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Abstract

With a counter-diabatic field supplemented to the reference control field, the ‘shortcut to adi-

abaticiy’ (STA) protocol is implemented in a superconducting phase qubit. The Berry phase

measured in a short time scale is in good agreement with the theoretical result acquired from an

adiabatic loop. The trajectory of a qubit vector is extracted, verifying the Berry phase alterna-

tively by the integrated solid angle. The classical noise is introduced to the amplitude or phase of

the total control field. The mean of the Berry phase measured under either noise is almost equal to

that without noise, while the variance under the amplitude noise can be described by an analytical

expression.
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I. INTRODUCTION

In quantum mechanics, a geometric phase is acquired as a quantum state propagates on

a curved surface and this interesting phenomenon is observed in many quantum systems

ranging from microscopic particles to condensed matter materials [1–5]. The precise control

and measurement of the geometric phase lead to geometric phase gates in quantum compu-

tation [6–10]. A typical example to understand the geometric phase is a spin-1/2 particle

subject to a slowly-varying magnetic field which undergoes a closed path in the parameter

space. In response to the changing field, the spin remains in an instantaneous eigenstate and

follows a cyclic path in the Bloch sphere. The geometric phase, termed the Berry phase [1],

is acquired by the spin state when the spin vector returns to its initial position. The Berry

phase in such an adiabatic process is independent of the speed of the field’s evolution if the

adiabatic condition is satisfied.

In practice, a quantum manipulation is often performed in a short time scale to avoid

dissipation induced errors, incompatible with the presumption of the adiabatic process. The

advance of large-scale quantum devices requires fast operations to improve efficiency of infor-

mation processing [11]. Various procedures have thus been proposed for the realization of a

fast ‘adiabatic’ process [12–18]. One general strategy is to apply a ‘shortcut to adiabaticity’

(STA) where an additional Hamiltonian is employed to cancel the non-adiabatic contribution

in a fast evolution [12–16]. For a given reference Hamiltonian H0(t), the counter-diabatic

Hamiltonian Hcd(t) is formally written as [13]

Hcd(t) = i~
∑

n

[

|∂tn(t)〉〈n(t)| − 〈n(t)|∂tn(t)〉 |n(t)〉〈n(t)|
]

, (1)

where |n(t)〉 is an instantaneous eigenstate of H0(t). For each eigenstate |n(t)〉, Hcd(t)

suppresses its non-adiabatic transition to other eigenstates. The quantum system driven

by the total Hamiltonian Htot(t) = H0(t) + Hcd(t) can evolve fast but remain in the state

|n(t)〉. Regardless of the evolution of Htot(t), the system state evolves along a closed path

with respect to H0(t) and acquires the associated Berry phase [19, 20].

The STA protocol has been implemented in atomic, molecular and optical systems for

the state preparation, population transfer and optimal control [16, 21, 22]. Compared with

these microscopic systems, a superconducting circuit is fabricated on chips with lithographic

scalability. The superconducting qubit is realized based on nonlinear quantized energy levels
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FIG. 1. (a) Schematic diagram of our experimental setup including the room-temperature control

and the low-temperature phase qubit. (b) The optical micrograph of the phase qubit.

of the circuit. Sophisticated microwave techniques allow a reliable generation of the counter-

diabatic Hamiltonian in superconducting qubits. In this paper, we focus on the realization

of the STA protocol in a superconducting phase qubit [23, 24]. We achieve the Berry phase

measurement with the STA protocol and study the influence of external field fluctuations,

which extends previous studies of the Berry phase in a Cooper pair pump [25] and in an

adiabatically-steered superconducting qubit [26, 27] .

II. EXPERIMENTAL SETUP

Figure 1(a) displays a schematic diagram of our experimental setup, including a phase

qubit and external control lines [23]. The control signals are synthesized at room temper-

ature, and then sent down to the low-temperature stage to manipulate and measure the

qubit state. The phase qubit is mounted in a sample box and cooled in a dilution refrigera-

tor whose base temperature is ∼ 10 mK. As shown by the optical micrograph in Fig. 1(b),

the main components are a qubit, a superconducting quantum interference device (SQUID)

and their control lines. The circuit of a superconducting phase qubit is a nonlinear resonator

comprised of a Josephson junction (with a critical current I0 = 2 µA), a loop inductance (Lq

= 720 pH) and a capacitor (Cq = 1 pF) [23, 24]. The flux currect biases this resonator in an
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anharmonic cubic potential, and the lowest two energy levels of the nonlinear resonator are

used as the ground (|0〉) and excited (|1〉) states of a qubit. In our experiment, the resonance

frequency of the phase qubit is set at ω10/2π = 5.7GHz, and the qubit dissipation is charac-

terized by a relaxation time, T1 = 270 ns, and a spin-echo decoherence time, T echo
2 = 450 ns.

The microwave drive signal is produced by mixing two low-frequency quadratures (I and Q)

with the local oscillator (LO) signal (drive frequency ωd), and provides a fast and reliable

control of the qubit state.

For our phase qubit, it is difficult to perform an adiabatic operation [26, 27], but feasible

to implement a fast STA protocol. With the qubit modelled as a spin-1/2 particle, we also

treat the microwave signal as an effective external magnetic field. In the rotating frame of

the external field, the Hamiltonian is expressed as H(t) = ~B(t) · σ/2 after the rotating

wave approximation. Here σ = (σx, σy, σz) is the vector of Pauli operators and B(t) is

the effective magnetic field expressed in the unit of angular frequency. Throughout this

paper, our experiment will be described and discussed in the rotating frame. At the end of

a quantum operation, the qubit state is projected to either the ground (|0〉) or excited (|1〉)
state for the readout measurement [23]. As the ground and excited states induce different

fluxes in the qubit loop, the SQUID can detect the probability of the two states through

the SQUID control line. Furthermore, the quantum state tomography (QST) technique is

applied in the readout to extract the density matrix of the final qubit state.

III. EXPERIMENTAL MEASUREMENT OF THE BERRY PHASE WITH THE

STA PROTOCOL

In an adiabatic process, the Berry phase can be measured with a spin-echo scheme [26–28].

In our STA experiment, the reference Hamiltonian, H0(t) = ~B0(t)·σ/2, is used to construct

the spin-echo trajectory in a short time scale. As shown in Fig. 2(a), the reference magnetic

field B0(t) evolves as follows. A π/2-pulse is applied to the ground-state qubit, preparing an

initial superposition state at (|0〉+ |1〉)/
√
2. After the initialization, the first sequence of the

field, Bramp,0(t1) = (∆0 tan θ(t1), 0,∆0) with 0 < t1 < Tramp, ramps up its x-component by

θ(t1) = θ0t1/Tramp. The ramping time is fixed at Tramp = 10 ns, while ∆0 = ωd − ω10 is the

detuning between the microwave drive frequency ωd and the qubit resonance frequency ω10.

We set ∆0/2π = 7 MHz to reduce the influence of higher excited states. The second sequence
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builds a rotating field, Brot,0(t2) = (Ω0 cosφ(t2),Ω0 sinφ(t2),∆0) with 0 < t2 < Trot. The

drive amplitude is Ω0 = ∆0 tan θ0, while the rotation is operated under a constant speed

ω0 = 2π/Trot along either the counterclockwise (C+) or clockwise (C−) direction. The time-

dependent phase of the effective field is given by φ(t2) = ±ω0t2. In our experiment, the

pre-designed polar angle θ0 and the rotation time Trot are varied as control parameters.

To further reduce the influence of higher excited states, a reversed ramping-down field,

Bramp,0(Tramp − t3) with 0 < t3 < Tramp, is subsequently used to finish the first (dephasing)

part of the spin-echo scheme [29]. A refocusing π-pulse is then applied to invert the qubit

states. During the second (rephasing) part of our spin-echo scheme, the three sequences

in the first part are reversed, as shown in Fig. 2(a). Based on the cyclic rotations in the

dephasing and rephasing parts, the symbols of C+− and C−+ represent two different types of

spin-echo procedures.

To fulfill the STA protocol, the counter-diabatic Hamiltonian, Hcd(t) = ~Bcd(t) · σ/2,
is calculated by Eq. (1). For each ramping or rotating step, the counter-diabatic magnetic

field is given by Bcd(t) = B0(t) × Ḃ0(t)/|B0(t)|2, which is perpendicular to the reference

magnetic field (see Appendix A). In particular, the counter-diabatic ramping field is writ-

ten as Bramp,cd(t) = (0,±θ0/Tramp, 0), where the ± signs correspond to the ramping-up

and ramping-down steps, respectively. The counter-diabatic rotating field is written as

Brot,cd(t) = (Ωcd cosφ(t),Ωcd sinφ(t),∆cd), where the signs of Ωcd = ∓ω0 sin θ0 cos θ0 and

∆cd = ±ω0 sin
2 θ0 refer to the C+ and C− rotations, respectively. The total magnetic field is

obtained as Btot(t) = B0(t) +Bcd(t), an example of which is shown in Fig. 2(a).

In the STA protocol, the qubit is designed to follow the path of B0(t) when driven by the

total Hamiltonian Htot(t) = ~Btot(t) · σ/2. Initially, the |0〉 and |1〉 states are the instan-

taneous spin-up (|s↑(t)〉) and spin-down (|s↓(t)〉) eigenstates of the reference Hamiltonian,

respectively. In an ideal adiabatic scenario, the Bloch vector of the |s↑(t)〉 state always

points to the same direction of B0(t), while the opposite occurs for the |s↓(t)〉 state. The

ramping sequences only produce a dynamic phase, while both the dynamic and Berry phases

are acquired during circular rotations. For the |s↑(t)〉 state, the Berry phase accumulated

in one cycle is given by γ↑ = ∓S/2, where S = 2π(1− cos θ0) is the solid angle of the cone

subtended by the cyclic path at the origin and the ∓ signs refer to the C+ or C− paths,

respectively. Since the |s↓(t)〉 state follows the opposite path of the |s↑(t)〉 state, its accu-

mulated Berry phase is opposite, i.e., γ↓ = ±S/2. After the refocusing π pulse, the phases
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FIG. 2. The STA experiment of measuring the Berry phase with a C+− spin-echo procedure. (a)

The schematic diagram of the effective magnetic field in the x-y plane. The dashed and solid

lines are the reference and total control fields, while the red and blue colors refer to their x- and

y-components. (b) The measurement of the x-projection of the final qubit state versus the solid

angle S and the rotation time Trot. (c) With Trot = 30 ns, the x-, y-projections of the final qubit

state (red and blue circles) are compared with the theoretical prediction (red and blue lines). (d)

The measurement of the Berry phase versus S and Trot. (e) With Trot = 30 ns, the extracted Berry

phase (circles) is compared with the theoretical prediction (solid line). The comparison between the

experimental measurement and the theoretical prediction in the C−+ procedure is also presented.
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associated with the |s↑(t)〉 and |s↓(t)〉 states are swapped. For each instantaneous eigenstate,

the dynamic phase is cancelled in the rephasing part, while the Berry phase is doubled due

to a reversed rotating direction. At the echo time, the |s↑(t)〉 and |s↓(t)〉 states return to the

two poles of the Bloch sphere, and the final qubit state is written as (e−iγ/2 |0〉+eiγ/2|1〉)/
√
2

with a global phase excluded. The total relative Berry phase after two circular rotations is

theoretically given by γ = ∓2S for the C+− or C−+ procedures, respectively.

In our experiment, the total field Btot(t) is realized by the microwave control signal, and

the qubit is driven in the spin-echo scheme as above. To measure the Berry phase γ, we apply

the QST to extract the density matrix ρ of the final state [24]. The x- and y-projections

of the qubit vector are given by 〈x〉 = Tr{σxρ} and 〈y〉 = Tr{σyρ}. The two-dimensional

(2D) diagram in Fig. 2(b) presents the experimental measurement of 〈x〉 with the change of

the rotation time Trot and the pre-designed solid angle S (through the change of θ0) in the

C+− procedure. The rotation time, 20 ns ≤ Trot ≤ 60 ns, in our experiment is much shorter

than the necessary time (Trot & 1 µs) of an adiabatic operation [26] . We observe that

〈x〉 oscillates with S and varies slowly with Trot; the same conclusion is applied to 〈y〉 (not
shown). From the results of Trot = 30 ns in Fig. 2(c), these two components are consistent

with the theoretical prediction of 〈x〉 = r cos γ and 〈y〉 = r sin γ with γ = −2S. Here

r = 0.72 is an adjusted fitting parameter due to dissipation. On the other hand, these two

oscillations are nearly undamped with S, indicating a weak geometric dephasing [26]. For

each final density matrix, the Berry phase γ is estimated using arctan[〈y〉/〈x〉]. In the C+−

procedure, the Berry phase with θ0 < π/3 (or S < π) is assigned in the range of (−2π, 0)

after considering the signs of 〈x〉 and 〈y〉. With π/3 < θ0 < π/2 (or π < S < 2π), an extra

−2π is included to assign γ in the range of (−4π,−2π). An opposite range is specified for

γ in the C−+ procedure. Figure 2(d) presents the measurement of γ for the C+− procedure.

From the result of Trot = 30 ns in Fig. 2(e), the linear relation, γ = −kS (k = 2.04±0.02), is

extracted, in good agreement with the theoretical prediction of γ = −2S. The same relation

with an opposite sign, γ = k′S (k′ = 2.06 ± 0.02), is extracted for the C−+ procedure.

The two slopes, k and k′, are almost unchanged with the increase of the rotation time Trot.

Our experiment thus demonstrates that the Berry phase of a cyclic adiabatic path can be

successfully measured in the superconducting phase qubit following the fast STA protocol.

To further illustrate the accumulation of the Berry phase, we modify the external mi-

crowave signal and inspect the trajectory of the |s↑(t)〉 state in the STA protocol. Without
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FIG. 3. In the STA procedure, the evolution of the |s↑(t)〉 state subject to a C+-rotating field with

Trot = 30 ns. (a) The trajectory of the qubit vector in the Bloch sphere. In the spherical coordinate

system of the qubit vector, the time evolutions of radius, polar and azimuthal angles are plotted

in (b), (c) and (d), respectively. In (a)-(d), the black and blue circles are the experimental results

of θ0 = π/6 and π/4, respectively. The associated solid lines are the results of an ideal evolution.

the excitation of the π/2-pulse, the ground-state qubit (or the |s↑(t)〉 state) is driven by the

ramping-up field Bramp,tot(t1) and the subsequent C+-rotating field Brot,tot(t2) with Trot = 30

ns. We measure the density matrix of the qubit by interrupting the rotation and performing

the QST every 0.5 ns. Figure 3 presents the time evolution of the qubit vector during the

rotation period for two pre-designed polar angles, θ0 = π/6 and π/4, in the parameter space.

As shown in Figs. 3(c) and 3(d), the polar angles of both qubit vectors vary weakly with time

(around the given value of θ0), and their azimuthal angles increase almost linearly with the

time as φ(t2) = ω0t2. The time evolution of the radii in Fig. 3(b) shows that the two qubit

vectors are initially on the surface of the Bloch sphere and slightly shrink due to dissipa-

tion. Our experiment confirms that the |s↑(t)〉 state follows the same direction of Brot,0(t2)

and takes a circular path along the latitude of π/2 − θ0 in the northern hemisphere. An

integration, S =
∫

[1− cos θ(t2)]dφ(t2), further allows us to estimate the actual solid angles

enclosed by the circular path. The approximate integration results, S(θ0 = π/6) = 0.788

and S(θ0 = π/4) = 1.72, are roughly close to their theoretical values of S = 2π(1− cos θ0)
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in an ideal adiabatic scenario, also consistent with the measurement of the Berry phase in

Fig. 2.

IV. NOISE EFFECT OF THE BERRY PHASE MEASUREMENT

In a previous experiment of a superconducting transmon qubit with the adiabatic pro-

tocol, the stability of the Berry phase was studied under the influence of slowly-varying

noises [27, 30]. Similarly, we introduce an artificial fluctuation δBrot(t) to the rotation field

Brot,tot(t). Two independent stochastic noises, δΩ(t) and δφ(t), are assigned to the drive am-

plitude and phase of the effective magnetic field in the x-y plane, respectively. Both noises

are assumed to follow the Ornstein-Uhlenbeck (O-U) process. The amplitude noise satisfies

〈δΩ(t)〉 = 0 and 〈δΩ(t)δΩ(0)〉 = c2ΩΩ
2
tot exp(−Γt) with Ωtot = Ω0 + Ωcd, while the phase

noise satisfies 〈δφ(t)〉 = 0 and 〈δφ(t)δφ(0)〉 = c2φ exp(−Γt). The dimensionless coefficients,

cΩ and cφ, represent the reduced noise strengths. A small noise bandwidth, Γ = 10 MHz,

is chosen so that noises are correlated through the operation time. In our experiment, we

investigate the influence of the amplitude noise δΩ(t) and the phase noise δφ(t) separately.

With respect to each noise parameter (cΩ and cφ), the total 300 stochastic trajectories of

δBrot(t) are generated. Since the relative dynamic phase between the |s↑(t)〉 and |s↓(t)〉
states cannot be cancelled by a noisy spin-echo sequence, we only assign a single rotating

field, Brot,tot(t) + δBrot(t), to measure the Berry phase accumulated in a single cycle. To

reduce the influence of the intrinsic noise, the spin-echo scheme is still used, while the effec-

tive magnetic field is only applied in the second part following the π-pulse. An example of

the noisy magnetic field with the C+ rotation is shown in Fig. 4(a). For each noisy sequence,

we measure the final density matrix by the QST and unwrap the total accumulated phase,

similar to the method in Fig. 2. The final relative Berry phase γ (|s↓(t)〉 relative to |s↑(t)〉)
from one circular loop is then estimated from the total phase subtracted by a theoretical

calculation of the dynamic phase (see Appendix B). This indirect approach could introduce

a small error of the dynamic phase into the estimation of γ, which however does not affect

the main conclusion of our experiment. After collecting data over 300 trajectories, we obtain

the statistics of γ subject to the amplitude noise δΩ(t) or the phase noise δφ(t).

With a fixed rotation time, Trot = 30 ns, we first study the variation of the Berry phase

under a given noise strength, cΩ = 0.1 or cφ = 0.1. For four pre-designed solid angles,
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FIG. 4. The STA experiment of studying the noise influence on the measurement of the Berry

phase. (a) The schematic diagram of the effective magnetic field with a noisy C+-rotation. The red

and blue colors refer to the x- and y-components of the total control field. With Trot = 30 ns, the

histograms of the Berry phase subject to 300 trajectories of the amplitude (cΩ = 0.1) and phase

noises (cφ = 0.1) are plotted in (b) and (c), respectively. From the left to right in both (b) and

(c), the four distributions refer to the results of S = π/40, 3π/16, 3π/8, and π in the parameter

space. In (b), the solid lines are the Gaussian fitting curves of the histograms. The mean value

and standard deviation are shown in (d) and (e), where the circles and up-triangles refer to the

experimental results of the amplitude and phase noises, respectively. In (d), the solid line is the

result without noise. In (e), the solid line is the analytical prediction of Eq. (2).
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S = π/40, 3π/16, 3π/8, and π in the parameter space, the histograms of γ subject to the

amplitude and phase noises are presented in Figs. 4(b) and 4(c), respectively. For the am-

plitude noise, each histogram is well fitted by a Gaussian distribution, exp[−(γ− γ̄Ω)2/2σ2
Ω],

predicted by an analytical theory derived in Appendix B [30]. As verified in Fig. 4(d), the

mean value of the Berry phase over various noise trajectories, γ̄Ω, is very close to the result

of γ = S from a single circular loop without noise. In the leading order of cΩ, the standard

deviation σΩ is analytically expressed as

σΩ = 2
√
2cΩπ sin

2 θ0 cos θ0

√
ΓTrot − 1 + e−ΓTrot

ΓTrot
. (2)

Figure 4(e) shows that the experimental measurement of σΩ agrees well with Eq. (2) over a

broad range of S. At small solid angles, a residue ∼ 0.02π is observed for σΩ, which may

be attributed to the intrinsic noise of the qubit. Equation (2) indicates an upper deviation

limit, σΩ ∼ 2cΩπ sin
2 θ0 cos θ0, for the STA process. For the parameters ΓTrot = 0.3 and

cΩ = 0.1 in our experiment, Fig. 4(e) demonstrates that the fluctuation of the Berry phase

is still tolerable with σΩ < 0.1π. As a comparison, the influence of the phase noise is much

weaker than that of the amplitude noise, which can be identified by the narrow distributions

of γ in Fig. 4(c). This behavior is due to the fact that the Berry phase depends on the

geometry of the circular path instead of the rotating speed [30]. Accordingly, the mean γ̄φ

is close to the result without noise [Fig. 4(d)] and the standard deviation σφ is consistently

small, σφ ∼ 0.02π, over the whole range of the solid angle [Fig. 4(e)].

A coherence parameter, ν = | 〈exp(iγ)〉 |, can alternatively quantify the fluctuation of

the Berry phase [27]. For the amplitude noise (cΩ = 0.1) and phase noise (cφ = 0.1), the

S-dependencies of νΩ and νφ in Fig. 5(a) are consistent with the results of σΩ and σφ in

Fig. 4(e). The effect of the phase noise is essentially negligible whereas the influence of

the amplitude noise is well described by an analytical expression. Furthermore, we explore

the change of the coherence parameter as the noise strength (cΩ or cφ) varies. For a fixed

polar angle, θ0 = π/3 (or S = π), Fig. 5(b) confirms the weak influence of the phase noise.

As a comparison, νΩ can maintain a large value for cΩ < 0.2 while a major drop of νΩ

occurs for cΩ > 0.5. In both Figs. 5(a) and 5(b), the results of νΩ can be well described by

νΩ = exp(−σ2
Ω/2), where the analytical values of σΩ from Eq. (2) are used.
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(a) The results of ν versus the solid angle S for the noise strengths of cΩ = 0.1 and cφ = 0.1. (b)

The results of ν versus cΩ and cφ for S = π. In both (a) and (b), the circles and up-triangles refer

to the experimental results of the amplitude and phase noises, respectively. For the amplitude

noise, the two solid lines are the results of νΩ = exp(−σ2
Ω/2) with σΩ calculated by Eq. (2).

V. SUMMARY

In summary, we have implemented the STA protocol in a superconducting phase qubit.

In good agreement with the theoretical prediction, the Berry phase is successfully measured

in a time (20 ns ≤ Trot ≤ 60 ns) much shorter than that required by the adiabatic theorem

(Trot & 1 µs). The measurement of the Berry phase is almost independent of the operation

time, which is a characteristic property of the STA protocol. The trajectory of a qubit state

is verified, from which the solid angle enclosed by the path is calculated to understand the

accumulation of the Berry phase. Classical fluctuations of the drive amplitude or phase are

artificially introduced to the total control field. Our experiment shows that the mean value

of the Berry phase is unchanged, while the standard deviation with the amplitude noise can

be described by an analytical expression. To further understand the stability of the Berry

phase, an extended study of quantum noise will be necessary in the future [31, 32]. The fast

measurement of the Berry phase in this paper will hopefully encourage more applications of

the STA protocol in superconducting qubit systems.
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Appendix A: The Shortcut to Adiabaticity Protocol

In this Appendix, we provide a theoretical derivation of the STA protocol, which is

slightly different from the original one in Ref. [13] but leads to the same result. For

a general quantum system, we consider a non-degenerate time-dependent Hamiltonian

H0(t) =
∑

n εn(t)|n(t)〉〈n(t)|, where |n(t)〉 is the n-th instantaneous eigenstate associ-

ated with the eigenenergy εn(t). Each wavefunction can be linearly decomposed into

|ψ(t)〉 =
∑

n an(t)|n(t)〉 with an(t) the time-dependent coefficient. Following the Schrodinger

equation, the time evolution of an(t) is given by

~ȧn(t) = −i [εn(t)− i~〈n(t)|∂tn(t)〉] an(t)− ~

∑

m(6=n)

〈n(t)|∂tm(t)〉am(t). (A1)

In the adiabatic limit, the second term on the right hand side of Eq. (A1) vanishes and only

a phase ϕn(t) is accumulated with time, i.e., an(t) = exp[iϕn(t)]an(0).

However, the influence from other eigenstates |m(t)〉 cannot be ignored if the time prop-

agation of H0(t) is not slow enough. To achieve a fast ‘adiabaticity’, the STA protocol was

proposed through the assistance of a counter-diabatic Hamiltonian Hcd(t). For the total

Hamiltonian, Htot(t) = H0(t) + Hcd(t), the wavefunction, |ψ(t)〉 =
∑

n an(t)|n(t)〉, is still

decomposed using the eigen basis set of the reference Hamiltonian H0(t). The time evolution

of an(t) is changed to be

~ȧn(t) = −i [εn(t)− i~〈n(t)|∂tn(t)〉] an(t)− i〈n(t)|Hcd(t)|n(t)〉an(t)

−i
∑

m(6=n)

[−i~〈n(t)|∂tm(t)〉+ 〈n(t)|Hcd(t)|m(t)〉] am(t). (A2)

To recover the adiabatic time evolution, the counter-diabatic Hamiltonian is required to
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satisfy







〈n(t)|Hcd(t)|n(t)〉 = 0

〈n(t)|Hcd(t)|m(t)〉 = i~〈n(t)|∂tm(t)〉 for m 6= n
. (A3)

Since the indices, m and n, are arbitrary, the action of Hcd(t) applied to each |n(t)〉 must

follow Hcd(t)|n(t)〉 = i~[|∂tn(t)〉 − 〈n(t)|∂tn(t)〉|n(t)〉]. The counter-diabatic Hamiltonian is

thus given by

Hcd(t) = i~
∑

n

[

|∂tn(t)〉 − 〈n(t)|∂tn(t)〉|n(t)〉
]

〈n(t)|, (A4)

which satisfies
∑

m,nH
∗
0;m,n(t)Hcd;m,n(t) = 0. For a spin-1/2 particle with the reference

Hamiltonian H0(t) = ~B0(t) ·σ/2, Eq. (A4) is applied to solve the counter-diabatic Hamil-

tonian, which is in the form of Hcd(t) = ~Bcd(t) · σ/2. In a vector representation, the

counter-diabatic magnetic field is equal to a cross product,

Bcd(t) =
1

|B0(t)|2
B0(t)× Ḃ0(t). (A5)

Appendix B: Analytical Prediction for a Slowly-Varying Noise in the STA Process

We apply a theoretical method, similar to the approach in Ref. [30], to obtain an analytical

expression for a slowly-varying classical noise in the STA process. A classical Gaussian noise

δH(t) is introduced to the total Hamiltonian, Htot(t) = H0(t) +Hcd(t), during the rotation

period. For convenience, the subscript ‘rot’ is dropped in this Appendix. Here we only

consider the noise δΩ(t) for the drive amplitude in the x− y plane. The stochastic rotating

field is explicitly written as

Btot(t) + δBΩ(t) = ([Ωtot + δΩ(t)] cos φ(t), [Ωtot + δΩ(t)] sin φ(t),∆tot). (B1)

The Ornstein-Uhlenbeck process is assigned for δΩ(t), giving 〈δΩ(t)〉 = 0 and 〈δΩ(t)δΩ(0)〉 =
c2ΩΩ

2
tot exp(−Γt) with cΩ the reduced noise strength and Γ the noise bandwidth. We assume

that δΩ(t) slowly varies with time (behaves similarly as a static disorder which is relevant

in an adiabatic process). The fluctuated magnetic field, Btot(t) + δBΩ(t), can be factorized

into a fluctuated reference field, B0(t) + δB0(t), and its counter-diabatic correction. In the

spherical coordinate, the fluctuation is found from the strength, δB0(t) = |δB0(t)|, and the
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polar angle, δθ(t). On the first order expansion of δΩ(t), these two terms are given by

δB0(t) = sin θ0(Ωtot ∓ ω0 sin θ0 cos θ0)
δΩ(t)

Ωtot
+O(δΩ2(t)), (B2)

δθ(t) = sin θ0 cos θ0
δΩ(t)

Ωtot

+O(δΩ2(t)). (B3)

where the signs ∓ refer to the counterclockwise (C+) and clockwise (C−) directions, respec-
tively. For the example of a single C+-rotation, the dynamic and Berry phase differences of

|s↓(t)〉 relative to |s↑(t)〉 are fluctuated, following

δα = sin θ0(Ωtot − ω0 sin θ0 cos θ0)

∫ Trot

0

δΩ(τ)

Ωtot

dτ +O(δΩ2(t)), (B4)

δγ = ω0 sin
2 θ0 cos θ0

∫ Trot

0

δΩ(τ)

Ωtot

dτ +O(δΩ2(t)), (B5)

respectively. In our experiment with a noisy pulse, we measure the total relative phase

from the QST. It is however hard to directly extract γ since the noise can destroy the

cancellation of the dynamic phase in the spin-echo scheme. An indirect approach is to

record the input noise δΩ(t) and theoretically calculate the relative dynamic phase, α+ δα,

for each noisy trajectory. The corresponding relative Berry phase is estimated by γ[δΩ(t)] =

ϕ[δΩ(t)]−α− δα[δΩ(t)], where ϕ[δΩ(t)] is the total relative phase. Based on the perturbed

result in Eq. (B5), the statistics of the fluctuated Berry phase is characterized by the mean

〈δγ〉 = 0 and the standard deviation

σ2
Ω = 〈δγ2〉 = 8c2Ωπ

2 sin4 θ0 cos
2 θ0

ΓTrot − 1 + exp(−ΓTrot)

Γ2T 2
rot

. (B6)

A Gaussian distribution is expected for δγ since the underlying noise δΩ(t) is Gaussian. The

alternative coherence parameter, ν = |〈exp(iγ)〉|, is fully determined by the first and second

moments of δγ, giving

ν = exp(−σ2
γ/2)

= exp

[

−4c2Ωπ
2 sin4 θ0 cos

2 θ0
ΓTrot − 1 + exp(−ΓTrot)

Γ2T 2
rot

]

. (B7)

Appendix C: Fidelity of a Geometric Phase Gate with the STA Protocol

The accumulated Berry phase can be utilized in the realization of geometric phase gates.

In this Appendix, we numerically estimate the fidelity of a π-phase gate. In an ideal quantum

operation, the quantum state is under a unitary transformation, i.e., |ψ(t)〉 = U |ψ(0)〉.
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Protocol ∆0/2π Tramp Trot Fidelity

phase qubit Adiabatic 7 MHz 350 ns 1000 ns 0.2500

( T1 = 270 ns, T echo
2 = 450 ns) STA 7 MHz 10 ns 30 ns 0.7023

Xmon qubit Adiabatic 7 MHz 350 ns 1000 ns 0.8465

( T1 = 20 µs, T echo
2 = 20 µs) STA 7 MHz 10 ns 30 ns 0.9936

TABLE I. The fidelities of the π-phase gate in our phase qubit and a typical Xmon qubit. Both the

STA and adiabatic protocols are studied. All the results are numerically obtained by the Lindbald

simulation.

For the C+− spin-echo procedure in our experiment, the unitary operator is given by U ∝
exp[iS]|0〉〈1|+ exp[−iS]|1〉〈0|. A subsequent πx-pulse leads to the 2S-phase gate,

Utot = (−iσx)U ∝ |0〉〈0|+ exp[i2S]|1〉〈1|, (C1)

where the global phase is excluded. In the special case of θ0 = arccos(3/4), Eq. (C1) results

in a π-phase gate, i.e., Utot ∝ σz.

A practical quantum operation is limited by quantum dissipation. Here we use the

Lindblad equation,

∂tρ(t) = − i

~
[H(t), ρ(t)] +

1

T1

[

σ−ρ(t)σ+ − 1

2
σ+σ−ρ(t)−

1

2
ρ(t)σ+σ−

]

+
2

T echo
2

[

σ+σ−ρ(t)σ+σ− − 1

2
σ+σ−σ+σ−ρ(t)−

1

2
ρ(t)σ+σ−σ+σ−

]

, (C2)

to numerically estimate the time evolution of the density matrix ρ(t), where σ+ = |1〉〈0|
and σ− = |0〉〈1| are two Lindblad operators. A quantum dynamical map is then defined

between the initial and final density matrices (ρ(0) and ρ(tf) respectively), i.e., ρ(tf) =
∑4

i,j=1 χi,juiρ(0)u
†
j, where the four operators of the SU(2) group, {u1 = I, u2 = σx, u3 =

σy, u4 = σz}, are used as the expansion bases. The 4× 4 χ-matrix independent of the initial

density matrix ρ(0). For an ideal π-phase gate, the χ-matrix satisfies χideal
i,j = δi,4δj,4. The

accuracy of a practical π-phase gate can be characterized by its gate fidelity, given by [9]

F = Tr
{

χidealχ
}

. (C3)

In Table I, we provide the numerical estimations of F for our phase qubit (T1 = 270 ns and

T echo
2 = 450 ns) and a typical Xmon qubit (T1 = 20 µs and T echo

2 = 20 µs). Both the STA

(Tramp = 10 ns and Trot = 30 ns) and adiabatic (Tramp = 350 ns and Trot = 1000 ns) protocols
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are considered. Our numerical results show that the STA protocol can help establish a higher

fidelity in an operation time much shorter than that required by the adiabatic theorem. It

will be interesting to explore the STA protocol in the Xmon qubit (e.g., the STA π-phase

gate with fidelity > 99%) in the future.
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