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The one-clean qubit model (or the DQC1 model) is a restricted model of quantum computing
where only a single qubit of the initial state is pure and others are maximally mixed. Although
the model is not universal, it can efficiently solve several problems whose classical efficient solutions
are not known. Furthermore, it was recently shown that if the one-clean qubit model is classically
efficiently simulated, the polynomial hierarchy collapses to the second level. A disadvantage of the
one-clean qubit model is, however, that the clean qubit is too clean: for example, in realistic NMR
experiments, polarizations are not high enough to have the perfectly pure qubit. In this paper, we
consider a more realistic one-clean qubit model, where the clean qubit is not clean, but depolarized.
We first show that, for any polarization, a multiplicative-error calculation of the output probability
distribution of the model is possible in a classical polynomial time if we take an appropriately
large multiplicative error. The result is in a strong contrast to that of the ideal one-clean qubit
model where the classical efficient multiplicative-error calculation (or even the sampling) with the
same amount of error causes the collapse of the polynomial hierarchy. We next show that, for
any polarization lower-bounded by an inverse polynomial, a classical efficient sampling (in terms
of a sufficiently small multiplicative error or an exponentially-small additive error) of the output
probability distribution of the model is impossible unless BQP is contained in the second level of
the polynomial hierarchy, which suggests the hardness of the classical efficient simulation of the one
non-clean qubit model.

To show a supremacy of quantum computing over clas-
sical one is one of the most central research subjects in
physics and computer science. Although several quantum
advantages have been shown in terms of the communi-
cation complexity [1, 2] and the query complexity [3, 4],
the ultimate question “is BPP 6= BQP?” remains open.
One good strategy to study the gap between quan-

tum and classical is restricting the quantum side. It
is also important from the experimental point of view
given the high technological demands for the realization
of a universal quantum computer. For example, quan-
tum computing that uses only Clifford gates [5, 6] or
Fermionic linear optical gates (or the matchgates) [7–
10] is classically efficiently simulatable. On the other
hand, restricted models that do not seem to be classi-
cally efficiently simulatable do exist [11–15]. For exam-
ple, if quantum computing that uses only non-interacting
Bosons [12] or commuting gates [13–15] (so called the
IQP model) is classically efficiently simulated, then the
polynomial hierarchy collapses to the third level (or the
second level [16]). Since a collapse of the polynomial hi-
erarchy is not believed to happen, these results suggest
the hardness of the classical efficient simulation of these
restricted models.
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The one-clean qubit model (or the DQC1 model) [17]
is another restricted model of quantum computing that
is believed to be stronger than classical computing. The
model was originally motivated by NMR, which has over
half a century history and matured control schemes [18–
20]. An NMR spin ensemble system has several physical
advantages: for example, molecules consisting of wide
varieties of nuclear and electron spins can be chemically
synthesized. Furthermore, the macroscopic signals are
obtained by virtue of the huge number of copies in the en-
semble with less backaction. Finally, each spin is highly
isolated from external degrees of freedom, which is fa-
vorable to avoid decoherence. Because of these reasons,
an NMR spin ensemble system is a useful experimental
setup to probe quantum many-body dynamics, and in
fact, it has been applied to several quantum information
processing tasks including the quantum simulation [21].
However, a disadvantage of NMR is that the initializa-
tion (polarization) of a nuclear spin is not easy. There-
fore, NMR quantum information processing has to be a
highly mixed state quantum computation.

The one-clean qubit model formalizes the NMR quan-
tum information processing in the following way: First,
the initial state is |0〉〈0| ⊗ ( I2 )

⊗n−1, where I ≡ |0〉〈0| +
|1〉〈1| is the two-dimensional identity operator. Second,
any (uniformly-generated polynomial-time) n-qubit uni-
tary operator is applied on it. Finally, some qubits are
measured in the computational basis. (Note that in some
strict definitions, only a single-qubit is allowed to be mea-
sured, or only an expectation value of a single-qubit mea-
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surement is obtained.)

If the clean qubit |0〉 of the initial state is replaced with
the maximally-mixed state I

2 , the quantum computing
is trivially simulatable with a polynomial-time classical
computer, since U( I2 )

⊗nU † = ( I2 )
⊗n for any unitary op-

erator U . This example suggests that the one-clean qubit
model is also classically efficiently simulatable, since only
a single pure qubit does not seem to cause any dras-
tic change. However, surprisingly, the model can effi-
ciently solve several problems whose classical efficient so-
lutions are not known, such as the spectral density es-
timation [17], testing integrability [22], calculations of
the fidelity decay [23], and approximations of the Jones
polynomial, HOMFLY polynomial, and Turaev-Viro in-
variant [24–27]. Furthermore, it was recently shown that
if the probability distribution of the measurement result
on the single output qubit of the one-clean qubit model
is classically efficiently sampled (in terms of a multi-
plicative error or an exponentially-small additive error),
then the polynomial hierarchy collapses to the second
level [16, 28]. Roles of quantumness (entanglement, dis-
cord, etc.) in the one-clean qubit model has also been
intensively studied [29–37].

A disadvantage of the one-clean qubit model is, how-
ever, that the clean qubit is too clean: for example, in
realistic experiments, the polarization of spins in an NMR
ensemble is not high enough to obtain the perfectly pure
qubit (even if the algorithmic cooling or the quantum
data compression [38–40] is employed). Therefore, the
following important question remains open: can we show
any hardness of a classical efficient simulation of a more
realistic one “non-clean” qubit model?

In this paper, we consider a modified version of the
one-clean qubit model where the clean qubit of the initial
state is not clean but depolarized (Eq. (1)). We first show
that for any polarization, a multiplicative-error calcula-
tion of the output probability distribution of the model
is possible in a classical polynomial time if we take a
sufficiently large multiplicative error. Note that the re-
sult is in a strong contrast to that of the ideal one-clean
qubit model where the classical efficient multiplicative-
error calculation (or even the sampling) with the same
amount of error causes the collapse of the polynomial hi-
erarchy [16, 28]. We also point out that the bound of
the multiplicative error is optimal by showing a counter
example for errors smaller than the bound. We next con-
sider the sampling of the output probability distribution
of our model. We show that for any polarization lower-
bounded by an inverse polynomial, a classical efficient
sampling (in terms of a sufficiently small multiplicative
error or an exponentially-small additive error) is impos-
sible unless BQP is contained in the second level of the
polynomial hierarchy. Since it is not believed to hap-
pen [41], the result demonstrates the power of one non-
clean qubit. In short, the computational capability of
the one non-clean qubit model with a small polarization
exhibits a “phase transition” on the magnitude of the
polarization: a classical simulation with a multiplicative

error larger than the polarization is possible, but it is im-
possible when the error is smaller than the polarization.
Note that, with similar and other motivations, noisy

versions of IQP circuits have been studied recently, and
shown to be hard to classically efficiently simulate [15,
42]. Moreover, quantum computing that uses a universal
gate set but is too noisy to realize fault-tolerant universal
quantum computing was shown to be hard to classically
efficiently simulate [43].
One non-clean qubit model.— We consider the follow-

ing model. The initial state is the n-qubit state

ρinitǫ ≡

(

1 + ǫ

2
|0〉〈0|+

1− ǫ

2
|1〉〈1|

)

⊗

(

I

2

)⊗(n−1)

,(1)

where the first qubit corresponds to the nuclear spin to
be probed whose polarization ǫ is relatively higher than
the others but still very small. (This type of non-clean
qubit model was also studied in Ref. [44].) The case
ǫ = 1 corresponds to the original one-clean qubit model.
Any (uniformly-generated polynomial-time) n-qubit uni-
tary operator U is applied on the initial state to obtain
ρǫ ≡ Uρinitǫ U †. Finally some qubits are measured in the
computational basis. If we measure all qubits, the prob-
ability pz of obtaining the result z ∈ {0, 1}n is

pz ≡ 〈z|ρǫ|z〉 = ǫ〈z|U
(

|0〉〈0| ⊗
I⊗(n−1)

2n−1

)

U †|z〉+
1− ǫ

2n
.

Multiplicative-error calculation.— First, we consider
calculations of the output probability distribution of
the model. As is shown in Appendix A, the ex-
act calculation is trivially #P-hard (actually GapP-
complete). We therefore consider approximations,
namely, multiplicative-error calculations. Here, a
multiplicative-error approximation with the error c ≥ 0
means that the target value p and the calculated value q
satisfy |p− q| ≤ cp.
Result 1: For any 0 ≤ ǫ < 1, pz can be approximated

by the uniform distribution qz = 1
2n with any multiplica-

tive error c that satisfies c ≥ ǫ
1−ǫ

.

Proof: We can show 1−ǫ
2n ≤ pz ≤ 1+ǫ

2n for any z ∈

{0, 1}n. Therefore, |pz −
1
2n | ≤

ǫ
2n = ǫ

1−ǫ
1−ǫ
2n ≤ cpz.

According to the result of Ref. [16], if the output prob-
ability distribution of the computational-basis measure-
ment on the single output qubit of the one-clean qubit
model is classically efficiently sampled with the c = 1− 1

2n

multiplicative-error, then the polynomial hierarchy col-
lapses to the second level. (See Appendix B.) Result 1
shows that the hardness result does no longer hold for
the one non-clean qubit case [45]. In fact, from Result 1,
for any x ∈ {0, 1},
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pxy −
1
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∑
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1
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∣

∣
pxy −

1

2n
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∣
≤ c

∑

y∈{0,1}n−1

pxy,
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which means that the probability
∑

y∈{0,1}n−1 pxy of ob-

taining x ∈ {0, 1} when the first qubit of our model is
measured in the computational basis is approximated to
1
2 (and therefore classically efficiently sampled) with the
multiplicative error c. If we take the polarization ǫ as
ǫ ≤ 1

2 − 1
2n+2−2 , for example, c can be c = 1− 1

2n .
Optimality of the bound.— We can show that the

bound c ≥ ǫ
1−ǫ

of Result 1 is optimal in the following
sense:
Result 2: For any 0 ≤ ǫ < 1 and c ≥ 0 such that

0 ≤ c < ǫ
1−ǫ

, and for any probability distribution q :

{0, 1}n ∋ z 7→ qz ∈ [0, 1], there exists an n-qubit unitary
operator U such that |pz − qz| > cpz for a certain z ∈
{0, 1}n.
Proof: If qz < 1

2n for all z ∈ {0, 1}n, then
∑

z∈{0,1}n qz < 1, which is contradiction. Therefore there

is at least one y ∈ {0, 1}n such that qy ≥ 1
2n . Let y1 ∈

{0, 1} be the first bit of y. If we take U = Xy1⊕1⊗I⊗n−1,

py = ǫ〈y|U
(

|0〉〈0| ⊗
I⊗n−1

2n−1

)

U †|y〉+
1− ǫ

2n

= ǫ〈y|
(

|y1 ⊕ 1〉〈y1 ⊕ 1| ⊗
I⊗n−1

2n−1

)

|y〉+
1− ǫ

2n
=

1− ǫ

2n
,

and therefore |py − qy| ≥
ǫ
2n , while cpy < ǫ

1−ǫ
1−ǫ
2n = ǫ

2n .

Hence we obtain |py − qy| > cpy.
Multiplicative-error sampling.— We next consider the

sampling. We first show the hardness result for the mul-
tiplicative error case.
Result 3: Let us assume that for any (uniformly-

generated polynomial-time) n-qubit unitary operator U ,
there exists a poly(n)-time classical probabilistic algo-
rithm that outputs z ∈ {0, 1}n with probability qz such
that

|p0n − q0n | ≤ cp0n (2)

with a certain c that satisfies 0 ≤ c ≤ ǫ − 1
δ(n) for a

polynomial δ > 0. Then BQP is contained in SBP.
Note that the value of c considered in Result 3 is always

smaller than that of Result 1, since ǫ
1−ǫ

− (ǫ − 1
δ
) ≥ 0,

and therefore there is no contradiction between these two
results. More importantly, since ǫ

1−ǫ
= ǫ + O(ǫ2) for

small ǫ, the combination of Result 1 and Result 3 means
that the polarization ǫ is the “phase transition point”
for the multiplicative error c: if c > ǫ then the classical
simulation is possible (Result 1), while if c < ǫ then it is
impossible (Result 3).
There are further three remarks before the proof of Re-

sult 3. First, Result 3 implicitly assumes that ǫ is lower-
bounded by an inverse polynomial, since otherwise no c
can satisfy c ≤ ǫ− 1

δ
. The assumption, ǫ ≥ 1/poly, is ac-

ceptable, since we can take such ǫ in realistic NMR exper-
iments. (Actually, ǫ can be even a small but system-size-
independent constant.) Second, the standard definition
of the multiplicative-error sampling is that |pz−qz| ≤ cpz
for any z ∈ {0, 1}n, but in Result 3, the satisfiability
only for z = 0n is enough. Finally, SBP is defined in
the following way [47]: A language L is in SBP if there

exist a polynomial r and a uniformly-generated family of
polynomial-size probabilistic classical circuits such that
if x ∈ L then the acceptance probability is ≥ 2−r(|x|), and
if x /∈ L then the acceptance probability is ≤ 2−r(|x|)−1.
As is shown in Appendix C, the bound (2−r, 2−r−1) can
be replaced with (a2−r, b2−r) for any 0 ≤ b < a ≤ 1 such
that a − b ≥ 1

poly
. It is known that SBP is in AM [47],

and therefore in the second level of the polynomial hi-
erarchy: SBP ⊆ AM ⊆ Πp

2. Hence BQP ⊆ SBP means
that BQP is in the second level of the polynomial hier-
archy. Note that BQP ⊆ SBP itself is also unlikely, since
SBP ⊆ BPPpath and there is an oracle such that BQP is
not contained in BPPpath [48].
Proof: Let us assume that a language L is in BQP.

This means that for any polynomial r, there exists a uni-
formly generated family {Vx} of polynomial-size quan-
tum circuits such that

〈0n|V †
x (|0〉〈0| ⊗ I⊗n−1)Vx|0

n〉

{

≥ 1− 2−r (x ∈ L)
≤ 2−r (x /∈ L).

Here, n = poly(|x|). Let us take U = V †
x . We also take r

such that ǫ2−r+1 ≤ 1
2δ .

If x ∈ L,

q0n ≥ (1 − c)
[ ǫ

2n−1
〈0n|V †

x (|0〉〈0| ⊗ I⊗n−1)Vx|0
n〉+

1− ǫ

2n

]

≥ (1 − c)
[ ǫ

2n−1
(1− 2−r) +

1− ǫ

2n

]

=
(1 − c)

2n
(1 + ǫ− ǫ2−r+1).

If x /∈ L,

q0n ≤ (1 + c)
[ ǫ

2n−1
〈0n|V †

x (|0〉〈0| ⊗ I⊗n−1)Vx|0
n〉+

1− ǫ

2n

]

≤ (1 + c)
[ ǫ

2n−1
2−r +

1− ǫ

2n

]

=
(1 + c)

2n
(1− ǫ+ ǫ2−r+1).

Since

(1 − c)(1 + ǫ− ǫ2−r+1)− (1 + c)(1 − ǫ+ ǫ2−r+1)

= 2(ǫ− ǫ2−r+1 − c)

≥ 2
(

ǫ−
1

2δ
−
(

ǫ−
1

δ

))

=
1

δ
,

L is in SBP.
Exponentially-small additive error sampling.— We can

also show a similar hardness result for the exponentially-
small additive error case.
Result 4: Let us assume that for any (uniformly-

generated polynomial-time) n-qubit unitary operator U ,
there exists a poly(n)-time classical probabilistic algo-
rithm that outputs z ∈ {0, 1}n with probability qz such
that

|p0n − q0n | ≤ η (3)

with a certain η that satisfies 0 ≤ η ≤ (ǫ − 1
δ
)2−n for a

polynomial δ > 0. Then BQP is contained in SBP.
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Before giving a proof, there are two remarks: First,
we again implicitly assume ǫ ≥ 1/poly. Second, the as-
sumption Eq. (3) can be replaced with the more stan-
dard assumption (L1-norm additive-error approxima-
tion),

∑

z∈{0,1}n |pz − qz| ≤ η, since if it is satisfied then

|p0n−q0n | ≤
∑

z∈{0,1}n |pz−qz| ≤ η, and therefore Eq. (3)

is satisfied. Since Eq. (3) is weaker, we have used it.
Proof: Let us assume that a language L is in BQP,

and let Vx be the corresponding circuit as assumed in
the proof of Result 3. We take U = V †

x , and r such that
ǫ2−r+1 ≤ 1

2δ . If x ∈ L, q0n ≥ 1
2n (1 + ǫ − ǫ2−r+1 − 2nη).

If x /∈ L, q0n ≤ 1
2n (2

−r+1ǫ+ 1− ǫ+ 2nη). Since

(1 + ǫ− ǫ2−r+1 − 2nη)− (1− ǫ+ ǫ2−r+1 + 2nη)

≥ 2
(

ǫ−
1

2δ
−
(

ǫ−
1

δ

))

=
1

δ
,

L is in SBP.
Discussion.— In this paper, we have used a multiplica-

tive or an exponentially-small additive error in the defini-
tion of the classical samplability. It is an important open
problem whether we can generalize the results to a con-
stant or inverse-polynomial L1-norm error as was done
for the Boson sampling [12], the IQP [14, 15], and the
Fourier sampling [49]. (These results do not seem to be
directly applied to the one qubit model, even in the per-
fect polarization case, since the one qubit model seems to
be able to simulate standard quantum computing with
only an exponentially small rate.) In the present case,
however, using a multiplicative or an exponentially-small
additive error is justified, since in our case the model it-
self is noisy. In other words, we consider the following
sampling problem: “sample the output probability dis-
tribution of a noisy one-clean qubit model”. The prob-
lem can be, of course, exactly solvable with the noisy
one-clean qubit model, but we have shown that solving
the problem classically is impossible even with a mul-
tiplicative or an exponentially-small additive error. We
have therefore shown the existence of a sampling problem
that can be exactly solvable by a realistic non-universal
quantum computer but cannot be solved by a classical
computer even with a multiplicative or an exponentially-
small additive error.
We have considered the output probability distribution

of the measurements on all qubits. It is an open problem
whether we can reduce the number of measured qubits to
one. Furthermore, we want to improve our consequence,
BQP ⊆ SBP, to more unlikely one such as the collapse
of the polynomial hierarchy, but at this moment we do
not know how to do it.
Finally, to conclude this paper, let us discuss roles of

entanglement in NMR quantum computing. In Ref. [50],
a criteria on the initial polarization, below which the sys-
tem becomes a separable state, was derived, and pointed
out that states used in NMR experiments are separable
states. It sounds like NMR quantum information process-
ing has no quantum power, and in fact some researchers
have insisted that NMR quantum information processing
is useless. The conclusion is, however, wrong. In fact, a

polynomially small purity keeps the state outside the sep-
arable ball [44]. Furthermore, as is shown in the present
paper, NMR quantum computing can demonstrate the
quantum supremacy for some sampling problems. Fi-
nally, in the first place, entanglement is not directly con-
nected to the quantum speedup: recently it was shown
that a larger entanglement does not necessarily mean a
quantum speedup [51, 52], and that quantum computing
whose register always has a small bipartite entanglement
can solve any BQP problem [53]. Interestingly, even if we
consider a much weaker model, which we call separable
quantum computing, where the register is always separa-
ble during the computation, its classical simulatability is
not so obvious. For example, even if the register is always
separable, it seems to be hard to find a separable decom-
position after every local unitary gate operation, since
after a local unitary gate operation, some pure states in
the mixture can be entangled. Furthermore, although
any discord free quantum computation (with one or two-
qubit gates) is classically simulatable [54], a separable
state can have non-zero quantum discord.

ACKNOWLEDGMENTS

We thank Animesh Datta and Aharon Brodutch for
comments on our manuscript. TM is supported by
Grant-in-Aid for Scientific Research on Innovative Ar-
eas No.15H00850 of MEXT Japan, and the Grant-in-
Aid for Young Scientists (B) No.26730003 of JSPS. KF
is supported by KAKENHI No.16H02211, PRESTO,
JST, CREST, JST, and ERATO, JST. HN is sup-
ported by the Grant-in-Aid for Scientific Research (A)
Nos.26247016 and 16H01705 of JSPS, the Grant-in-Aid
for Scientific Research on Innovative Areas No.24106009
of MEXT, and the Grant-in-Aid for Scientific Research
(C) No.16K00015 of JSPS.
Appendix A.— It is easy to see that the exact calcu-

lation of the output probability distribution of our model
is #P-hard (actually, GapP-complete), because the abil-
ity of the exact calculation of the output probability dis-
tribution of the model allows us to exactly calculate the
output probability distribution of the one-clean qubit
model, which contains (in an exponentially small rate)
the output probability distribution of any (polynomial-
time) quantum computing [44]. It is known that the ex-
act calculation of the output probability distribution of
(polynomial-time) quantum computing is #P-hard (ac-
tually GapP-complete) [46].
Appendix B.— Here we show that if the output prob-

ability distribution of the one-clean qubit model is clas-
sically efficiently sampled with the multiplicative error
c = 1 − 1

2n then NQP is in NP, which causes the col-
lapse of the polynomial hierarchy to the second level.
We follow the argument in Refs. [16, 55]. Let us assume
that a language L is in NQP, which means that there ex-
ists a uniformly-generated family {Vx} of polynomial-size
quantum circuits such that if x ∈ L then 0 < p < 1, and
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if x /∈ L then p = 0, where p is the acceptance probabil-
ity. It was shown in Ref. [55] that from Vx, which acts on
n−1 qubits, we can construct an n-qubit one-clean qubit
circuit such that the probability p̃ of obtaining 1 when
the clean qubit is measured in the computational basis
is p̃ = 4

2n−1 p(1 − p). Therefore if x ∈ L then p̃ > 0, and
if x /∈ L then p̃ = 0. Let us assume that there exists a
classical polynomial-time probabilistic algorithm whose
acceptance probability q satisfies |p̃ − q| ≤ (1 − 1

2n )p̃.

Then, if x ∈ L we have q ≥ p̃
2n > 0, and if x /∈ L then

q ≤ (2 − 1
2n )p̃ = 0. Therefore, NQP is in NP, which

causes the collapse of the polynomial hierarchy to the
second level.
Appendix C.— Here we show that the bound

(2−r, 2−r−1) of SBP can be replaced with (a2−r, b2−r)
for any 0 ≤ b < a ≤ 1 such that a− b ≥ 1

q
, where q > 0

is a polynomial.
Since a ≥ b + 1

q
≥ 1

q
, there exists a polynomial k ≥ 0

such that a > 1
2k
. Let Vx be the original circuit of SBP.

We define the modified circuit V ′
x in the following way:

it first runs the original circuit Vx, and then accepts with
probability 1

a2k
if Vx accepts. If x ∈ L, the acceptance

probability of V ′
x is pacc ≥

a2−r

a2k = 1
2r+k . If x /∈ L, it is

pacc ≤
b2−r

a2k

=
1

2r+k

a− (a− b)

a

=
1

2r+k

(

1−
a− b

a

)

≤
1

2r+k

(

1−
1

q

)

.

We run V ′
x q times, and accept if all results accept. If

x ∈ L, the acceptance probability is pqacc ≥ 1
2(r+k)q . If

x /∈ L, it is

pqacc ≤
1

2(r+k)q

(

1−
1

q

)q

=
1

2(r+k)q

[(

1 +
1

q − 1

)q]−1

≤
1

2(r+k)q

1

2
,

where we have used

(

1 +
1

q − 1

)q

=

q
∑

j=0

(

q

j

)

( 1

q − 1

)j

≥ 1 +

(

q

1

)

1

q − 1

= 1 +
q

q − 1
≥ 2.
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