeed, this 1/R7

behavior originates in the Wick-rotated version of the in-
tegral over photon frequencies, which gives the interac-
tion energy [see Eq. (52) for the general tensorial struc-
ture of this Wick-rotated long-range limit]. However, if
one of the atoms (say, atom A) is excited, then poles
in the complex energy plane are picked up upon a Wick
rotation of the integration contour. These poles corre-
spond to virtual states energetically lower than the ref-
erence state, and therefore are not present in the ground
state. In the large-interatomic separation limit, these
pole contributions exhibit a surprising 1/R2 asymptotics
[see Eq. (53)]. When the interatomic distance becomes
larger than the wavelength ~c/|Em,A| (where |Em,A| is
the transition energy between the reference state and
a lower-energy level accessible through a dipole tran-
sition), the pole contribution becomes larger than the
Wick-rotated contribution (the latter corresponding to
the usual Casimir-Polder 1/R7 asymptotics), with the
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rule of thumb that

P
WmA

∼ α5

(

R

a0

)5

, (76)

in the Casimir–Polder range. Let us conclude with a few
remarks on the interaction of a metastable 2S state in
hydrogen with a ground-state atom [23–25]. The 2P1/2

states are energetically lower than the reference 2S state
but displaced only by the Lamb shift L. Their contribu-
tion is suppressed, even in the oscillatory terms, due to
the E4

m,A = L4 prefactor. In the Lamb shift range R ∼
~c/L (when R becomes commensurate with the Lamb
shift wavelength), the static polarizability of the 2S state
has the Lamb shift in the denominator, so that the 1/R7–
Wick-rotated term of the interaction energy shift is of
order 1/(~c/L)7 (L/~c)−1 = [L/(~c)]6. For R ∼ ~c/L,
it competes with the oscillatory term which is of the
same order of magnitude, namely, [L/(~c)]4/[R/(~c)]2 =
[L/(~c)]4/[L/(~c)]2 = [L/(~c)]6. In the given distance
range, the interaction energy is of order α24mec

2, where
me is the electron mass, and thus is negligible. The os-
cillatory term exists for the 2S–1S interaction, but it
dominates only for such long distances that no dras-
tic surprises can be expected for frequency shifts due
to long-range interactions, within high-precision spec-
troscopy [26]. The suppression mainly is due to the small-
ness of the Lamb shift; analogous observations have re-
cently been made in Ref. [6], where the 2P admixtures
to a reference 2S state in hydrogen have been calculated
for atom-wall interactions: A parametrically interesting
long-range tail has been identified, but it was found to
be suppressed due to the smallness of the Lamb shift.

The situation is different for highly excited states,
where the energy shift naturally splits into a pole term,
a width term and a Wick-rotated term. This is ap-
plicable both to the “direct” as well as the “mix-
ing” term [see Eqs. (41) and (55)]. Our general re-
sults (29), (43b), (43d), and (53) are applicable to
the “direct” term. The corresponding results, for the
mixing term which is relevant for van der Waals in-
teractions among identical atoms, can be found in
Eqs. (31), (58b), (58c), and (63).
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Appendix A: Significance of Nonresonant States

We should clarify the relation of our work to other re-
cent studies [1, 3] which are based on a restricted subset
of atomic states, for the two atoms participating in the
interaction, and the reference work [8] which uses time-
order perturbation theory. Let us start with the latter en-
deavor. The Feynman propagators [see Eq. (22)], which
are used in our derivation, capture different time order-
ings of the electron-photon interactions in one full sweep.
As the propagator captures different time orderings of
electron-photon interactions in one single expression, it
was possible in the early days of QED [27] to carry out the
so-called virtual loop integrals of the vacuum polarization
and self energy [28, 29]. Using the Feynman formalism,
the twelve time-ordered diagrams for the van der Waals
interaction (given in a number of places in the literature,
including Fig. 1 of Ref. [8]), can be replaced by just two
diagrams, given in Fig. 1, which involve Feynman prop-
agators. The latter approach also eliminates any guess-
work on where to place the infinitesimal imaginary parts
in the denominators which determine the location of the
poles.
Our result interpolates between the close-range non-

retarded van der Waals regime, and the long-range tails.
When one adds the pole term and the Wick-rotated term,
in our approach, then one gets the van der Waals result
back, in the close-range limit [see Eq. (51)]. In order
for this to happen, one has to include the nonresonant
virtual states into the formalism right from the start. In
the long range, the pole term dominates [see Eq. (52)].
In the van der Waals limit, on the other hand, all the
nonresonant, virtual states of the atom become relevant.
The alternative approach, as outlined in Refs. [1, 3],

restricts the discussion to few “active” states, namely, to
the ground state, and a single excited states, for each of
the atoms. Based on this approximation, the quantum
dynamics can be formulate within the few-states approx-
imation (for an outline of the formalism used, see also
Ref. [30]). The validity of this treatment is restricted to
non-identical atoms with two close resonances.
Our approach is much more general. It would be quite

difficult, if not impossible, to generalize the treatment
outlined in Refs. [1, 3] to an infinite number of virtual
states. This endeavor would inevitably result in an infi-
nite number of coupled differential equations. Our gen-
eral formulas, on one hand, capture the tensor structure
of the pole terms due to energetically lower virtual states
(the 1/R2 long-range tail) and on the other hand, yield
the correct van der Waals close-range result (proportional
to 1/R6).
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sion Measurement of the Hydrogen 1S–2S Frequency via
a 920-km Fiber Link,” Phys. Rev. Lett. 110, 230801
(2013).

[27] J. Schwinger, Selected Papers on Quantum Electrodynam-

ics (Dover Publications, New York, USA, 1958).
[28] P. J. Mohr, “Self–Energy Radiative Corrections in

Hydrogen–Like Systems,” Ann. Phys. (N.Y.) 88, 26–51
(1974).

[29] P. J. Mohr, “Numerical Evaluation of the 1S1/2 Radiative
Level Shift,” Ann. Phys. (N.Y.) 88, 52–87 (1974).

[30] P. R. Berman and P. W. Milonni, “Microscopic Theory
of Modified Spontaneous Emission in a Dielectric,” Phys.
Rev. Lett. 92, 053601 (2004).


