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We study the dependence of the fidelity of the surface code in the presence of a single finite-
temperature massless bosonic environment after a quantum error correction cycle. The three stan-
dard types of environment are considered: superohmic, ohmic, and subohmic. Our results show
that, for regimes relevant to current experiments, quantum error correction works well even in the
presence of environment-induced, long-range interqubit interactions. A threshold always exists at
finite temperatures, although its temperature dependence is very sensitive to the type of environ-
ment. For the superohmic case, the critical coupling constant separating high- from low-fidelity
decreases with increasing temperature. For both ohmic and superohmic cases, the dependence of
the critical coupling on temperature is weak. In all cases, the critical coupling is determined by
microscopic parameters of the environment. For the subohmic case, it also depends strongly on the
duration of the QEC cycle.

I. INTRODUCTION

A fundamental challenge to quantum information pro-
cessing is protection against detrimental effects of the
environment [1]. A milestone in addressing this problem
was the development of quantum error correction (QEC)
[2, 3]. In fact, it is believed that any practical quantum
information processing device will unavoidably contain
some sort of QEC [4].

The main idea behind active QEC is to encode the in-
formation in a region of the system’s Hilbert space known
as the logical subspace. This region is chosen to be less
vulnerable to the action of the environment. However,
during quantum evolution information can leak out of
this subspace. This leakage can be diagnosed by mea-
suring some observables in a process known as syndrome
extraction. If an error is detected by the syndromes,
then a recovery operation is performed. This sequence of
actions, extracting the syndrome and a recovery opera-
tion, can be called active QEC. It is clear that the QEC
protocol demands additional physical and computational
resources, thus there is a cost-benefit analysis that must
be done. It is believed that there is a particular noise
strength below which the benefits of QEC overcome its
cost [5].

Although a large body of work has been devoted to in-
cluding realistic noise models in the analysis of the QEC
efficacy [6–13], there is little discussion on the interplay
between the environmental temperature and the dynam-
ics of the system affect the value of threshold for active

QEC. An important exception to this is given by Brell
and coauthors [14] in the context of topological quantum
memories that are constantly monitored. In contrast,
for passive QEC it is well understood that a finite en-
vironmental temperature radically affects the threshold
[15–19]. In this paper, we contribute to this theme by
considering an environment whose temperature changes
due to the interaction with qubits when active QEC is

employed. We choose to evaluate the surface code per-
formance against the well-known pure dephasing model
when a single logical qubit is in an idle state against su-
perohmic and ohmic bosonic baths. In order to isolate
the effects of finite temperature, we consider a perfect
syndrome extraction in a nonerror syndrome evolution
and assume all quantum gates and state preparations as
flawless. Hence, our thresholds should be regarded as an
upper bound to the real QEC threshold. Both analytical
results and numerical calculations are presented and we
focus on temperatures and time scales relevant to current
experimental setups.

Our main result is that, in experimentally relevant
regimes, an error threshold always exists, but its depen-
dence on temperature is not universal. While for super-
ohmic environments the critical coupling constant sep-
arating high fidelity and low fidelity behavior decreases
with increasing temperature, for ohmic and subohmic en-
vironments the dependence on temperature is weak. For
the ohmic cases, the critical coupling depends primarily
on microscopic parameters related to the environment.
For the subohmic case, it depends in addition on the du-
ration of the QEC cycle.

The paper is organized as follows. In Sec. II we pro-
vide a brief description of the effect of quantum error
correction in the fidelity of a logical qubit coupled to an
environment and the evolution is not restricted to un-
correlated errors only. To account for correlations, we
consider environments composed of free boson. In Sec.
III we develop a finite-temperature formulation for the
fidelity of the surface code in the presence of a bosonic
environment. The calculation of the fidelity after one
QEC cycle is mapped onto the calculation of certain ex-
pectation values of a statistical spin model. The analysis
that follows in Sec. IV is restricted to realistic regime
where time-correlations (namely, thus developed inside
the bosonic light cone) predominate. Three significant
cases are studied, namely, superohmic, ohmic, and sub-
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ohmic environments. Both analytical and numerical re-
sults are presented. Concluding remarks and a summary
are presented in Sec. V. There appendices with detailed
results of calculations and a description of methods em-
ployed are provided.

II. QUANTUM ERROR CORRECTION IN THE

PRESENCE OF CORRELATED ERRORS

In order to focus on the effects of correlated errors and
the ability of QEC to tame the environmental degrees of
freedom, we make two simplifying assumptions. First,
we assume that a quantum state can be perfectly pre-
pared. Hence, we consider that the environment and the
quantum system are disentangled at the beginning of the
evolution. While this assumption could in principle be re-
laxed, it would result in a much more cumbersome calcu-
lation, that would obscure the main effects that we want
to discuss. Second, we assume that the environment it-
self can be initially set to its lowest possible energy state.
This choice can easily be relaxed, but would lead to lower
threshold values. Even though, we allow for the initial
state of the environment to be its ground state, we do not
assume that it is returned to to the ground state at the
end of the QEC cycle. Physically, we are considering that
the preparation of the initial state and the environment
could take a very long time (and we choose the best pos-
sible preparation). When the system starts to evolve, the
QEC dynamics introduce a finite time scale that limits
one’s ability to refrigerate the environment.

In order to clarify the notation and provide a self-
contained discussion, we start by giving a brief descrip-
tion of QEC. Following the standard formulation of QEC,
see Ref. [20], the unitary evolution of a qubit and its en-
vironment in the interaction picture can be described as

Û |ψ〉 |e0〉 = Î |ψ〉 |eI〉+ X̂ |ψ〉 |eX〉+ Ŷ |ψ〉 |eY 〉
+ Ẑ |ψ〉 |eZ〉 , (1)

where |eσ〉 are environment states (in general non orthog-

onal and non normalized) and Î, X̂, Ŷ , and Ẑ are Pauli
operators acting on the qubit. For a system comprising
of n qubits, we can straightforwardly define an expansion
similar to Eq. (1), namely,

Û |ψ〉 |e0〉 =
∑

a

Êa |ψ〉 |ea〉 , (2)

where Êa ∈
{

Î , X̂, Ŷ , Ẑ
}⊗n

.

At the core of any QEC code is the choice of a par-

ticular subset E ⊆
{

Êa

}

, known as the error set, which

the code can correct. The complementary set Ē are the
uncorrectable errors. It is therefore natural to write the
quantum evolution as

Û |ψ〉 |e0〉 =
∑

a∈E

Êa |ψ〉 |ea〉+
∑

b/∈E

Êb |ψ〉 |eb〉 . (3)

The next step in a QEC protocol is the syndrome ex-
traction, where a set of observables corresponding to the
projector P̂α are measured in order to diagnose the er-
rors and then an appropriate recovery operation R̂α is
chosen:

R̂αP̂αÛ |ψ〉 |e0〉 = |ψ〉 |eα〉+
∑

b/∈E

R̂αP̂αÊb |ψ〉 |eb〉 . (4)

QEC is in essence a method to steer the quantum evo-
lution of a qubit system through a series of syndrome
extractions. Even though QEC in itself is not a pertur-
bative method or description, its cost-benefit analysis is
usually done by performing a perturbative expansion in
the coupling between the environment and the system.
To understand this point, let us consider the fidelity of
an initial state after a single QEC step is performed and
a syndrome α is detected. The fidelity of the logical state
in this case is given by

Fα = 1−
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, (5)

where, for simplicity, we assumed that the environment
states are orthogonal to each other. After the syndrome
is extracted only a subset of terms in the Dyson series
of the operator Û is kept. This expansion in the cou-
pling with the environment is used in many calculations
of QEC. For instance, in the surface code it is an essen-
tial ingredient in the understanding of minimal-weight
matching decodings. Hence, if
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R̂αP̂αÛ |ψ〉 |e0〉

∣

∣

∣

∣

∣

∣
, (6)

a high fidelity can be achieved. Thus, the choice of E
and its complement is a choice of the pertubative expan-
sion imposed by the error syndrome P̂α extracted for a
particular evolution. Clearly, the fidelity can differ from
unity due to uncorrectable errors.

Choosing a recovery operation can be difficult in the
surface code [24]. There are strategies for choosing the

most likely R̂α for a certain syndrome. However there is
no guarantee that the correct one is chosen. Hence, the
nonerror syndrome turns out to be of special interest,

F0 = 1−

∣

∣

∣

∣

∣

∣

∑
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. (7)

It requires no recovery operation, thus F0 corresponds to
an intrinsic property of the error model. In this sense, it
is expected to provide an upper bound to the fidelity after
a QEC cycle with an arbitrary syndrome[24]. We restrict
our analysis to the nonerror syndrome case hereafter.
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A. Correlated and uncorrelated errors

To discuss the concept of a threshold, we need to define
a measure of the noise strength. One way to do that is
through the fidelity of a single physical qubit,

Fsingle qubit = 〈e0| 〈ψ| Û † |ψ〉 〈ψ| Û |ψ〉 |e0〉
= 〈eI |eI〉
= 1− p, (8)

where p is named the single qubit error probability. Thus,
we can rewrite Eq. (8) as

p = 1−Fsingle qubit. (9)

With this quantity, it is possible to define the concept of
uncorrelated errors. For instance, for a two-qubit system,
the evolution with a nonerror syndrome is said to be un-
correlated if it is possible to write the fidelity resulting
from the QEC cycle as

Ftwo qubits = 〈e0| 〈ψ| Û † |ψ〉 〈ψ| Û |ψ〉 |e0〉 ,

= (1− p)
2
. (10)

Conversely, when such decomposition of the noise evolu-
tion is not possible, the problem is said to contain corre-

lated errors.
Most quantum error threshold discussions in the liter-

ature rely on the existence of a single qubit error proba-

bility, p, and, explicitly or implicitly, rely on uncorrelated
error models. Furthermore, we note that the decompo-
sitions of Eqs. (1) and (2) is, in general, only valid for
a single QEC step. The iteration of the process to the
next QEC step demands that the environment and the
qubits be again disentangled. Thus, any memory effects
between QEC steps are formally excluded in many dis-
cussions of the error threshold.

B. A microscopic model for correlated errors

A paradigm model in the study of decoherence is the
spin-boson model for pure dephasing [21, 22]. The model
consists of free bosons coupled linearly to qubits and
whose total Ĥ = Ĥ0 + Ĥint contains the free-boson term

Ĥ0 =
∑

k

ωk â
†
k
âk (11)

and the qubit-boson interaction [22, chapter 4]

Ĥint = λ
∑

r

f̂ (r) σ̂x
r , (12)

where σ̂x
r is an x spin operator for the qubit located at

site r, with
[

âk, â
†
q

]

= δk,q, ωk defines the dispersion
relation, and

f̂ (r) =
(v/ω0)

D/2+s

LD/2

∑

k 6=0

gk

(

eik·r â†k + H.c.
)

. (13)

Here, D is the number of spatial dimensions of the bath,
L is its linear dimension, ω0 is a characteristic micro-
scopic frequency scale (~ = 1), and v is the bosonic ve-
locity. In Eq. (12), λ is the qubit-bath coupling con-
stant, which we separate from the form factor gk. For

convenience, the exponent s is chosen such that f̂ is di-
mensionless and λ has units of energy or frequency.

It is straightforward to write the resulting evolution
operator in the interaction picture and in normal order,

Û (t) =
∏

k 6=0

e−Ĝ(t;k) e−iα̂ (t;k) â†

k e−iα̂∗ (t;k) âk , (14)

where

α̂ (t;k) =
λ(v/ω0)

D/2+s

LD/2

∑

r

gk
ωk

sin (ωkt/2) σ̂
x
r,n e

ik·r+iωkt/2 (15)

and

Ĝ (t;k) =
λ2

4LD
(v/ω0)

D+2s

ˆ t

0

dt1

ˆ t

0

dt2
∑

r,s

|gk|2 e−ik·(r−s)−iωk(t1−t2) σ̂x
r σ̂

x
s θ (t1 − t2) . (16)

Even though this model does not contain a full set of
errors, it is amenable to an exact and explicitly analytical
description. Hence, it is well suited for exploring the
effects of correlations, as well as nonperturbative effects
in QEC [9].

There are several possible regimes of correlations that
can be discussed using this model [23]. They can be clas-
sified according to the asymptotic behavior found after

tracing out the environment as follows.

1. Superohmic: when some correlation functions of
the system have an ultraviolet divergence in the
cutoff frequency of the environment. Of course,
there are no real divergences on a physical system,
with the ultraviolet divergence just signaling that
a more accurate description of the small-scale local
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physics of the qubit is missing from the model.

2. Ohmic: there are log divergences in the ultraviolet
and in the infrared correlation functions. This is a
more universal behavior, since results depend only
on the logarithmic of the ultraviolet and infrared
scales of the system.

3. Subohmic: all correlation functions of the system
have a well-defined ultraviolet behavior, but some
have infrared divergences.

Both infrared and ultraviolet divergences can be trou-
blesome to QEC, but are amenable by suitable engineer-
ing of physical qubits. An ultraviolet divergence signals
that the qubit is strongly coupled to the environment at
high frequencies. This divergence is controlled by form
factors in the qubit design and therefore can be dealt
with by appropriate qubit engineering. Conversely, in-
frared divergences are connected to long-distance corre-
lations. This problem can be addressed by better encod-
ing designs. If we demand only local operations and local
communications between physical qubits, an infrared di-
vergences sets a limit on the number of qubits that one
can have on the same physical setup.

III. QEC WITH A BATH AT FINITE

TEMPERATURE

We assume that the qubits can be prepared in the log-
ical state |ψ〉. In order to simplify the calculation and in
accordance with Eq. (1), we consider the initial state of
the bosonic environment to be the vacuum, |e0〉 = |0〉. A
mixed initial state for the environment could also be con-
sidered, but would make the notation and the calculation
more complex, obscuring the analysis. Thus, the qubits
and the environment are initially in the product state
|ψ, 0〉. In Appendix A we discuss a possible initialization
prescription.

After evolving for a time ∆, the density matrix of the
combined system becomes

ρ̂(∆) = Û(∆) |ψ, 0〉〈ψ, 0| Û †(∆). (17)

The next step is the syndrome extraction. We assume
that the result of this extraction is a nonerror. The oc-
currence of other types of syndromes would introduce
another layer of choices on the decoding procedure, and
therefore would potentially further reduce the threshold
(see discussion in Ref. [24]). Hence, we postselect the
result of the syndrome in order to write the quantum
operation [22]

Φ0 (ρ̂s) =
∑

m

P̂0 ρ̂s P̂†
0 , (18)

where ρ̂s is a density matrix in the Hilbert space of the
qubits and the Kraus operator is the projector

P̂0 =
∣

∣↑̄
〉 〈

↑̄
∣

∣+
∣

∣↓̄
〉 〈

↓̄
∣

∣ . (19)

A measurement can be understood as the selection of
a pointer basis due to the interaction of the measuring
apparatus with another, fast acting, environment [22].
Hence, during the time that the syndrome is extracted,
it is unphysical to regard the total system (bosonic envi-
ronment and the qubits) as isolated. The extraction of
the syndrome bound us to also discuss how the environ-
ment would behave during this part of the evolution.

We cannot control the bosonic environment degrees of
freedom, but it is possible to place it into contact with an
even larger reservoir. This interaction can lead to a dis-
sipative dynamics for the environment that can help in
reducing correlations and memory effects. The qubits dy-
namics cannot affect the environment in any substantial
form during the interaction time. Hence, the quantum
operation that describes this evolution is

Φβ (ρ̂e) =
∑

n

K̂n ρ̂e K̂
†
n, (20)

where ρ̂e is a reduced density matrix in the environment
Hilbert space, the Kraus operators are

K̂n =
e−βEn/2

√

Z(β)
|n〉〈n| , (21)

En and |n〉 are the eigenvalues and eigenvectors of Ĥ0,
and, finally, the partition function Z(β) =

∑

n e
−βEn .

Since
∑

n K̂
†
n K̂n ≤ I, the result of the quantum opera-

tion has to be normalized and the density matrix after
the operation is given by

ρ̃e(β) =
Φβ (ρ̂e)

tre [Φβ (ρ̂e)]
. (22)

Although it is tempting to associate β with the inverse
temperature of the larger reservoir, it is straightforward
to see that this is an incorrect interpretation. To fully
understand the physics of K̂n, let us consider a few ex-
amples. The first case is the action of Φβ on the “infinity
temperature” density matrix, ρ̂e(∞) ≡ ∑

n |n〉〈n|,

ρ̃e(β) =
Φβ (ρ̂e(∞))

tre [Φβ (ρ̂e(∞))]
,

=
∑

n

e−βEn

Z(β)
|n〉〈n| . (23)

The bosonic environment is brought from an “infinity” to
a 1/β temperature. Now, if we apply Φβ to Eq. (23), we
obtain

Φβ (ρ̂e(β))

tre [Φβ (ρ̂e(β))]
=

∑

n

e−2βEn

Z(2β)
|n〉〈n| , (24)

thus corresponding now to an ensemble characterized by
a even smaller temperature, 1/(2β). In general, the oper-
ation Φe enhances the probabilities of low-energy states
in an statistical ensemble instead of equilibrating it at a
certain temperature. Therefore, it is possible to call it a
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refrigeration or cooling mechanism. In Appendix B we
discuss a microscopic model that implements this quan-
tum operation.

Combining both quantum operations, Φ = Φβ ⊗ Φ0,
produces an action on the Hilbert space of the qubits
and the environment. This quantum operation is not
normalized, since it is not trace preserving. Thus, the
correct quantum evolution is given by

ρ̃(∆) = Φ (ρ̂(∆)) (25)

=

∑

n P̂0 K̂n ρ̂(∆) K̂†
n P̂0

tr
[

∑

n P̂0 K̂n ρ̂(∆) K̂†
n P̂0

] (26)

and the reduced density matrix of the qubits is equal to

ρ̃s (∆) = tre [ρ̃(∆)] . (27)

For the qubits, the fidelity between the reduced density
matrix at end of the QEC cycle and the initial density
matrix is given by the expression

F = trs [ρ̃s (∆) ρ̃s (0)] , (28)

which can be rewritten as

F =

〈

0, ↑̄
∣

∣ Û † (∆) P̂0

∣

∣↑̄
〉 〈

↑̄
∣

∣ e−βĤ0 P̂0 Û (∆)
∣

∣0, ↑̄
〉

〈

0, ↑̄
∣

∣ Û † (∆) P̂0 e−βĤ0 Û (∆)
∣

∣0, ↑̄
〉 , (29)

where we used the relation
∑

n K̂
†
n K̂n =

∑

n
e−βEn

Z(β) |n〉〈n| = e−βĤ0/Z(β).

The best possible scenario for QEC is when, at the
end of the cycle, the environment remains at zero tem-
perature. This situation was considered in Refs. [23–
25]. It corresponds to forcefully setting the environment
back to its ground state, hence suppressing some corre-
lations and memory effects. Even in this extreme opti-
mistic case, strong correlations among the qubits can still
persist, leading to a nontrivial threshold.

We can further simplify Eq. (29) by considering that

tr [|ψ〉〈ψ| ρ̂(∆)] =
e−βE0

Z(β)
〈ψ, 0| Û †(∆; 0) P̂0 |ψ〉

×〈ψ| P̂0 Û(∆;β) |ψ, 0〉 (30)

and

tr [ρ̂(∆)] =
e−βE0

Z(β)
〈ψ, 0|Û †(∆; 0) P̂0 Û(∆;β) |ψ, 0〉, (31)

where Û(∆;β) = e−βĤ0 Û(∆) eβĤ0 and we used P̂2
0 =

P̂0. The end result is that the fidelity can be rewritten
as

F0 =
〈ψ, 0| Û †(∆; 0) P̂0 |ψ〉〈ψ| P̂0 Û(∆;β) |ψ, 0〉

〈ψ, 0|Û †(∆; 0) P̂0 Û(∆;β) |ψ, 0〉
. (32)

When we specialize to the pure dephasing bosonic model,
Eq. (12), we obtain a compact expression for the evolu-
tion operator

Û(∆;β) =
∏

k 6=0

e−Ĝ(∆;k) e−iα̂(∆;k;β) â†

k e−iα̂∗(∆;k;β) âk ,

(33)

where

α̂(∆;k;β) =
λ

LD/2

(

v

ω0

)D/2+s
∑

r

gk
ωk

sin

(

ωk∆

2

)

× σ̂x
r,n e

ik·r+iωk(∆

2
+iβ) (34)

and

α̂∗(∆;k;β) =
λ

LD/2

(

v

ω0

)D/2+s
∑

r

g∗k
ωk

sin

(

ωk∆

2

)

× σ̂x
r,n e

−ik·r−iωk(∆

2
+iβ). (35)

A. Surface code and the pure dephasing model

The surface code [26] is regarded as a benchmark
among the QEC protocols [27, 28]. It is implemented
on a two-dimensional array of qubits, greatly simplifying
the design of control and measurement circuits [29]. In
addition, all the required interactions between the qubits
are spatially local. Finally, it has been estimated that it
has a large noise threshold in the absence of correlated
errors [30].

The surface code has the qubits located on the links
of a two-dimensional square lattice, as shown in Fig. 1.
The quantum code is defined by two sets of operators.
The first set corresponds to local operators that define
the syndromes that have to be extracted at each QEC
step. These are four-body observables,

Â♦ =
∏

r∈♦

σ̂x
r (36)

and

B̂� =
∏

r∈�

σ̂z
r , (37)

where ♦ is a label for the positions of four qubits linked to
a vertex of the lattice (“star”) and � labels the positions
of four qubits in a plaquette. To diagnose the evolution
of a single logical qubit, all plaquette and star operators
have to be measured in order for the syndrome to be
extracted.

The second set corresponds to two extended operators
that act on the logical Hilbert space,

ˆ̄X =
∏

r∈Γ

σ̂x
r (38)

and

ˆ̄Z =
∏

r∈Γ′

σ̂z
r , (39)

where Γ is any path running from top to bottom of the
lattice (dual path) and Γ′ is any path running from left
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Z

X

A

B

B

A

Figure 1. (Color online) The surface code lattice and opera-
tors. Physical qubits are located at the edges (black circles).

Some star Â and plaquette B̂ operators are indicated, as well,

as some realizations of the logical operators ˆ̄X and ˆ̄Z.

to right of the lattice (primal path), see Fig. 1. Hence,
the logical Hilbert space is defined by the basis vectors

∣

∣↑̄
〉

=
1

√

N♦

Ĝ |Fz〉 (40)

and

∣

∣↓̄
〉

= ˆ̄X
∣

∣↑̄
〉

, (41)

where Ĝ =
∏

♦

(

1 + Â♦

)

, N♦ = 2n is a normalization

constant, n is the number of stars, and σ̂z
r |Fz〉 = |Fz〉

for a qubit locate at position r. The nonerror syndrome
projector in the logical Hilbert space can then be written
as

P̂0 =
∣

∣↑̄
〉 〈

↑̄
∣

∣+ ˆ̄X
∣

∣↑̄
〉 〈

↑̄
∣

∣

ˆ̄X. (42)

In order to investigate the error threshold for a pure
dephasing model, it is sufficient to consider that the sys-
tem is initially prepared in the logical state

∣

∣↑̄
〉

. Then,
the fidelity for a nonerror evolution can be expressed as

F0 =
A

A+ B , (43)

where we introduced the amplitudes

A = 〈0|
〈

↑̄
∣

∣ Û †(∆, 0)
∣

∣↑̄
〉 〈

↑̄
∣

∣ Û(∆;β)
∣

∣↑̄
〉

|0〉 , (44)

and

B = 〈0|
〈

↑̄
∣

∣ Û †(∆, 0) ˆ̄X
∣

∣↑̄
〉 〈

↑̄
∣

∣

ˆ̄X Û(∆;β)
∣

∣↑̄
〉

|0〉 . (45)

The evolution operators, the star operators, and the log-
ical operators in Eqs. (44) and (45) are diagonal in the
x basis of the qubits. Thus, it is natural to rewrite the
ferromagnetic state as

|Fz〉 =
1

2N/2

∑

σ

|σ〉 , (46)

where σ labels the 2N eigenstates of the operator
∏

r σ̂
x
r ,

namely,
∏

r σ̂
x
r |σ〉 = ± |σ〉. Using Eq. (46) and assuming

ωk is isotropic in k [31], we can write the amplitudes as

A =
∑

σ,τ

e−λ2H(∆;β)〈τ |Ĝ|τ〉〈σ|Ĝ|σ〉 (47)

and

B =
∑

σ,τ

e−λ2H∆;β)〈τ | ˆ̄XĜ|τ〉〈σ| ˆ̄XĜ|σ〉, (48)

where

H(∆;β) =
N

2
F (∆; 0; 0)− 1

2
F (∆; 0;β)

∑

r

σrτr +
1

4

∑

r6=s

[F (∆; r− s; 0) (τrτs + σrσs)

− F (∆; r− s;β) (σrτs + τrσs) + iΦ(∆; r− s) (τs − σs) (τr + σr)] , (49)

F (∆; r;β) =
(v/ω0)

D+2s

LD

∑

k 6=0

|gk|2 e−βωk

[

1− cos(ωk∆)

ω2

k

]

cos(k · r), (50)

and

Φ(∆; r) =
(v/ω0)

D+2s

LD

∑

k 6=0

|gk|2
[

ωk∆− sin(k∆)

ω2
k

]

cos(k · r). (51)

Notice that both functions F and Φ contain a dependence on interqubit distance, but only the former depends on the
environment temperature.

Equations (47) to (51) are quite general. They repre-
sent the mapping of the evaluation of the fidelity onto
the computation of expectation values of a classical spin

system comprising two coupled square-lattice layers and
a complex Hamiltonian H, with λ2 playing the role of
an effective inverse temperature. Notice that the pres-
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ence of the operator Ĝ in the matrix elements entering
in the expressions for A and B, Eqs. (47) and (48), con-
strains the sums over the variables σ and τ to configura-
tions with positive plaquettes, namely, to configurations
with Â⋄|σ〉 = |σ〉 and Â⋄|τ〉 = |τ〉. For configurations
containing negative plaquettes, the matrix elements are
identically zero.

At this point, in order to carry out a calculation of
the fidelity, it is necessary to consider a concrete exam-
ple. We choose to discuss the well-known pure dephasing
decoherence model of Refs. [1, 22]. Thus, we specialize
our analysis to situations comprising the following con-
ditions:

1. a two-dimensional (D = 2) environment;

2. a linear dispersion relation, ωk = v|k|;
3. a coupling between the qubits and the environmen-

tal modes with a power-law behavior, gk = |k|s;
4. a bosonic ultraviolet cutoff Λ for the qubit form

factor gk smaller than the environment’s natural
cutoff.

With these conditions fulfilled and taking the infinite-
volume limit, we can rewrite the auxiliary functions in
Eqs. (50) and (51) as

F (∆; r;β) =
1

π

1

ω2
0 (ω0∆)2s

ˆ ∞

0

dxx2s−1 J0

( |r|x
v∆

)

× (1− cosx) e−(β+
1

vΛ )x/∆, (52)

and

Φ(∆; r) =
1

π

1

ω2
0(ω0∆)2s

ˆ ∞

0

dxx2s−1 J0

( |r|x
v∆

)

× (x− sinx) e−x/(v∆Λ), (53)

where J0(z) is the zeroth order Bessel function. The
parameter s defines the correlation regime of the model:
s > 0 corresponds to a superohmic , s = 0 to an ohmic,
and s < 0 to a subohmic environment.

Following the well-known phenomenology of the single-
qubit case, β defines the thermal correlation time [22].
Whenever ∆ ≪ β, the system is in the vacuum regime
and systematic corrections can be evaluated in powers of
∆/β. The opposite case is the thermal regime, β < ∆,
which has not been previously studied in the context
of the surface code. It is important to note that finite
temperature means simply that even though the envi-
ronment is prepared at zero temperature, the external
cooling mechanism cannot suppress the bosonic excita-
tions during the evolution of the system. The functions
F (∆; r;β) and Φ(∆; r) in different regimes are presented
in Appendix C.

Finally, in order to numerically evaluate the threshold
we need to make some additional choices. Guided by the
most recent experimental developments of superconduct-
ing qubits [32], which are good candidates for implement-
ing the surface code, we assume a certain range of values
for the model’s microscopic parameters.

5. It is reasonable to assume that in a running QEC
protocol the environmental temperature for super-
conducting qubits is of the order of a few mil-
likelvin. Hence, we set β = ~

kBT ≈ 10−9 s.

6. It is also reasonable to consider that the QEC pe-
riod ∆ is of the order of 100 ns. Therefore, we only
consider the thermal regime β ≪ ∆.

7. Furthermore, the distance between nearest neigh-
bors qubits, a, in an superconducting qubit array
is likely to be of the order of 10−5 m.

All the above choices are very reasonable. The note
that the thermal regime is likely to be applicable to
physical implementations other than the superconduct-
ing qubits as well.

The only parameter that is difficult to estimate is the
velocity of the bosonic environment. Its value that can
vary by several orders of magnitude depending on the
dominant physical environment. For instance, a typi-
cal phonon velocity in solid-state substrates is v = 103

m/s; however, electromagnetic fluctuations propagate
with v = 108 m/s. Roughly, for every power on 10 in
the bosonic velocity, the number of qubits in the time-

like cone increases by 10. Hence, all qubits in an ex-
perimental set up would be time-like correlated for the
latter case since v∆ ≫ |r|. This is likely less so for the
phononic environment, but time-like correlations should
predominate. Thus, in the following we assume v∆ > |r|.

IV. QEC THRESHOLD FOR THE PURE

DEPHASING MODEL

A. Superohmic environment with s = 1/2

The s = 1/2 environment can describe an acoustic
phonon bath or an electromagnetic environment [33]. Us-
ing the expressions for the coupling functions defined in
Eqs. (50) and (51) presented in Table I of Appendix
C, we clearly see that for a superohmic bath F (∆; 0; 0)
diverges with the ultraviolet cutoff and F (∆; 0;β) di-
verges with the inverse of the temperature in the ther-
mal regime. Moreover, the ratio of any of other coupling
function present in Eq. (49) by one these two diverg-
ing couplings tends to zero. Hence, since F (∆, r, 0) and
F (∆, r, β) can be made of the same order in the thermal
regime, we can simplify the statistical model and keep
only the leading interaction, namely,

Hsuper(∆;β) = − 1

2
F (∆; 0;β)

∑

r

σr τr , (54)

in order to describe the effect of a superohmic environ-
ment on the fidelity. The purely local (yet constrained)
spin model defined by the effective two-body interaction
of Eq. (54) can be solved exactly by introducing an aux-
iliary plaquette variable

µr−δ µr+δ = σr τr, (55)
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with r ± δ labeling the plaquettes that share the link
where the qubit r is located. The statistical sum over
the µ variables in Eq. (47)–(48) is unconstrained [24].
Thus, the introduction of plaquette spin variables maps
the problem onto a standard two-dimensional Ising model
with boundary fields. In the thermodynamic limit, N →
∞, there is a well-known critical coupling, [34]

λc =

[

ln
(

1 +
√
2
)

F (∆; 0;β)

]1/2

, (56)

separating a region where the fidelity is equal to 1 (λ <
λc) from a region where the fidelity goes to 1/2 (λ > λc).
We confirm this analytical result performing a standard
Monte Carlo simulation, as shown in Fig. 2. The ran-
dom walk is performed in the mass field variables, while
the energy updates are computed using the original spin
variables. The numerical simulation clearly indicates the
QEC threshold predicted by Eq. (56). We stress that
this result is fundamentally different from previous re-
sults by the authors [23–25], where the limit β → ∞ was
taken and therefore the nearest-neighbor coupling in the
statistical spin model was the dominant term.

A remarkable feature of Eq. (56) is that the critical
coupling for the threshold in a superohmic environment
has a square root dependence with the inverse of the
temperature but is independent of the QEC time ∆,

λc ∝ ω0

√

ω0 β. (57)

Therefore, for any value of the microscopic coupling with
the environment, there will always be a sufficiently low
temperature for which the fidelity of the qubit will be 1.

0 0.5 1 1.5 2
γ

0.5

0.6

0.7

0.8

0.9

1

F

4 × 3
5 × 4
6 × 5
7 × 6
γ

c
 = 0.88137 (2D Ising)

Figure 2. (Color online) Fidelity in the presence of a su-
perohmic environment (s = 1/2) in the thermal regime for
several system sizes. Data obtained by averaging over 109

Monte Carlo steps. Here, γ = λ2F (∆; 0;β). The dashed line
marks the phase transition point of an Ising model on a square
lattice with nearest-neighbor interactions.

The introduction of the nearest-neighbor coupling to
Hsuper with the real coupling function F , as prescribed

by Eq. (49), does not dramatically change these results.
However, the addition of the term with the imaginary
part Φ could, in principle, introduce enough oscillations
to remove the threshold. Thus, we explore numerically
the stability of the threshold against the introduction of
an imaginary part between nearest neighbors by studying
the modified Hamiltonian

Hsuper(∆;β) = − 1

2
F (∆; 0;β)

∑

r

σr τr

+
i

4
Φ(∆; d)

∑

〈r,s〉

(τs − σs) (τr + σr) ,

(58)

where d = a/
√
2. For time-like correlations and in the

thermal regime we expect η ≡ Φ(∆; d)/F (∆; 0;β) ∼
β/∆ ≪ 1.

The complex interaction in Eq. (58) prevents the use
of the Monte Carlo method. We employ instead Binder’s
recursive method to compute the amplitudes A and B
[36, 37], as explained in Appendix E). The results for
the fidelity are presented in Fig. 3 and show that a shift
toward lower thresholds occurs. Hence, we conclude that
the QEC threshold for the superohmic environment, with
s = 1/2, is mildly robust against small deviations from
the asymptotic model defined by Eq. (54). A threshold
continues to exists, but it is lowered due to the coherence
oscillations caused by the imaginary effective interaction
term in the statistical model.

B. Ohmic environment

The ohmic environment corresponds to s = 0. Long-
range correlations are ubiquitous to this environment,
hence it cannot be discussed in the same manner as the
superohmic case (see Appendix C).

Some analytical development can be made if we con-
sider the limit where all qubits interact with each other
with the same strength (thus taking the logarithmic in-
teraction as a constant): F (∆, r, β) = F̄ and Φ (∆, r) =
Φ̄, with F̄ ≈ Φ̄ ∼ 1/ω2

0. Physically, this corresponds to
the distance between the qubits being smaller than the
thermal coherence length. In such simplified model, the
Hamiltonian can be rewritten as

H (∆, β) = − 1

2
∆F

∑

r

σrτr +
F̄

4

[

∑

r

(σr − τr)

]2

+ i
Φ̄

4

[

∑

r

(σr − τr)

][

∑

r

(σr + τr)

]

(59)

= − 1

2
∆F

∑

r

σrτr +
F̄

4
(mσ −mτ )

2

+ i
Φ̄

4
(mσ −mτ )(mσ +mτ ), (60)
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Figure 3. (Color online) Fidelity of the surface code in the
presence of a superohmic environment (s = 1/2) for sev-
eral system sizes when a small imaginary nearest-neighbor
interaction is present, see Eq. (58). Data points obtained
using Binder’s method. Here, γ = λ2F (∆; 0;β) and η =
Φ(∆; d)/F (∆; 0; β). The dashed line marks the phase transi-
tion point of an Ising model in a square lattice with nearest-
neighbor interactions. The circle marks the threshold posi-
tion.

where ∆F ≡ F (∆; 0;β) − F̄ , mσ ≡ ∑

r σr and mτ ≡
∑

r τr. It is straightforward to show that, in the ab-
sence of QEC, this model causes a reduction of the fi-
delity proportional to the square of the number of qubits
[1, 22]. The use of QEC changes this scenario quite dra-
matically. The logical states of the surface code have a
finite probability amplitude in most total magnetization
sectors (mσ,mτ ). Hence, for nearly every qubit configu-
ration without a logical error one can find another con-
figuration with a logical error and with the same value
for the difference mσ −mτ . As a consequence, although
the effective Hamiltonian in Eq. (60) contains long-range
interactions, they do not distinguish between configura-
tions with and without logical errors and the threshold
is controlled by the local term proportional to ∆F .

We evaluate numerically the fidelity for the statisti-
cal model of Eq. (60) using the Monte Carlo method
but disregarding the imaginary part of the interaction.
(Unfortunately Binder’s method is no longer practical
when interactions go beyond nearest neighbors.) We take
F̄ = 0.72∆F . The results are presented in Fig. 4 and
indicate the existence of a threshold for

λc ≈
[

0.475

∆F (∆; 0;β)

]
1

2

, (61)

thus corresponding to a reduction of about 1/4 of the

0 0.2 0.4 0.6 0.8 1
γ

0.5

0.6

0.7

0.8

0.9

1

F

4 × 3
5 × 4
6 × 5
7 × 6

Figure 4. (Color online) Fidelity of the surface code in the
presence of an ohmic bath, as given by the statistical model
of Eq. (60), for different lattice sizes. Here, γ = λ2∆F , Φ̄ = 0
and F̄ = 0.72∆F . Data obtained by averaging over 109 Monte
Carlo steps. The location of the transition point, indicated
by the crossing point surround by a circle, is marked by the
dashed line.

superohmic value in Eq. (56).
The most important difference to the superohmic case

is not the numerical value in the coupling constant, but
rather the insensitivity to changes in temperature: the
threshold depends on temperature only through a loga-
rithm,

λc ∝ ω0

∣

∣

∣

∣

ln

(

∆

β

)∣

∣

∣

∣

− 1

2

. (62)

As a result, in practice, only the microscopic frequency
scale ω0 determines whether a particular realization of
the surface code is above or below the threshold for a
given QEC time ∆.

C. Subohmic environment with s = −1/2

A subohmic environment introduces correlations
among very distant qubits. In particular, for the case of
s = −1/2, as presented in Appendix C, we find that cor-
relations are weakly dependent on qubit-qubit distances
and environment temperature. Hence, we can revive the
analytical discussion used for the ohmic environment.
Considering again the thermal regime and the numeri-
cal estimates discussed in Sec. IVB, namely, β ≪ ∆
and vβ ≪ |r| < v∆, we find that ∆F ≈ ∆/ω0 and
temperature independent up to subleading logarithmic
corrections. Thus, the critical coupling is controlled by
the microscopic characteristic frequency scale ω0 and the
QEC time, namely,

λc ∝
√

ω0

∆
. (63)



10

V. DISCUSSION AND SUMMARY

It is unavoidable that during its quantum evolution
a system will get entangled with its environment. This
entanglement can be understood as an effective tempera-
ture that characterizes the system’s reduced density ma-
trix. To make this point clear, let us consider the simple
example of a single qubit interacting with a bosonic envi-
ronment through the pure bit-flip model [22]. If the com-
bined system plus environment starts in the pure state
|↑〉z ⊗ |0〉, and we use as the effective Hamiltonian only
the site-diagonal term in Eq. (49), the fidelity of this
single qubit can be written as

F (∆, β) =
1

1 + M̄x
, (64)

where M̄x = tanh
[

λ2 F (∆;0;β)
2

]

. The fidelity of this qubit

is a smooth function of λ, going continuously from 1 to
1/2.

The M̄x function can be understood as the mean mag-
netization of a fictitious statistical mechanics problem of

a qubit in the presence of a magnetic field, h = F (∆;0;β)
2 ,

at a temperature 1/λ2. Notice that the actual degrees of
freedom of the statistical mechanics problem are not the
original qubit variables σ and τ , but instead the square
of their difference, namely,

µ = 1− 1

2
(σ − τ)

2
. (65)

In the spin-boson model literature [35], time intervals
where σ = τ are called “sojourns”; while for σ = −τ they
are called “blips”. Transitions between sojourns and blips
correspond to flips of the spin variable µ.

This simple picture is precisely what we generalize in
this paper. We consider the fidelity of a single logical
qubit coupled to a bosonic environment through a pure
bit-flip interaction. After tracing the environment the
dynamical problem can once again be mapped onto an
effective thermodynamics problem. The remarkable fea-
ture of QEC is to transform a crossover into a true phase
transition in the limit of a logical qubit with an infinite
number of physical qubits. The microscopic parameters
that define the transition point yield the intrinsic noise
threshold value for the code (which is independent of de-
coding errors, see discussion in Ref. [24]). Ideally it
would be preferable to have simultaneously bit-flips and
phase flips in an error model, however this is not funda-
mental to deduce the existence or not of a threshold.

There are many regimes to consider, but it is very likely
that physical realizations of a quantum memory will be
in the thermal, β ≪ ∆, and time-correlated, |r| < v∆,
regimes. For this range of parameters, our main con-
clusion is that the surface code in a superohmic envi-
ronment always has a noise threshold and the critical
value of the qubit-environment coupling constant goes
as λc ∝ ω0

√
ω0β, where β is the inverse temperature of

the environment at the end of the QEC cycle. There-
fore, for the superohmic case, it is always possible to
place the system below the noise threshold by reducing
the environmental temperature. In contrast, for ohmic
environments, λc is a weak function of temperature and
only microscopic parameters play a relevant role in de-
termining whether QEC protects or not the logical qubit
state. For subohmic environments, λc is also approx-
imately temperature independent, but in additional to
depending on microscopic scales, it is inversely propor-
tional to the QEC cycle duration.

These results are overall reassuring and indicate that
there is no fundamental limitation to the existence of a
noise threshold for the surface code in the presence of
bosonic environments after a single QEC cycle. We are
currently investigating the effects on the fidelity of errors
correlated over multiple cycles.
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Appendix A: Initializing the state

Suppose that the environment is controlled by the
Hamiltonian Ĥ0. The Hamiltonian of the combined
qubit-environment system is

Ĥ = Ĥ0 +
∑

r

[

f̂ (r) σ̂z
r − h σ̂z

r

]

, (A1)

where f̂ (r) represents the interaction between the qubit
at position r and the environment and h is an external
field. The density matrix of the system at thermal equi-
librium reads

ρ̂ (β, h) =
e−βĤ

Z
, (A2)

where Z is the partition function, Z = tr
[

e−βĤ
]

.

The Hamiltonian in Eq. (A1) is diagonal in the qubit
space. Assume that h is large and the qubits are frozen
in the +z direction. Then,

ρ̂ (β, h→ ∞) =
e−β[

∑
k
ωk â†

k
âk+λ

∑
n
f̂(n)]

Z
⊗ |F 〉〈F | ,

(A3)
where |F 〉 is the ferromagnetic z state of the qubits. Us-

ing Eq. (11), it is natural to define b̂k = âk + αk/ωk in
order to rewrite the bosonic Hamiltonian as

ωk b̂
†
k b̂k = ωk â

†
k âk + αk â

†
k + α∗

k âk +
|αk|2
ωk

(A4)
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and the density matrix as

ρ̂ (β, h→ ∞) =
e−β[

∑
k
ωk b̂†

k
b̂k]

Z̄
⊗ (|F 〉〈F |) , (A5)

where Z̄ is the partition function for the new b̂k bosons.
Raking the temperature to zero (β → ∞), we arrive at

ρ̂ (β → ∞, h→ ∞) = |0̄〉〈0̄| ⊗ |F 〉〈F | , (A6)

where |0̄〉 is the ground state of the b̂k bosons. This
ground state is a coherent state of the original âk bosons,

âk|0̄〉 = −λ |k|s−1

∑

n e
−ik·rn

vLD/2
|0̄〉. (A7)

However, if the qubits do not form a dense set with
respect to the bosonic environment, then, in the limit
L→ ∞,

|0̄〉 = |0〉, (A8)

and we obtain the state

ρ̂ (β → ∞, h→ ∞) = |0〉〈0| ⊗ |F 〉〈F |. (A9)

Finally, assuming the ability of an instantaneous (faster
than the environment inverse cutoff) and flawless gates,
the initial state can be prepared as

ρ̂0 = |0〉〈0| ⊗G |F 〉〈F |G (A10)

= |0〉〈0| ⊗
∣

∣↑̄
〉 〈

↑̄
∣

∣ . (A11)

Appendix B: Microscopic Cooling Mechanism

A microscopic description of the cooling process of
the free bosonic environment coupled to the qubits pro-
ceeds as follows. The relation of the bosonic environment
and an external reservoir can be described by the usual
damped harmonic oscillator master equation [22]. For
an illustrative example of this microscopic description,
consider qubits inside an electromagnetic cavity. The
modes inside the cavity constitute the correlated environ-
ment. However, there are electromagnetic modes outside
the cavity as well. These external modes can damp the
modes inside the cavity.

For a given bosonic mode, the master equation, after
the usual Born-Markov approximations, is given by

d

dt
ρ̂k = −iωk

[

â†k âk, ρ̂k

]

+ γk (Nk + 1)

(

âk ρ̂k â
†
k − 1

2
â†k âk ρ̂k − 1

2
ρ̂k â

†
k âk

)

+ γkNk

(

â†k ρ̂k âk − 1

2
âk â

†
k ρ̂k − 1

2
ρ̂k âk â

†
k

)

, (B1)

where Nk =
[

exp
(

β̃ωk

)

− 1
]−1

, γk is the damping rate,

and we defined the inverse temperature β̃ = 1/T̃ (kB =

1). In order to maximize the cooling and be compatible
with the initial state chosen for the bosonic environment
(see Appendix A), the external reservoir should be at its

lowest possible temperature, T̃ = 0.
If we evoke the usual assumption that decoherence is

much faster than dissipation, we can focus on solving
the master equation for the populations, known as Pauli
master equation. For T̃ = 0 it is simply

d

dt
Pk(n, t) = γk [(n+ 1)Pk(n+ 1, t)− nPk(n, t)] , (B2)

where Pk(n, t) = 〈k;n|ρ̂ωk
(t)|k;n〉 and n denotes the

number of k modes [22].
These coupled differential equations are easily solv-

able if we consider that the original populations are only
sparsely nonzero, i.e., if Pk(n, 0) 6= 0, then Pk(n±1, 0) =
0. Considering that syndrome extraction takes a time
t = ǫ, the initial population of mode k is reduced to

Pk(n, ǫ) = e−γk n ǫ Pk(n, 0). (B3)

It is also reasonable to assume that the damping rate is
a function of the energy of the bosonic mode. A simple
choice is to make it a linear relation,

γk n ǫ = 〈n|β ωk â
†
k âk|n〉. (B4)

This corresponds physically to having higher frequen-
cies coupled more strongly to the external reservoir than
lower ones. Therefore, a given environmental mode with
initial density matrix

ρ̂k(0) =
∑

n,m

wn,m|k;n〉〈k;m|, (B5)

evolves towards

ρ̂k(ǫ) =
∑

n

wn,n e
−β ωk â†

k
âk |k;n〉〈k;n|. (B6)

These considerations hold for all environmental modes
k. Finally, if we assume that decoherence would quickly
destroy the coherences between different environmental
modes, we find that the initial density matrix of the en-
vironment,

ρ̂e(0) =
∑

i,j

wi,j |i〉〈j|, (B7)

evolves towards the density matrix

ρ̂e(ǫ) =
∑

i

wi,i e
−βĤ0 |i〉〈i|. (B8)

That corresponds to the quantum operation Φβ (ρ̂e(0)),
where β is defined as a function of the damping rates of
the environment, Eq. (B4). The particular case of β = 0
corresponds to having no damping, hence describing a
situation where the environment has a unitary evolution
during the syndrome extraction.
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Appendix C: Coupling constants for some

environments

The evaluation of Eqs. (50)-(51) is a straightforward
but long task. Closed forms can only be found for special
values of s. Here we present result for some representa-
tive cases and for different environments. As discussed in
the main text, the inverse temperature β defines the ther-

mal coherence time, creating two limiting regimes. For
the quantum vacuum regime we can assume ∆/β ≪ 1 to
evaluate the integrals. Conversely, for the thermal regime
we can assume that β/∆ ≪ 1. Finally, during the eval-
uation of Eqs. (50)-(51) it is assumed that all distances
|r| are much larger than max{vβ,Λ−1}. The results are
presented in Table I.

superohmic

(s = 1
2
)

ohmic

(s = 0)

subohmic

(s = − 1
2
)

F (∆; 0; 0) vΛ
πω3

0

1
π

1
ω2
0

ln (vΛ∆) ∆
2ω0

Φ(∆; r 6= 0)
v

πω3
0

θ(v∆−|r|)√
v2∆2−|r|2

1
πω2

0

[

π

2
θ(v∆− |r|)+

arcsin
(

v∆
|r|

)

θ(|r| − v∆)
]

∆
πω0

ln

[

√

(

v∆
r

)2 − 1 + v∆
r

−
√

1−
(

r

v∆

)2
]

θ (v∆− r)

Fthermal(∆; 0;β) 1
πω3

0
β

1
π

1
ω2
0

ln
(

∆
β

)

∆
πω0

(

π

2
+ β

∆
ln β

∆

)

Fthermal(∆; r 6= 0; β) v

πω3
0

[

1
|r|

− θ(|r|−v∆)√
|r|2−v2∆2

]

1
πω2

0

[

arccosh
(

v∆
|r|

)

θ(v∆− |r|)

+ vβ√
|r|2−(v∆)2

θ (|r| − v∆)− vβ

|r|

]

∆
πω0

{[(

π

2
− |r|

v∆

)

+

β

∆
arccosh

(

v∆
|r|

)]

θ(v∆− |r|)
+
[

arcsin v∆
|r|

+
√

(

|r|
v∆

)2

− 1− |r|
v∆

]

θ(|r| − v∆)

}

Table I. Coupling constants for different noise regimes.

Appendix D: Mass field formulation

One of the main difficulties in evaluating Eqs. (47)-
(48) numerically is to enforce the positive star con-
straints. An efficient method to enforce the constrain is
to introduce auxiliary plaquette variables, the so-called
mass fields [24], for the bulk qubits in the surface code,

σr = µmµn, (D1)

and

τr = νmνn, (D2)

where m and n denote the plaquettes that share the edge
where the spin site r is located (see Fig. 5). For qubits on
the top and bottom boundaries, we follow the discussion
in Ref. [25] and use instead

σr = µmαt (D3)

or

σr = µmαb (D4)

and

τr = νmβt (D5)

or

τr = νmβb, (D6)

with αt, αb, βt, βb = ±1.
The introduction of mass fields automatically enforce

positive stars: 〈µ|Ĝ|µ〉 = 〈ν|Ĝ|ν〉 = 1 for all µ and ν. In
addition,

〈σ|X̂Ĝ|σ〉 = αtαb (D7)

and

〈τ |X̂Ĝ|τ〉 = βtβb. (D8)
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n ν m ν nµµm τσ rr

Figure 5. The mass field variable composition.

In the mass field variables it is evident that the effec-
tive energy of the qubit configurations that contribute to
the amplitudes in Eqs. (47) and (48) obeys some sym-
metry properties. For instance, time-reversal symmetry
still holds,

E(µ, ν;α, β) = E(−µ,−ν;−α,−β), (D9)

as well as complex conjugation through the exchange of
mass-field and boundary-field variables,

E(µ, ν;α, β) = [E(ν, µ;β, α)]∗. (D10)

In addition to automatically enforce the positive stars
constrain, the mass fields are also very useful to deal with
on-site and nearest-neighbor interactions in the original
qubits. If we restrict ourselves to this particular case of
nearest neighbor, and define

J =
F (∆, a, β) + iΦ (∆, a)

F (∆, 0, β)
, (D11)

we find that the energy can be written as

E(µ, ν;α, β) = Ebulk(µ, ν) + Etop(µ, ν;αt, βt) + Ebottom(µ, ν;αb, βb)

where

Ebulk(µ, ν) =
1

2



N −
∑

〈m,n〉

µmµnνmνn



+ J∗
∑

〈〈m,n〉〉

µmµn + J
∑

〈〈m,n〉〉

νmνn −Re{J}





∑

〈m,n,m′〉

µmµnνnνm′



 , (D12)

Etop(µ, ν;αt, βt) = −1

2



αtβt
∑

m∈y=Ny

µmνm



+ J∗αt





∑

m∈y=Ny,2≤x≤Nx−1

µm +
1

2
(µ1,Ny

+ µNx,Ny
)





+ Jβt





∑

m∈y=Ny,2≤x≤Nx−1

νm +
1

2
(ν1,Ny

+ νNx,Ny
)





− Re{J}



αt

∑

〈m,n〉∈y=Ny

νmνnµn + βt
∑

〈m,n〉∈y=Ny

µmµnνn



 , (D13)

and

Ebottom(µ, ν;αb, βb) = −1

2

[

αbβb
∑

m∈y=1

µmνm

]

+ J∗αb





∑

m∈y=1,2≤x≤Nx−1

µm +
1

2
(µ1,1 + µNx,1)





+ Jβb





∑

m∈y=1,2≤x≤Nx−1

νm +
1

2
(ν1,1 + νNx,1)





− Re{J}



αb

∑

〈m,n〉∈y=1

νmνnµn + βb
∑

〈m,n〉∈y=1

µmµnνn



 , (D14)

where Nx and Ny indicate the horizontal and vertical
number of plaquettes in the surface code lattice.

There are two features that complicate any numerical
calculation: the appearance of three-body interactions
and the next-to-nearest neighbor interactions. Both of
these features make any recursive computation very dif-

ficult and any Monte-Carlo simulation less efficient (if at
all possible, due to the presence of an imaginary cou-
pling).

In terms of mass fields and boundary fields, the targets
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of the calculation are the quantities

B =
1

Z

∑

αt,αb=±1

∑

βt,βb=±1

∑

{µ}

∑

{ν}

e−ξE(µ,ν;α,β)αtαbβtβb

(D15)
and

Z =
∑

αt,αb=±1

∑

βt,βb=±1

∑

{µ}

∑

{ν}

e−ξE(µ,ν;α,β), (D16)

where ξ ≡ λ2F (∆, 0, β) is a fictitious temperature. It is
straightforward to prove that Z and B are real quantities.
Furthermore, from Z (γ) we can compute the expectation
value of the effective energy and corresponding heat ca-
pacity,

E = −d lnZ
dξ

, (D17)

and

C = −ξ2 dE
dξ
. (D18)

Using the auxiliary function

c(α, β) ≡
∑

{µ}

∑

{ν}

e−ξE(µ,ν;α,β), (D19)

we can write

Z = 2 [c(+,+,+,+)+ 2c(+,+,+,−)

+ 2c(+,−,+,+)+ c(+,+,−,−)

+ c(+,−,+,−) + c(+,−,−,+)] (D20)

and

B =
2

Z
[c(+,+,+,+)− 2c(+,+,+,−)

− 2c(+,−,+,+)+ c(+,+,−,−)

+ c(+,−,+,−) + c(+,−,−,+)] , (D21)

where we used the time-reversal symmetry of
E(µ, ν;α, β) to reduce the number of terms.

Appendix E: Binder’s recursive method for the

surface code with nearest-neighbors interactions

We can extend Binder’s recursive method [36, 37] for
computing the partition function of the Ising model in
a two-dimensional square lattice with nearest-neighbor
interactions to the effective statistical model of Eq. (49).
Two modifications are necessary: (i) to consider two spins
per site and (ii) to introduce auxiliary variables in the
recursive steps.

Suppose we start with a square lattice of dimensions
Nx × Ny (Nx columns and Ny rows). To each lattice
site on a row we associate two binary numbers (sx, rx),
with sx = 0, 1, rx = 0, 1 and x = 1, . . . , Nx. We can

then index the state of the spins in a lattice row by two
integers (s, r), where

s = sN×2N−1+sN−1×2N−2+. . .+s2×21+s1×20 (E1)

and

r = rN×2N−1+rN−1×2N−2+. . .+r2×21+r1×20. (E2)

The numbers s and r are related to the mass field vari-
ables µ and ν by

µx,y = 2sx − 1 (E3)

νx,y = 2rx − 1, (E4)

where x = 1, . . . , N .
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Figure 6. (Color online) Thick horizontal lines represent two-
body nearest-neighbor horizontal interactions. Short thick
double vertical lines represent two-body nearest-neighbor ver-
tical interactions. Diagonal thin lines represent two-body
next-to-nearest neighbor interactions. L-shaped lines and
squares represent three-body interactions.

Let Z0(s, r) denote the partition function term con-
taining the first (bottom) row of the lattice when only
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nearest-neighbor interactions within that row are taken
into account. From this partial partition function we can
build the full partition function of the entire lattice (see
Fig. 6) with the following recursive protocol

1. Find Z0(s, r) for the first (bottom) row.

2. Incorporate boundary fields (the dependence on
boundary fields is left implicit hereafter):

Z̃0(s, r) = Z0(s, r)κ(αb, βb, s, r). (E5)

3. Evaluate Z1(s, r; s
′
1, r

′
1) at the second row, first site:

Z1(s, r; s
′
1, r

′
1) = η(s1, r1; s2, r2, s

′
1, r

′
1)Z̃0(s

′, r′), (E6)

where s
′ = s+ s′1 − s1 and r

′ = r+ r′1 − r1.

4. Evaluate Z2(s, r; s
′
2, r

′
2) at the second row, second

site:

Z2(s, r; s
′
2, r

′
2) = η(s2, r2; s3, r3, s

′
2, r

′
2)

×
∑

s′
1
,r′

1

λ(s1, r1; s2, r2; s
′
1, r

′
1; s

′
2, r

′
2)

× Z1(s
′, r′; s′1, r

′
1), (E7)

where s
′ = s + 2(s′2 − s2) and r

′ = r + 2(r′2 − r2).
Update Z1 = Z2.

5. Evaluate Zk(s, r; s
′
k, rk; ) at the second row, k-th

site (2 < k ≤ Nx − 1):

Z2(s, r; s
′
k, r

′
k) = η(sk, rk; sk+1, rk+1, s

′
k, r

′
k)

∑

s′
k−1

,r′
k−1

λ(sk−1, rk−1; sk, rk; s
′
k−1, r

′
k−1; s

′
k, r

′
k)

× Z1(s
′, r′; s′k−1, r

′
k−1), (E8)

where s
′ = s+2k−1(s′k−sk) and r

′ = r+2k−1(r′k−
rk). Update Z1 = Z2.

6. Evaluate ZNx
(s, r) at the second row, Nx-th site:

Z2(s, r) =
∑

s′
Nx

,r′
Nx

γ(sNx
, rNx

; s′Nx
, r′Nx

)
∑

s′
Nx−1

,r′
Nx−1

λ(sNx−1, rNx−1; sNx
, rNx

; s′Nx−1, r
′
Nx−1; s

′
Nx
, r′Nx

)

× Z1(s
′, r′; s′Nx−1, r

′
Nx−1), (E9)

where s
′ = s + 2Nx−1(s′Nx

− sNx
) and r

′ = r +

2Nx−1(r′Nx
− rNx

).

7. Evaluate Z̃0(s, r) to incorporate horizontal interac-
tions in the second row:

Z̃0(s, r) = Z2(s, r)Z0(s, r) (E10)

8. Rename Z̃0(s, r) as Z0(s, r) and do another itera-
tion (third row).

9. Repeat until, at the end of the Ny − 1 iteration
(Nyth row),

c(αt, αb, βt, βb) =
∑

s,r

Z̃0(s, r)κ(αt, βt, s, r). (E11)

The algorithm is straightforward to implement
numerically once expressions for the coeffi-
cients κ(αb, βb, s, r), η(sx, rx; sx+1, rx+1; s

′
x, r

′
x),

λ(sx−1, rx−1; sx, rx; s
′
x−1, r

′
−1; s

′
x, r

′
x), and

γ(sNx
, rNx

; s′Nx
, r′Nx

) are provided. These coefficients
incorporate boundary fields, vertical nearest-neighbor in-
teractions, as well as next-to-nearest neighbor (diagonal)
interactions and three-site interactions.
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