
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Speedup for quantum optimal control from automatic
differentiation based on graphics processing units

Nelson Leung, Mohamed Abdelhafez, Jens Koch, and David Schuster
Phys. Rev. A 95, 042318 — Published 13 April 2017

DOI: 10.1103/PhysRevA.95.042318

http://dx.doi.org/10.1103/PhysRevA.95.042318

Speedup for quantum optimal control from GPU-based automatic differentiation

Nelson Leung,1, ∗ Mohamed Abdelhafez,1 Jens Koch,2 and David Schuster1

1The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
2Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA

(Dated: March 10, 2017)

We implement a quantum optimal control algorithm based on automatic differentiation and harness the accel-
eration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced
optimization criteria and incorporate them in the optimization process with ease. We show that the use of GPUs
can speed up calculations by more than an order of magnitude. Our strategy facilitates efficient numerical
simulations on affordable desktop computers, and exploration of a host of optimization constraints and system
parameters relevant to real-life experiments. We demonstrate optimization of quantum evolution based on fine-
grained evaluation of performance at each intermediate time step, thus enabling more intricate control on the
evolution path, suppression of departures from the truncated model subspace, as well as minimization of the
physical time needed to perform high-fidelity state preparation and unitary gates.

I. INTRODUCTION

The techniques and algorithms used to optimize the con-
trol of quantum systems [1–17] and those underlying the field
of deep neural networks [18, 19] share a number of common
elements. Both areas heavily use linear algebra operations
combined with gradient descent optimization. Thus, advanced
hardware and software technology recently emerging from the
rapid development of machine learning also paves the way for
a significant boost of optimal quantum control techniques.

A crucial factor for recent impressive progress in machine
learning has been the leveraging of massive parallelism na-
tive to graphics processing units (GPUs) [20–24]. Similarly
GPUs have been used to accelerate computations in many ar-
eas of quantum physics and chemistry [25–31]. Specifically,
GPUs are extremely efficient in multiplying very large matri-
ces [32, 33]. Such multiplications also form a central step in
the simulation and optimal control of quantum systems. Ex-
ploiting this advantageous feature of GPUs, we achieve sig-
nificant speed improvements in optimizing control schemes
for systems at the current frontiers of experimental quantum
computation. As the number of qubits in these experiments is
increasing [34–36], it becomes increasingly important to take
advantage of optimal control techniques. Moreover, recent ad-
vances in commercially available electronics – e.g., arbitrary
waveform generators enabling base-band synthesis of the en-
tire microwave spectrum [37] – afford new capabilities which
quantum optimal control is uniquely well-suited to harness.

There have been numerous theoretical developments of nu-
merical and analytical methods for quantum optimal control
(see Ref. 1 for a recent review). The algorithms involved are
predominantly based on gradient methods, such as realized
in gradient ascent pulse engineering (GRAPE) [2, 3], Kro-
tov algorithms [4–10] or rapid monotonically convergent al-
gorithms [11–17], and are available in several open-source
packages, including QuTiP [38, 39], DYNAMO [40], Spinach
[41], and SIMPSON [42]. Quantum optimal control has
been remarkably successful in determining optimized pulse

∗ nelsonleung@uchicago.edu

sequences [43], designing high-fidelity quantum gates [7, 44–
53], and preparing entangled states [54–58].

Optimal control is a versatile concept which can be applied
to a vast variety of quantum systems. Typically there is a pri-
mary goal (e.g. maximizing fidelity to a target state/unitary),
as well as additional constraints/costs associated with specific
experimental systems. Examples of such constraints include
fixed maximum amplitudes of control pulses [59, 60], maxi-
mum overall power of control signals [61], and limited time
resolution of arbitrary waveform generators [62]. Further, fi-
nite coherence of quantum systems motivates minimizing the
overall time needed for reaching the intended state or uni-
tary (time-optimal control) [63]. In certain cases, steering the
quantum system among an optimal path (time-dependent tar-
get) may be desired [64]. Incorporating new constraints in the
optimization process often requires the analytical derivation
and implementation of additional contributions to the gradient
calculation, and may necessitate significant effort to deploy
on large computer clusters. This issue can greatly impede the
ability to quickly develop control strategies for new problems.

To overcome these obstacles, we have implemented a quan-
tum optimal control scheme that incorporates constraints via
automatic differentiation [65, 66] and utilizes GPUs for boost-
ing computational efficiency. Specifically, automatic differ-
entiation handles the updating of gradient calculations in the
backward propagation algorithm [19], and thus eliminates the
need to hard-code additional gradient contributions from con-
straints. For the actual optimal control applications we present
in this paper, we find that the computational speed-up from
utilizing GPUs becomes significant for Hilbert space sizes ex-
ceeding dimensions of the order of one hundred, see Fig. 3.
Together, these features allow a quick turnaround for vary-
ing optimization constraints and system parameters, render-
ing this approach invaluable for the study of quantum optimal
control. In this paper, we describe the implementation of auto-
matic differentiation, demonstrate its application to quantum
optimal control of example systems relevant to quantum com-
puting and quantum optics, and discuss the performance gains
achieved by utilizing GPUs.

mailto:nelsonleung@uchicago.edu

2

II. THEORY

We briefly review the essential idea of quantum optimal
control and introduce the notation used throughout our pa-
per. We consider the general setting of a quantum system
with intrinsic Hamiltonian H0 and a set of external control
fields {u1(t), . . . , uM (t)} acting on the system via control op-
erators {H1, . . . ,HM}. The resulting system Hamiltonian is
given by H(t) = H0 +

∑M
k=1 uk(t)Hk. Optimal control the-

ory aims to minimize deviations from a target state or target
unitary by appropriate adjustments of the control fields uk(t).
To implement this optimization, the time interval of interest
is discretized into a large number N of sufficiently small time
steps δt. Denoting intermediate times by tj = t0 + j δt, the
Hamiltonian at time tj takes on the form

Hj = H0 +

M∑
k=1

uk,jHk. (1)

The control fields subject to optimization now form a set
{uk,j} of d = M ·N real numbers.

The quantum evolution from the initial time t = t0 to time
tj is described by a propagator Kj , decomposed according to

Kj = UjUj−1Uj−2 . . . U1U0 (2)

where

Uj = exp(−iHjδt) (3)

is the propagator for the short time interval [tj , tj + δt]. (Here
and in the following, we set ~ = 1.) Evolution of a select
initial state |Ψ0〉 from t = t0 to t = tj then takes the usual
form

|Ψj〉 = Kj |Ψ0〉. (4)

In the decomposition of Kj , each short-time propagator Ui
can be evaluated exactly by matrix exponentiation or approxi-
mated by an appropriate series expansion. Propagation meth-
ods which go beyond the piecewise-constant approximation
for the propagation, can further improve speed and accuracy
[48].

Optimization of the discretized control fields u ∈ Rd can be
formulated as the minimization of a cost function C(u) where
C : Rd → R+. Table I shows some of the most important
cost function contributions used for quantum optimal control.
The total cost function is a linear combination of these cost
functions, C =

∑
µ αµCµ. The weight factors αµ must be

determined empirically, and depend on the specific problem
and experimental realization at hand. In the following, we
discuss these relevant cost function contributions.

A. Important types of cost function contributions

The first cost contribution, C1(u), is the primary tool for
realizing a target unitary KT , such as a single or multi-qubit

µ Cost function contribution Cµ(u)

1 Target gate infidelity 1− | tr(K†TKN)/D|2
2 Target state infidelity 1− |〈ΨT |ΨN 〉|2
3 Control amplitudes |u|2
4 Control variations

∑
j,k |uk,j − uk,j−1|2

5 Occupation of forbidden state
∑
j |〈ΨF |Ψj〉|2

6 Evolution time (target gate) 1− 1
N

∑
j | tr(K

†
TKj)/D|2

7 Evolution time (target state) 1− 1
N

∑
j |〈ΨT |Ψj〉|2

TABLE I. Relevant contributions to cost functions for quantum op-
timal control. Names of contributions indicate the quantity to be
minimized.

gate. Cost is incurred for deviations between the target unitary
and the realized unitary KN at a given final time tN . For a
system with Hilbert space dimension D, its expression 1 −
| tr(K†TKN)/D|2 [2] represents the infidelity obtained from
the trace distance between the target unitary and the realized
unitary. Minimizing this cost function is the principle goal of
the quantum control problem.

The second cost function, C2(u) = 1 − |〈ΨT |ΨN 〉|2 mea-
sures the distance between a desired target state |ΨT 〉 and the
state |ΨN 〉 realized at the final time tN , as obtained from evo-
lution of a given initial state |Ψ0〉. In addition, generalizing
C2 to multiple initial and target states is useful for performing
a unitary KT which is only defined on some subspace HS of
the modeled Hilbert space. Such restriction to a selected sub-
space is of practical importance whenever a desired unitary is
to be implemented within some computational subspace only,
as is common for quantum computation applications. There,
evolution of higher excited states or auxiliary systems outside
the computational subspace is immaterial. Optimal control,
then, can be achieved by simultaneous evolution of a set of ini-
tial states {|Ψs

0〉} (s = 1, 2, . . . , S) that forms a basis of HS .
Optimal control fields are obtained from minimizing the com-
posite state infidelity C2Σ(u) = 1 − | 1S

∑
s〈Ψs

T |PS |Ψs
N 〉|2

relative to the desired target states |Ψs
T 〉 = KT |Ψs

0〉. (Here,
PS is the projector onto subspace HS .)

This composite state-transfer cost function when used over
a complete basis is equivalent to the gate fidelity, but has sev-
eral advantages. Most importantly it is more memory efficient
requiring only the current state to be stored rather than the
whole unitary. In addition, it is very amenable to distributed
computing approaches. However, when the unitary transfer
matrix can be stored in memory, propagating the full unitary
can take advantage of the parallelism of the GPU for smaller
problems (see Fig. 3).

Like many optimization problems, quantum optimal con-
trol is typically underconstrained. In order to obtain control
fields that are consistent with specific experimental capabili-
ties and limitations, it is often crucial to add further constraints
on the optimization. Control fields must be realizable in the
lab, should be robust to noise, and avoid large control am-
plitudes and rapid variations based on signal output specifi-
cations of instruments employed in experiments. Exceedingly
strong control fields may also be problematic due to heat dissi-
pation which may, for instance, raise the temperature inside a

3

dilution refrigerator. These points motivate the consideration
of additional cost function contributions in the following.

One such contribution, C3(u) = |u|2 suppresses large
control-field amplitudes globally, and is commonly employed
in quantum optimal control studies [2, 59, 60, 67]. (The gener-
alization to more fine-grained suppression of individual con-
trol fields is straightforward to implement as well.) Penal-
izing the L2 norm of the control fields favors solutions with
low amplitudes. It also tends to spread relevant control fields
over the entire allowed time window. While C3 constitutes a
“soft” penalty on control-field amplitudes, one may also ap-
ply a trigonometric mapping to the amplitudes to effect a hard
constraint strictly enforcing fixed maximum amplitudes [68].

The fourth type of contribution to the cost function,
C4(u) =

∑
j,k |uk,j − uk,j−1|2, penalizes rapid varia-

tions of control fields by suppressing their (discretized) time
derivatives [67]. The resulting smoothening of signals is of
paramount practical importance, since any instrument gener-
ating a control field has a finite impulse response. If needed,
contributions analogous to C4 which suppress higher deriva-
tives or other aspects of the time dependence of fields can be
constructed. Together, limiting the control amplitudes and
their time variation filters out high-frequency “noise” from
control fields, which is an otherwise common result of less-
constrained optimization. Smoother control fields also have
the advantage that essential control patterns can potentially be
recognized and given a meaningful interpretation.

The contributionC5(u) =
∑
j |〈ΨF |Ψj〉|2 to the cost func-

tion has the effect of suppressing occupation of a select “for-
bidden” state |ΨF 〉 (or a set of such states, upon summa-
tion) throughout the evolution. The inclusion of this contribu-
tion addresses an important issue ubiquitous for systems with
Hilbert spaces of large or infinite dimension. In this situation,
truncation of Hilbert space is needed or inevitable due to com-
puter memory limitations. (Note that this need even arises for
a single harmonic oscillator.) Whenever the evolution gen-
erated by optimal control algorithms explores highly excited
states, truncation introduces a false non-linearity which can
misguide the optimization. Including additional states can, in
principle, mitigate this problem, but is generally computation-
ally very expensive. An independent physics motivation for
avoiding occupation of highly-excited states consists of spon-
taneous relaxation in realistic systems: high-energy states are
often more lossy (as is usually the case, e.g., for supercon-
ducting qubits), and possibly more difficult to model. Active
penalization of such states therefore has the two-fold benefit
of keeping Hilbert space size at bay, and reducing unwanted
fidelity loss from increased relaxation. To address these
challenges, we employ an intermediate-time cost function
[64, 69]: the cost function C5 limits leakage to higher states
during the entire evolution, and at the same time prevents op-
timization to be misinformed by artificial non-linearity due to
truncation. We note that the efficacy of this strategy is system
dependent: it works well, for example, for harmonic oscilla-
tors or transmon qubits [70] which have strong selection rules
against direct transitions to more distant states, but may be less
effective in systems such as the fluxonium circuit [71] where
low-lying states have direct matrix elements to many higher

1− C5 = | |2=C | |2

2 Re(z) 2 Im(z)

|z|2

| |2

ΨF |

T

j

−iδte−iδtA

A + B

AA B

C

C

e−iδt

e−iδt e−iδt

++

0

ΨF

C5

N2

C5C5

H

×H1 ×H2 ×H3

+

1

I I

H

×H1 ×H2 ×H3

+

+

u1,1 u2,1 u3,1

+

+

ΨF

u1,2 u2,2 u3,2

A

A

B

B

AB e−iδtA

Re(z) Im(z)

forward (evolution) backward (gradient)

0 0

Ψ0 Ψ Ψ Ψ

Ψ 2

ΨF ΨF

2

Ψ |Ψ∗
F 〉◦

jΨ

FIG. 1. Computational network graph for quantum optimal con-
trol. Circular nodes in the graph depict elementary operations with
known derivatives (matrix multiplication, addition, matrix exponen-
tial, trace, inner product, and squared absolute value). Backward
propagation for matrices proceeds by matrix multiplication, or where
specified, by the Hadamard product ◦. In the forward direction, start-
ing from a set of control parameters uk,j , the computational graph ef-
fects time evolution of a quantum state or unitary, and the simultane-
ous computation of the cost function C. The subsequent “backward
propagation” extracts the gradient ∇uC(u) with respect to all con-
trol fields by reverse-mode automatic differentiation. This algorithm
is directly supported by TensorFlow [72], once such a computational
network is specified.

states.
Customarily, algorithms minimizing the cost function C =∑
µ αµCµ for a given evolution time interval [t0, tN] aim to

match the desired target unitary or target state at the very
end of this time interval. To avoid detrimental effects from
decoherence processes during the evolution, it is often ben-
eficial to additionally minimize the gate duration (or state

4

preparation) time ∆t = tN − t0 itself. Instead of run-
ning the algorithms multiple times for a set of different ∆t,
we employ cost function contributions of the form C6(u) =

1 − 1
N

∑
j | tr(K

†
TKj)/D|2 for a target unitary, or C7(u) =

1 − 1
N

∑
j |〈ΨT |Ψj〉|2 for a target state, respectively. These

expressions penalize deviations from the target gate or target
state not only at the final time tN , but at every time step. This
contribution to the overall cost function therefore guides the
evolution towards a desired unitary or state in as short a time
as possible under the conditions set by the other constraints,
and thus results in a time-optimal gate.

We will demonstrate the utility of these cost function con-
tributions in the context of quantum information processing in
Section V. The versatility of automatic differentiation allows
straightforward extension to other contexts such as optimiza-
tion of quantum observables.

B. Gradient evaluation

The weighted sum of cost functions, C =
∑
µ αµCµ, can

be minimized through a variety of gradient-based algorithms.
Such algorithms are a very popular means of optimization
thanks to their good performance and effectiveness in find-
ing optimized solutions for a wide range of problems. At the
most basic level, gradient-based algorithms minimize the cost
function C(u) by the method of steepest descent, updating the
controls u in the opposite direction of the local cost-function
gradient ∇uC(u):

u′ = u− η∇uC(u). (5)

The choice of the update step size η for the control field pa-
rameters u, plays an important role for the convergence prop-
erties of the algorithm. A number of schemes exist which
adaptively determine an appropriate step size η in each itera-
tion of the minimization algorithm. Our implementation sup-
ports second order methods such as L-BFGS-B [73] as well
as gradient descent methods developed for machine learning
such as ADAM [74].

For the evaluation of the gradient∇uC we make use of au-
tomatic differentiation [65, 66] in reverse-accumulation mode.
In brief, this algorithm utilizes the decomposition of the mul-
tivariable cost function C(u) into its computational graph of
elementary operations (addition, matrix multiplications, trace,
etc.), each of which has a known derivative. In reverse-
accumulation mode, all partial derivatives of C are evaluated
in a recursion from the top level (C) back towards the outer-
most branches (variables u) – rather similar to the procedure
of obtaining a derivative with pencil and paper. For instance,
for the simple function

C(u) = sin(u1) + u1 ·
√
u2 = f+

[
sin(u1), f•(u1,

√
u2)

]
one obtains all partial derivatives by a recursion starting with
the evaluation of

∂

∂uj
C = D1f+ [

∂

∂uj
sin] + D2f+ [

∂

∂uj
f•] = · · · .

u1 u2

√
·

•sin

+

C(u)

,

FIG. 2. Sample computational graph for automatic differentiation.
Automatic differentiation utilizes the decomposition of the multi-
variable cost function C(u) into its computational graph of elemen-
tary operations, each of which has a known derivative. In reverse-
accumulation mode, all partial derivatives of C are evaluated in a re-
cursion from the top level (C) back towards the outermost branches
(variables u).

Here, Djf stands for the derivative of a multivariable func-
tion f with respect to its j-th argument; square brackets de-
note subsequent numerical evaluation of the enclosed term.
(Function arguments are suppressed for brevity.)

Automatic differentiation has become a central tool in ma-
chine learning [75], and equally applies to the problem of opti-
mal control of quantum systems. In this approach, the gradient
of a set of elementary operations is defined and more complex
functions are built as a graph of these operations. The value of
the function is computed by traversing the graph from inputs
to the output, while the gradient is computed by traversing the
graph in reverse via the gradients. This methodology gives
the same numerical accuracy and stability of analytic gradi-
ents without requiring one to derive and implement analytical
gradients specific to each new trial cost function.

All cost functions summarized in table I can be conve-
niently expressed in terms of common linear-algebra opera-
tions. Figure 1 shows the network graph of operations in our
software implementation, realizing quantum optimal control
with reverse-mode automatic differentiation. For simplicity,
the graph only shows the calculation of the cost functions C2

and C5. The cost function contributions C1, C6, and C7 are
treated in a similar manner. The suppression of large con-
trol amplitudes or rapid variations, achieved by C3 and C4,
is simple to include, since the calculation of these cost func-
tion contributions is based on the control signals themselves
and does not involve the time-evolved state or unitary. The
host of steps for gradient evaluation is based on basic matrix
operations like summation and multiplication.

Reverse-mode automatic differentiation [19] provides an
efficient way to carry out time evolution and cost function
evaluation by one forward sweep through the computational
graph, and calculation of the full gradient by one backward
sweep. In contrast to forward accumulation, each derivative
is evaluated only once, thus enhancing computational effi-
ciency. The idea of backward propagation is directly related to
the GRAPE algorithm for quantum optimal control pioneered
by Khaneja and co-workers [2], see Appendix A. While the

5

original GRAPE algorithm bases minimization exclusively on
the fidelity of the final evolved unitary or state, advanced
cost functions (such as C5 through C7) require the summa-
tion of cost contributions from each intermediate step during
time evolution of the system. Such cost functions go beyond
the usual GRAPE algorithm, but can be included in the more
general backward propagation scheme described above. [Ap-
pendix A shows analytical forms for gradients for cost func-
tions that are based on time evolution ({C1, C2, C5}).]

III. IMPLEMENTATION

Our quantum optimal control implementation utilizes the
TensorFlow library developed by Google’s machine intelli-
gence research group [72]. This library is open source, and
is being extended and improved upon by an active develop-
ment community. TensorFlow supports GPU and large-scale
parallel learning, critical for high-performance optimization.
The simple interface to Python allows non-software profes-
sionals to implement high-performance machine learning and
optimization applications without excessive overhead.

Typical machine-learning applications require most of the
same building blocks needed for quantum optimal control.
Predefined operations, along with corresponding gradients,
include matrix addition and multiplication; matrix traces; and
vector dot products. In addition, we have implemented an ef-
ficient kernel for approximate evaluation of the matrix expo-
nential and its gradient. Using these building blocks, we have
developed a fast and accurate implementation of quantum op-
timal control, well-suited to deal with a broad range of engi-
neered quantum systems and realistic treatment of capabilities
and limitations of control fields.

In common applications of quantum optimal control,
time evolving the system under the Schrödinger equation
– more specifically, approximating the matrix exponential
for the propagators Uj at each time step tj – requires the
biggest chunk of computational time. Within our matrix-
exponentiation kernel, we approximate e−iHjδt by series ex-
pansion, taking into account that the order of the expansion
plays a crucial role in maintaining accuracy and unitarity. The
required order of the matrix-exponential expansion generally
depends on the magnitude of the matrix eigenvalues relative to
the size of the time step. General-purpose algorithms such as
expm() in Python’s SciPy framework accept arbitrary matri-
ces M as input, so that the estimation of the spectral radius or
matrix norm of M , needed for choosing the appropriate order
in the expansion, often costs more computational time than
the final evaluation of the series approximation itself. Direct
series expansion with only a few terms is sufficient for Hjδ
with spectral radius smaller than 1. In the presence of large
eigenvalues, series convergence is slow, and it is more efficient
to employ an appropriate form of the “scaling and squaring”
strategy, based on the identity

expM =

[
exp

(
M

2n

)]2n

, (6)

which reduces the spectral range by a factor of 2n at the cost

of recursively squaring the matrix n times [76]. Overall, this
strategy leads to an approximation of the short-time propaga-
tor of the form

Uj ≈
[

p∑
k=0

(−iHjδt/2
n)k

k!

]2n

, (7)

based on a Taylor expansion truncated at order p. Computa-
tional performance could be further improved by employing
more sophisticated series expansions [77, 78] and integration
methods [79].

As opposed to the challenges of general-purpose matrix ex-
ponentiation, matrices involved in a specific quantum control
application with bounded control field strength (iHjδt), will
typically exhibit similar spectral radii. Thus, rather than at-
tempting to determine individual truncation levels pj , and per-
forming scaling-and-squaring at level nj in each time step tj ,
we make a conservative choice for global p and n at the be-
ginning and employ them throughout. This simple heuristic
speeds up matrix exponentiation over the default SciPy imple-
mentation significantly, primarily due to leaving out the step
of spectral radius estimation.

By default, automatic differentiation would compute the
gradient of the approximated matrix exponential via back-
propagation through the series expansion. However, for suffi-
ciently small spectral radius of M , we may approximate [2]

d

dx
eM(x) ≈M ′(x) eM(x), (8)

neglecting higher-order corrections reflecting that M ′(x) and
M(x) may not commute. (Higher-order schemes taking into
account such additional corrections are discussed in Ref. 3.)
Equation (8) simplifies automatic differentiation: within this
approximation, only the same matrix exponential is needed
for the evaluation of the the gradient. We make use of this
in a custom routine for matrix exponentiation and gradient-
operator evaluation, further improving the speed and memory
performance.

The TensorFlow library currently has one limitation rel-
evant to our implementation of a quantum optimal control
algorithm. Operators and states in Hilbert space have natu-
ral respresentations as matrices and vectors which are gener-
ically complex-valued. TensorFlow, designed primarily for
neural network problems, has currently only limited support
for complex matrices. For now, we circumvent this obstacle
by mapping complex-valued matrices to real matrices via the
isomorphism H

∼=7−→ 11 ⊗Hre − iσy ⊗Him, and state vectors
~Ψ
∼=7−→ (~Ψre, ~Ψim)t. Here, 11 is the 2×2 unit matrix and σy one

of the Pauli matrices. Real and imaginary part of the matrix
H are denoted by Hre = ReH and Him = ImH , respec-
tively; similarly, real and imaginary parts of state vectors are
~Ψre = Re ~Ψ and ~Ψim = Im ~Ψ. Written out in explicit block
matrix form, this isomorphism results in

H~Ψ
∼=7−→
(
Hre −Him

Him Hre

)(
~Ψre

~Ψim

)
, (9)

rendering all matrices and vectors real-valued. For the Hamil-
tonian matrix, this currently implies a factor two in memory

6

cost (due to redundancy of real and imaginary part entries).
There are promising indications that future TensorFlow re-
leases may improve complex-number support and eliminate
the need for a mapping to real-valued matrices and vectors.

IV. PERFORMANCE BENCHMARKING

Obtaining a fair comparison between CPU-based and GPU-
based computational performance is notoriously difficult [80].
We attempt to provide a specific comparison under a uni-
fied computation framework. TensorFlow allows for straight-
forward switching from running code on a CPU to a GPU.
For each operation (matrix multiplication, trace, etc.), we use
the default CPU/GPU kernel offered by TensorFlow. Note
that properly configured, TensorFlow automatically utilizes
all threads available for a given CPU, and GPU utilization is
found to be near 100%. Not surprisingly, we observe that the
intrinsic parallelism of GPU-based matrix operations allows
much more efficient computation beyond a certain Hilbert
space size, see Fig. 3.

In this example, we specifically inspect how the compu-
tational speed scales with the Hilbert space dimension when
optimizing an n-spin Hadamard transform gate and n-spin
GHZ state preparation for a coupled chain of spin-1/2 sys-
tems presented in Section V D. (Details of system parameters
are described in the same section.) We benchmark the aver-
age runtime for a single iteration for various spin-chain sizes
and, hence, Hilbert space dimensions. We find that the GPU
quickly outperforms the CPU in the unitary gate problem,
even for a moderate system size of ∼ 100 basis states. For
optimization of state transfer, we observe that speedup from
GPU usage, relative CPU performance, sets in for slightly
larger system sizes of approximately ∼ 300 basis states.

The distinct thresholds for the GPU/CPU performance gain
stem from the different computational complexities of gate vs.
state-transfer optimization. Namely, optimizing unitary gates
requires the propagation of a unitary operator (a matrix), in-
volving matrix-matrix multiplications, while optimizing state
transfer only requires the propagation of a state (a vector), in-
volving only matrix-vector multiplications:

Uj |Ψ〉 ≈
p∑
k=0

(−iδt)k
k!

(Hj . . . (Hj(Hj |Ψ〉))), (10)

Computing the matrix-vector multiplication is generally much
faster than computing the matrix exponential itself [81]. For
an n-dimensional matrix, the computation of the matrix ex-
ponential involves matrix-matrix multiplication, which scales
as O(n3). The computation of state transfer only involves
matrix-vector multiplication, which scales as O(n2) [or even
O(n) for sufficiently sparse matrices].

For optimization of the Hadamard transform as well as the
GHZ state preparation, we observe a 19-fold GPU speedup
for a 10-qubit system (Hilbert space dimension of 1,024) in
the former case, and a 6-fold GPU speedup for an 11-qubit
system (Hilbert space dimension of 2,048) in the latter case.
Since matrix operations are the most computationally inten-
sive task in our software, this speedup is comparable to other

GPU application studies that heavily use matrix operation
[20–24, 80, 82]. We emphasize that these numbers are in-
dicative of overall performance trends, but detailed numbers
will certainly differ according to the specific system archi-
tecture in place. The CPU model we used was an Intel R©

Core
TM

i7-6700K CPU @ 4.00 GHz, and the GPU model was
an NVIDIA R© Tesla R© K40c. In this study, all computations
are based on dense matrices. Since most physically relevant
Hamiltonians are sparse (evolution generally affects sparsity,
though), future incorporation of sparse matrices may further
improve computation speed for both CPU and GPU [83, 84].

V. SHOWCASE APPLICATIONS

In this last section, we present a set of example applica-
tions of experimental relevance. The first application demon-
strates the importance of cost functions suppressing interme-
diate occupation of higher-lying states during time evolution,
as well as cost functions accounting for realistic pulse shap-
ing capabilities. In a second application, we show how the
cost function C6 can yield high-fidelity state transfer within
a reduced time interval. Third, we discuss the application
of Schrödinger-cat state preparation – an example from the
context of quantum optics and of significant interest in recent
schemes aiming at quantum information processing based on
such states [67, 85, 86]. This application combines consider-
able system size with a large number of time steps, and uti-
lizes most of the cost functions discussed in Section II A. In
the fourth application, we demonstrate the algorithm perfor-
mance in finding optimal solutions for GHZ state preparation
and implementation of a Hadamard transform gate in a chain
of qubits with a variable number of qubits. We use either
the Adam [74] or L-BFGS-B optimization algorithm [73] for
pulse optimization, and achieve a minimum fidelity of 99.9%
in all of our following examples.

A. CNOT gate for two transmon qubits

In the first example, we study realization of a 2-qubit CNOT
gate in a system of two coupled, weakly anharmonic trans-
mon qubits. For each transmon qubit (j = 1, 2) [70], we
take into account the lowest two states spanning the qubit
computational space, as well as the next three higher lev-
els. The system Hamiltonian, including the control fields
{Ωx1

(t), Ωx2
(t), Ωz2(t)}, then reads

H(t) =
∑
j=1,2

[
ωjb
†
jbj + 1

2αj b
†
jbj(b

†
jbj − 1)

]
(11)

+ J(b1 + b†1)(b2 + b†2)

+ Ωx1(t)(b1 + b†1) + Ωx2(t)(b2 + b†2) + Ωz2(t)b†2b2.

Here, the ladder operators bj , and b†j are truncated at the ap-
propriate level. (The qubit frequencies ωj/2π are chosen as
3.5 and 3.9 GHz, respectively; both transmons have an anhar-
monicity of α/2π = −225 MHz; and the qubit-qubit coupling

7

ru
nt

im
e

/ i
te

ra
tio

n
(s

)

number of qubits

ru
nt

im
e

/ i
te

ra
tio

n
(s

)

number of qubits

×19 ×6(a) target unitary (b) target state

100

10-2

102

104

2 4 6 8 10

101 102 103
Hilbert space dimension

2 4 6 8 10 12

100

10-2

102

101 102 103
Hilbert space dimension

FIG. 3. Benchmarking comparison between GPU and CPU for (a) a unitary gate (Hadamard transform), and (b) state transfer (GHZ state
preparation). Total runtime per iteration scales linearly with the number of time steps. For unitary-gate optimization, the GPU outperforms
the CPU for Hilbert space dimensions above ∼ 100. For state transer, GPU benefits set in slightly later, outperforming the CPU-based
implementation for Hilbert space dimensions above ∼ 300. The physical system we consider, in this case, is an open chain of N spin-1/2
systems with nearest neighbor σzσz coupling, and each qubit is controlled via fields Ωx and Ωy .

(a) (b) (c)

po
pu

la
tio

n
co

nt
ro

l (
G

H
z)

0

0

0.5

1

-0.3

0.3

5 10 5 10 5 10
time (ns)

|10〉|11〉
others

“forbidden”

time (ns) time (ns)

others others

|11〉 |11〉|10〉 |10〉

“forbidden” “forbidden”

FIG. 4. Control pulses and evolution of quantum state population for a CNOT gate acting on two transmon qubits, (a) only targeting the
desired final unitary, (b) employing an additional cost function suppressing occupation of higher-lying states (C5), and (c) including additional
pulse-shape cost functions (C3, C4). Here, only the evolution of state |11〉 is shown, as the evolution of state |11〉 is most susceptible to the
occupation of higher level states. In all three cases, the CNOT gate converged to a fidelity of 99.9%. The results differ in important details:
in (a), both high-frequency “noise” on the control signals and significant occupation of “forbidden” states (3rd and 4th excited transmon
level), shown as dashed red line, are visibile throughout the evolution; in (b), forbidden-state occupation is suppressed at each time step during
evolution; in (c), this suppression is maintained and all control signals are smoothened. The maximum occupation of forbidden states is reduced
from ∼ 20% in (a) to ∼ 3% in (b) and (c). The population of “others” states (non- |11〉, |10〉 or ”forbidden”) is also shown for completeness.
For demonstration purposes, all three examples use the same gate duration of 10 ns, despite being subject to different constraints. In practice,
one would typically increase the gate time for a more constrained problem to achieve the best result in maximizing gate fidelity, minimizing
forbidden state occupation, and achieving a realistic control signal.

strength used in the simulation is J/2π = 100 MHz.) Consis-
tent with recent circuit QED experiments utilizing classical
drives as well as parametric modulation, we investigate con-
trol fields acting on Hx1 = b1 + b†1, Hx2 = b2 + b†2, and
Hz2 = b†2b2.

We next optimize control fields for the realization of a
CNOT gate, with transmon qubit j = 1 acting as the con-
trol qubit. Our control-field optimization reaches a prescribed
fidelity of 99.9% for a 10 ns gate duration in all cases, as seen
in Fig. 4. Results shown in Fig. 4(a) are obtained with the
standard target-gate infidelity cost function (C1) only. It is
evident that the solution encounters two issues: the occupa-
tion of the 3rd and 4th excited transmon level (“forbidden”) is

significant, and control fields are polluted by high-frequency
components. Including a cost function contribution of type
C5 succeeds in strongly suppressing occupation of higher lev-
els, see Fig. 4(b). This both reduces exposure to increased
relaxation rates and ensures that the evolution is minimally
influenced by our numerical truncation of Hilbert space. In
the final improvement step, shown in Fig. 4(c), our optimiza-
tion additionally suppresses excessive control amplitudes and
derivatives via cost contributions of type C3 and C4. The in-
clusion of these terms in the overall cost lessens superfluous
“noise” in the control signals, and also helps improve conver-
gence of the algorithm – without reducing the achieved target-
gate fidelity.

8

| 〉

| 〉

(a) (b)
po

pu
la

tio
n

co
nt

ro
l (

G
H

z)

time (ns) time (ns)
0 1 2 3 0 1 2 3

0

0.5

1

-0.3

0.3

| 〉| 〉

FIG. 5. Minimizing evolution time needed for a high-fidelity state
transfer. (a) No time-optimal award function. (b) With time-optimal
award function. (a) Without penalty for the time required for the
gate, the control field spreads across the entire given time interval.
(b) Once evolution over a longer time duration is penalized with a
contribution of type C6 or C7 (see table I), the optimizer achieves
target state preparation in a shorter time, without loss of fidelity.

B. Reducing duration of |0〉 to |1〉 state transfer

In this second example, we illustrate the use of cost function
contributions (types C6, C7) in minimizing the time needed
to perform a specific gate or prepare a desired state. To this
end, we consider a two-level spin qubit (ω/2π: 3.9 GHz). The
system and control Hamiltonians combined are taken to be

H =
ω

2
σz + Ω(t)σx. (12)

We allow for a control field acting on the qubit σx degree of
freedom, and constrain the maximum control-field strength
Ωmax/2π to 300 MHz. When the evolution time needed to
perform the state transfer is fixed (rather than subject to op-
timization itself), we observe that control fields generically
spread across the prescribed gate duration time. The desired
target state is realized only at the very end of the allowed gate
duration. When we incorporate aC6 orC7-type cost contribu-
tion, the optimal control algorithm also aims to minimize the
overall gate duration, so as to realize the target unitary or state
in as short a time as possible, given other active constraints. In
our example, this reduces the time for a state transfer from 3 ns
to less than 1.5 ns, see Fig. 5. We note that it is further pos-
sible to adaptively change the overall simulation time during
optimization. For instance, if further optimization was desired
in the case of Fig. 5(b), then the simulation time interval could
be adaptively reduced to ∼ 1.5 ns – resulting in a significant
cutback in overall computation time.

C. Generating photonic Schrödinger cat states

As an example of quantum state transfer, we employ our
optimal control algorithm to the task of generating a photonic
Schrödinger-cat state. The system we consider to this end is
a realistic, and recently studied [85, 86] circuit QED setup,

consisting of a transmon qubit capacitively coupled to a three-
dimensional microwave cavity. External control fields are re-
stricted to the qubit. Working in a truncated subspace for the
transmon (limiting ourselves to levels with energies well be-
low the maximum of the cosine potential), the full Hamilto-
nian describing the system is

H(t) = ωqb
†b+ 1

2α b
†b(b†b− 1) + ωra

†a (13)

+ g(a+ a†)(b+ b†) + Ωx(t)(b+ b†) + Ωz(t)b
†b

Here, a and b are the usual lowering operators for photon
number and transmon excitation number, respectively. The
frequencies ωq/2π = 3.5 GHz and α/2π = −225 MHz
denote the transmon 0-1 splitting and its anharmonicity.
The frequency of the relevant cavity mode is taken to be
ωr/2π = 3.9 GHz. Qubit and cavity are coupled, with a
strength parameterized by g/2π = 100 MHz. In our simu-
lation, the overall dimension is 154 = (7 transmon levels) ×
(22 resonator levels). Note that the rotating wave approxima-
tion is not applied in order to reflect the capabilities of modern
arbitrary waveform generation.

The state-transfer task at hand, now, is to drive the joint
system from the zero-excitation state |0〉q ⊗ |0〉r (the ground
state if counter-rotating terms in the coupling are neglected)
to the photonic cat state |0〉q⊗|cat〉r. Here, the cat state in the
resonator corresponds to a superposition of two diametrically
displaced coherent states: |cat〉r = 1√

2
(|λ〉+ | − λ〉). Coher-

ent states are defined in the usual way as normalized eigen-
states of the photon annihilation operator a, and correspond to
displaced vacuum states |λ〉 = e−|λ|

2/2eλa
† |0〉. The cat state

|cat〉r is approximately normalized for sufficiently large λ. As
our concrete target state, we choose a cat state with amplitude
λ = 2 (normalization error of ∼ 0.03%). The state transfer
is to be implemented by control fields Ωx(t) and Ωz(t) acting
on the transverse and longitudinal qubit degrees of freedom,
Hx = (b + b†) and Hz = b†b, respectively. Matching exper-
imental realizations of multi-mode cavity QED systems[87],
we do not allow for any direct control of the cavity degrees of
freedom.

This state-transfer problem provides an excellent test for an
optimal control algorithm. It incorporates the simultaneous
challenges of a large number of time steps (8,000), a consider-
able evolution time (40 ns), and the application of most of the
cost functions we discussed in Sect. II A and summarized in
Table I. Specifically, in addition to minimizing the target state
infidelity (C2), we penalize occupation of transmon levels 3 to
6 and cavity levels 20 and 21 (C5) to avoid artifacts from trun-
cation, and penalize control variations (C4) [88]. Results from
the optimization are presented in 6, which shows the control-
field sequence, as well as the induced state evolution. At the
end of the 40 ns time interval, the control fields generate the
desired cat state with a fidelity of 99.9%. The maximum pop-
ulations at the truncation levels of transmon and cavity are
∼ 6×10−6 and∼ 7×10−10, respectively. We independently
confirm convergence with respect to truncation by simulat-
ing the obtained optimized pulse for enlarged Hilbert space
(8 transmon and 23 cavity levels), and find that the evolution
continues to reach the target state with 99.9% fidelity.

9

W
ig

ne
r f

un
ct

io
n

 (
ca

vi
ty

)
po

pu
la

tio
n

co
nt

ro
l (

G
H

z)

-3 0 3 -3 0 3 -3 0 3 -3 0 3 -3 0 3 -3 0 3

-3

0

3
0 ns 8 ns 16 ns 24 ns 32 ns 40 ns

40 ns30201003020100

0.5

1.0

-0.2

0

0.2

40 ns3020100

transmon cavity0

1
2

3

0

1 2 4

5
6

FIG. 6. Cat state generation. Control pulse, state evolution in Fock basis, and Wigner function tomography of the cavity evolution. Photonic
cat state generation is shown as a test of state transfer, challenging the quantum control algorithm with a system of considerable size, large
number of required time steps, and inclusion of multiple types of cost function. The desired Schrödinger cat state in the resonator is created
indirectly, by applying control fields to a transmon qubit coupled to the resonator, and reached within a prescribed evolution time of 40 ns with
a fidelity of 99.9%. (Note that occupation of transmon level 4, 5, 6 remains too small to be visible in the graph.)

D. Hadamard transform and GHZ state preparation

We present a final set of examples illustrating the algorithm
performance for increasing system size. To that end, we con-
sider a coupled chain of N qubits, or spin-1/2 systems. We
assume that all spins are on-resonance in the multiple-rotating
frame. This system is described by the Hamiltonian

H(t) =

N∑
n=1

[
Ω(n)
x (t)σ(n)

x + Ω(n)
y (t)σ(n)

y + J σ(n)
z σ(n+1)

z

]
,

(14)
where the coupling term is understood to be dropped for the
final summand (n = N). The qubit-qubit coupling strength is
fixed to J/2π = 100 MHz. Each qubit (n) is controlled via
fields Ω

(n)
x and Ω

(n)
y , with a maximum allowed drive strength

of Ω
(n)
x,y/2π = 500 MHz.

As a first optimization task, we search for control fields to
implement the unitary realizing a Hadamard transform, com-
monly used in various quantum algorithms. The gate time we
allow for the Hadamard transform is (2N) ns, simulated with
10N time steps. Figure 7(a) shows the number of iterations
and wall-clock time required to converge to the desired 99.9%
process fidelity. For the same spin-chain system, we have also
employed our code to optimize control fields for transferring
the system ground state to a maximally entangled GHZ state.
The overall time and time steps we allow for the GHZ state
preparation is identical to that used for the Hadamard trans-
form gate. Figure 7(b) shows the number of iterations neces-

sary and the total wall-clock time spent for reaching conver-
gence to a result with 99.9% state fidelity. For both examples,
we employed computation on either CPU or GPU, depending
which one is faster. (This performance benchmarking data
was shown in Section IV). We note that, when using a modest
desktop PC with graphics card, optimal control problems for
small Hilbert space size converge within seconds. For a 10-
qubit Hadamard gate (Hilbert space dimension of 1,024) or
11-qubit GHZ state (Hilbert space dimension of 2048), it takes
∼1 day to obtain a solution meeting the 99.9% fidelity thresh-
old. The total wall-clock time could likely have been reduced
significantly by appropriate choice of optimizer, hyperparam-
eters, and/or initial control fields. In the case of spin-chain
system, like many quantum information systems, as the num-
ber of elements increase, not only does the Hilbert space grow
exponentially, the number of control fields and the required
number of time steps also get larger. This further increases
the complexity of the problem.

VI. CONCLUSION

In conclusion, we have presented a quantum optimal con-
trol algorithm harnessing two key technologies that enable fast
and low-overhead numerical exploration of control signal op-
timization. First, we have demonstrated that automatic dif-
ferentiation can be leveraged to facilitate effortless inclusion
of diverse optimization constraints, needed to obtain realistic
control signals tailored for the specific experimental capabili-

10

(b) GHZ state prep.

(a) Hadamard gate

number of qubits

ite
ra

tio
ns

 to
 c

on
ve

rg
en

ce

to
ta

l w
al

l-c
lo

ck
 ti

m
e

(s
)

2 4 6 8 100

200

400

600
0

200

400

600

2 4 6 8 10

101

103

105

101

103

105

FIG. 7. Performance of optimal control algorithm as a function of
qubit number for (a) a Hadamard transform gate, and (b) GHZ state
preparation. As system size increases, total time and number of iter-
ations for the algorithm grow rapidly. The larger number of control
parameters and complexity of the target state add to the challenge of
quantum optimal control for systems with many degrees of freedom.

ties at hand. Automatic differentiation dramatically lowers the
overhead for adding new cost functions, as it renders analyt-
ical derivations of gradients unnecessary. For illustration, we
have presented concrete examples of optimized unitary gates
and state transfer, using cost functions relevant for applica-
tions in superconducting circuits and circuit QED. We em-
phasize that this is but one instance within a much larger class
of quantum systems for which optimal control is instrumental,
and the methods described here are not limited to the specific
examples shown in this paper.

The second key technology we have incorporated is the im-
plementation of GPU-based numerical computations, which
offers a significant speedup relative to conventional CPU-
based code. The use of the TensorFlow library [72] hides the
low-level details of GPU acceleration, allowing implementa-
tion of new cost functions at a high level. The reduction in
computational time will generally depend on a number of fac-
tors including system type, Hilbert space size, and the spe-
cific hardware employed by the user. We observe that runtime
speedup by an order of magnitude is not unusual when using
a standard desktop PC, enabling the development of sophis-
ticated quantum control without enormous investments into
powerful computing equipment. The underlying libraries also
have support for high-performance distributed computing sys-
tems for larger optimizations. Our software implementation
is open source and can be downloaded at: github.com/
SchusterLab/quantum-optimal-control.

The increased efficiency and ease of optimal quantum con-
trol due to the employment of GPUs and automatic differen-
tiation makes our work valuable to a broad range of research.

Future work will address sparse-matrix implementations, as
well as the deployment of adaptive step size and Runge-Kutta
methods for time evolution.

ACKNOWLEDGMENTS

The authors thank J. Kutasov for help in comparing opti-
mization performance with existing frameworks as well as T.
Berkelbach and D. Mazziotti for discussions. We gratefully
acknowledge the support of NVIDIA R© Corporation through
the donation of the Tesla R© K40 GPU used for this research,
and support from the David and Lucille Packard Founda-
tion. This material is based upon work supported by the De-
partment of Defense under contracts H98230-15-C0453 and
W911NF-15-1-0421.

Appendix A: Analytical gradients and algorithms

In the following, we outline the analytical calculation of
gradients for cost functions such as those summarized in Ta-
ble I. We stress that our automatic-differentiation implementa-
tion evaluates these gradients autonomously, without the need
of these analytical derivations or hard-coding any new gradi-
ents. The following derivations are thus merely intended as
illustrations for a better mathematical understanding (and ap-
preciation) of the gradients calculated without user input by
means of automatic differentiation.

For a systematic treatment of the different types of cost
functions, we note that most cost functions involve an ab-
solute value squared of an inner product between target and
final states or target and final unitaries (Hilbert-Schmidt in-
ner product). To obtain the gradients of expressions such as
C1(u) = 1 − | tr(K†TKN)|2 with respect to the control pa-
rameters, we note that control parameters enter via the final
states or unitaries through the evolution operators, KN =
UN (u)UN−1(u) · · ·U1(u)U0. To streamline our exposition,
we first summarize multiple matrix-calculus relations of rele-
vance.

Consider two complex-valued matrices A and B, compati-
ble in row/column format such that the matrix product AB is
defined. Then, one finds

∂ tr(AB)

∂Bji
=
∂(AnmBmn)

∂Bji
= Aij . (A1)

Throughout this appendix, we use Einstein convention for
summation, and follow the Jacobian formulation (also known
as numerator layout) for derivatives with respect to matrices.
We will further encounter expressions of the following form,
involving a third matrix C of the same dimensions as Bt:

tr

[
∂[| tr(AB)|2]

∂B
C

]
=
∂[tr(AB) tr(AB)∗]

∂Bji
Cji

=
∂ tr(AB)

∂Bji
tr(AB)∗Cji = Aij tr(AB)∗Cji

= tr(AC) tr(AB)∗. (A2)

github.com/SchusterLab/quantum-optimal-control
github.com/SchusterLab/quantum-optimal-control

11

In the framework of Wirtinger derivatives in complex analy-
sis, derivatives treat quantitiesX andX∗ as independent vari-
ables, and Eq. (A1) is used in the step from line 1 to line 2.

The evaluation of cost-function gradients requires the
application of the chain rule to expressions of the type
∂
∂ui

c(M(u)). Here, c maps a complex-valued ` × ` ma-
trix M (e.g., the propagator KN with ` denoting the Hilbert
space dimension) to a real number (the cost). The matrix
M = (Mmn) itself depends on the real-valued control pa-
rameters u ∈ Rd. The subscript in ui is understood as a
multi-index i = (k, j) encoding the control-field label k and
discretized-time index j. The matrix-calculus result

∂

∂ui
c(M(u)) =

∂c

∂Mmn

∂Mmn

∂ui
+

∂c

∂M∗mn

∂M∗mn
∂ui

= tr

(
∂c

∂M

∂M

∂ui

)
+ c.c. (A3)

is straightforward to derive with the “regular” chain rule by
re-interpreting the functions involved as c : C`2 → R and
M : Rd → C`2 . In the following, Eqs. (A2) and (A3) are
used to obtain the analytical expressions for several examples
of cost-function gradients.

1. Gradient for C1: target-gate infidelity

The cost functionC1 = 1−| tr[K†TKN (u)]|2, penalizes the
infidelity of the realized unitary KN = UNUN−1 . . . U1U0

with respect to to the target propagatorKT . It has the gradient

∂C1

∂uk,j

(A3)
= tr

∂C1

∂KN

∂KN

∂uk,j
+ c.c. (A4)

= − tr

[
∂[| tr(K†TKN)|2]

∂KN

∂KN

∂uk,j

]
+ c.c.

(A2)
= − tr

(
K†T

∂KN

∂uk,j

)
tr(K†TKN)∗ + c.c.

= tr

(
K†T

[∏
j′>j

Uj′
]
i δtHkKj

)
tr(K†TKN)∗ + c.c.

= −2 δt Im

{
tr

(
K†T

[∏
j′>j

Uj′
]
HkKj

)
tr(K†TKN)∗

}

where
∏

is understood to produce a time-ordered product.
This expression shows that automatic reverse-mode differ-

entiation requires the propagators Kj from every time step.
Within TensorFlow, the set of intermediate propagators {Kj}
is stored in memory during the forward evolution. The result-
ing memory demand therefore scales as O(`2 ×N).

Memory-efficient algorithm.— We note that storage of
{Kj} can be avoided by applying the strategy introduced in
the original GRAPE paper [2]: since the evolution is uni-
tary, one may time-reverse the evolution step by step, and re-
calculate the intermediate propagator via Kj = U†j+1Kj+1.
Here, each short-time propagator Uj is re-generated locally
in time, using only the control fields at time tj . Such a

backwards-propagation algorithm leads to an increase in com-
putation time by roughly a factor of 2 (each Uj is then cal-
culated twice), but has a memory demand of only O(`2) –
which does not scale with N , the number of time steps. Thus
for large problems the memory efficient algorithm is superior.
This memory-efficient algorithm, currently not realized in this
implementation, is given by

Algorithm 1 C1 gradient via backwards propagation
1: P = tr(K†TKN)∗K†T
2: X = KN

3: for j = N to 0 do
4: for all k do
5: ∂C1/∂uk,j = −2δt Im[tr(P Hk X)]
6: end for
7: X = U†jX
8: P = P Uj
9: end for

10: return ∂C1/∂u

2. Gradient for C2: target-state infidelity

For state preparation or unitaries specified only in a sub-
space, it is sufficient to optimize the evolution for only a
few initial states, rather than for the complete basis. This is
achieved by minimizing a cost function based on C2(u) =
1− |〈ΨT |ΨN 〉|2, where the realized final state |ΨN 〉 depends
on the control parameters u. Again applying equations (A3)
followed by (A2) (and using that the trace of a number results
in that number), we obtain

∂C2

∂uk,j
= −2 δt Im

[
〈ΨT |

[∏
j′>j

Uj′
]
Hk|Ψj〉〈ΨT |ΨN 〉∗

]

Memory-efficient algorithm.— In TensorFlow-based auto-
matic differentiation algorithm here, the intermediate states
{|Ψj〉} are stored, leading to a memory requirement of O(`×
N), rather than O(`2 × N) for the full propagators. By us-
ing the same backward propagation strategy as above, a more
memory-efficient algorithm with memory requirement O(`)
independent of the time-step number is possible:

Algorithm 2 C2 gradient via backwards propagation
1: P = 〈ΨT |ΨN 〉∗〈ΨT |
2: X = |ΨN 〉
3: for j = N to 0 do
4: for all k do
5: ∂C2/∂uk,j = −2δt Im[P HkX]
6: end for
7: X = U†jX
8: P = P Uj
9: end for

10: return ∂C2/∂u

12

3. Gradient for C5: occupation of forbidden state

Occupation of a “forbidden” state is discouraged by the cost
function C5 =

∑
j | tr(Ψ

†
FΨj)|2. This cost function differs

qualitatively from the gate and state infidelity cost functions:
the latter are evaluated based on the result at the final time,
while forbidden-state occupation involves intermediate states
at every time step. Accordingly, the corresponding gradient
takes a different form. First, Eq. (A3) is replaced by

∂

∂ui
c
(
Ψ0(u),Ψ1(u), . . . ,ΨN (u)

)
= tr

∂c

∂Ψj

∂Ψj

∂ui
+ c.c. (A5)

where introduction of the trace of a c-number is convenient
for direct application of Eq. (A2). We then obtain

∂C5

∂uk,j

(A5)
=
∑
J

tr
∂C5

∂ΨJ

∂ΨJ

∂uk,j
+ c.c. (A6)

=
∑
J≥j

∑
j′

tr

[
∂[| tr(Ψ†FΨj′)|2]

∂ΨJ

∂ΨJ

∂uk,j

]
+ c.c.

(A2)
=
∑
J≥j

tr
(

Ψ†F
∂ΨJ

∂uk,j

)
tr(Ψ†FΨJ)∗ + c.c.

= 2 δt
∑
J≥j

Im

[〈
ΨF

∣∣[∏J
j′=j+1 Uj′

]
Hk
∣∣Ψj

〉〈
ΨJ

∣∣ΨF

〉]
The double sum of eq. (A6) makes it appear as though

the computation of this gradient would take O(N2), however
after simplification, the relationship between the limits of the
sum and product allow it to be calculated in O(N) time. The
corresponding backward propagation algorithm then takes the
following form:

Algorithm 3 C5 gradient via backwards propagation
1: P = 〈ΨN |ΨF 〉〈ΨF |
2: X = |ΨN 〉
3: for j = N to 0 do
4: for all k do
5: ∂C5/∂uk,j = 2 δt Im[PHkX]
6: end for
7: X = U†j X
8: P = P Uj + 〈X|ΨF 〉〈ΨF |
9: end for

10: return ∂C5/∂u

This cost function and gradient is also used as the time-
optimal award function, using a negative cost to reward rather
than penalize the target state at every time step (rather than
just at the end). The gradients of cost functions involving only
control fields do not involve the time propagation, so we also
omit their derivation.

4. Summary

Algorithms for each cost function along with their compu-
tation and memory costs have been presented. The computa-
tion time of the algorithms all scale linearly with the number
N of time steps. Automatic gradient calculation which re-
quires caching of each step causes memory to scale like N ,
while reducing the run time by a constant factor of 2. By con-
trast, algorithms which directly exploit the unitary structure
of quantum evolution can have memory requirements do not
scale with the number of time steps. Hence, it may be worth
implementing analytic gradients for very long computations
which otherwise would not fit in memory.

Computing the fidelity and gradient for the whole unitary
evolution as in algorithm 1, requires O(`2), whereas state
transfer requires O(`) memory. It should be noted that full
unitary evolution fidelity can also be calculated as `2 state
transfer computations over a complete basis. This has the
memory requirements of state transfer, and the same compu-
tation requirements as algorithm 1, though is less efficient by
a constant factor. In principle, each state transfer can be per-
formed in parallel and assembled to compute the total cost
and gradient. In addition, the Hamiltonians of many physi-
cal problems can be represented sparsely allowing a signifi-
cant speedup in computation as well. For practical problems,
the number time steps required may scale with the size of the
problem, as more complex quantum gates/algorithms require
more time than simple ones.

[1] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch,
W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer,
T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, Eur.
Phys. J. D 69, 1 (2015).

[2] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and
S. J. Glaser, Journal of Magnetic Resonance 172, 296 (2005).

[3] P. de Fouquieres, S. G. Schirmer, S. J. Glaser, and I. Kuprov,

Journal of Magnetic Resonance 212, 412 (2011).
[4] S. E. Sklarz and D. J. Tannor, Phys. Rev. A 66, 053619 (2002).
[5] R. Eitan, M. Mundt, and D. J. Tannor, Phys. Rev. A 83, 053426

(2011).
[6] C. Gollub, M. Kowalewski, and R. de Vivie-Riedle, Phys. Rev.

Lett. 101, 073002 (2008).
[7] R. Nigmatullin and S. G. Schirmer, New Journal of Physics 11,

http://dx.doi.org/10.1140/epjd%252fe2015-60464-1
http://dx.doi.org/10.1140/epjd%252fe2015-60464-1
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1016/j.jmr.2011.07.023
http://dx.doi.org/10.1103/physreva.66.053619
http://dx.doi.org/10.1103/physreva.83.053426
http://dx.doi.org/10.1103/physreva.83.053426
http://dx.doi.org/10.1103/physrevlett.101.073002
http://dx.doi.org/10.1103/physrevlett.101.073002
http://dx.doi.org/10.1088/1367-2630/11/10/105032

13

105032 (2009).
[8] D. M. Reich, M. Ndong, and C. P. Koch, The Journal of Chem-

ical Physics 136, 104103 (2012), arXiv:1008.5126.
[9] J. P. Palao and R. Kosloff, Phys. Rev. A 68, 062308+ (2003).

[10] D. Tannor, V. Kazakov, and V. Orlov, in Time-Dependent Quan-
tum Molecular Dynamics, Nato ASI Series, Vol. 299, edited by
J. Broeckhove and L. Lathouwers (Springer US, 1992) pp. 347–
360.

[11] W. Zhu, J. Botina, and H. Rabitz, The Journal of Chemical
Physics 108, 1953 (1998).

[12] W. Zhu and H. Rabitz, The Journal of Chemical Physics 109,
385 (1998).

[13] Y. Ohtsuki, G. Turinici, and H. Rabitz, The Journal of Chemical
Physics 120, 5509 (2004).

[14] Y. Maday and G. Turinici, The Journal of Chemical Physics
118, 8191 (2003).

[15] Y. Ohtsuki, Y. Teranishi, P. Saalfrank, G. Turinici, and H. Rab-
itz, Phys. Rev. A 75, 033407 (2007).

[16] A. Borzı‘, J. Salomon, and S. Volkwein, Journal of Computa-
tional and Applied Mathematics 216, 170 (2008).

[17] P. Ditz and A. Borzi‘, Computer Physics Communications 178,
393 (2008).

[18] S. Haykin, Neural Networks: A Comprehensive Foundation, 1st
ed. (Prentice Hall PTR, Upper Saddle River, NJ, USA, 1994).

[19] R. Hecht-Nielsen, in Neural Networks, 1989. IJCNN., Interna-
tional Joint Conference on (IEEE, 1989) pp. 593–605 vol.1.

[20] K.-S. Oh and K. Jung, Pattern Recognition 37, 1311 (2004).
[21] B. Catanzaro, N. Sundaram, and K. Keutzer, in Proceedings of

the 25th International Conference on Machine Learning, ICML
’08 (ACM, New York, NY, USA, 2008) pp. 104–111.

[22] T. Sharp, in Computer Vision ECCV 2008, Lecture Notes in
Computer Science, Vol. 5305, edited by D. Forsyth, P. Torr, and
A. Zisserman (Springer Berlin Heidelberg, Berlin, Heidelberg,
2008) Chap. 44, pp. 595–608.

[23] R. Raina, A. Madhavan, and A. Y. Ng, in Proceedings of the
26th Annual International Conference on Machine Learning,
ICML ’09 (ACM, New York, NY, USA, 2009) pp. 873–880.

[24] D. Steinkraus, I. Buck, and P. Y. Simard, in Eighth Interna-
tional Conference on Document Analysis and Recognition (IC-
DAR'05), ICDAR ’05 (IEEE, Washington, DC, USA,
2005) pp. 1115–1120 Vol. 2.

[25] B. Block, P. Virnau, and T. Preis, Computer Physics Commu-
nications 181, 1549 (2010).

[26] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi,
Computer Physics Communications 181, 1517 (2010).

[27] K. A. Wilkinson, P. Sherwood, M. F. Guest, and K. J. Naidoo,
Journal of computational chemistry 32, 2313 (2011).

[28] I. S. Ufimtsev and T. J. Martinez, Computing in Science & En-
gineering 10, 26 (2008).

[29] L. Vogt, R. Olivares-Amaya, S. Kermes, Y. Shao, C. Amador-
Bedolla, and A. Aspuru-Guzik, The Journal of Physical Chem-
istry A 112, 2049 (2008).

[30] R. Olivares-Amaya, M. A. Watson, R. G. Edgar, L. Vogt,
Y. Shao, and A. Aspuru-Guzik, Journal of chemical theory and
computation 6, 135 (2009).

[31] Z. Hou, H.-S. Zhong, Y. Tian, D. Dong, B. Qi, L. Li, Y. Wang,
F. Nori, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, New Journal of
Physics 18, 083036 (2016).

[32] X. Cui, Y. Chen, and H. Mei, in Parallel and Distributed Sys-
tems (ICPADS), 2009 15th International Conference on (IEEE,
Washington, DC, USA, 2009) pp. 42–48.

[33] K. Fatahalian, J. Sugerman, and P. Hanrahan, in Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, HWWS ’04 (ACM, New York, NY, USA,

2004) pp. 133–137.
[34] A. D. Córcoles, E. Magesan, S. J. Srinivasan, A. W. Cross,

M. Steffen, J. M. Gambetta, and J. M. Chow, Nature Com-
munications 6, 6979 (2015).

[35] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman,
K. Wright, and C. Monroe, Nature 536, 63 (2016).

[36] J. Kelly et al., Nature 519, 66 (2015).
[37] M8196A 92 GSa/s Arbitrary Waveform Generators — Keysight

(formerly Agilent’s Electronic Measurement) (2016).
[38] J. R. Johansson, P. D. Nation, and F. Nori, Computer Physics

Communications 183, 1760 (2012), arXiv:1110.0573.
[39] J. R. Johansson, P. D. Nation, and F. Nori, Computer Physics

Communications 184, 1234 (2013).
[40] S. Machnes, U. Sander, S. J. Glaser, P. de Fouquières,

A. Gruslys, S. Schirmer, and T. Schulte-Herbrüggen, Phys.
Rev. A 84, 022305 (2011).

[41] H. J. Hogben, M. Krzystyniak, G. T. P. Charnock, P. J. Hore,
and I. Kuprov, Journal of Magnetic Resonance 208, 179 (2011).

[42] Z. Tošner, T. Vosegaard, C. Kehlet, N. Khaneja, S. J. Glaser,
and N. C. Nielsen, Journal of Magnetic Resonance 197, 120
(2009).

[43] T. W. Borneman, M. D. Hürlimann, and D. G. Cory, Journal of
Magnetic Resonance 207, 220 (2010).

[44] A. Spörl, T. Schulte-Herbrüggen, S. J. Glaser, V. Bergholm,
M. J. Storcz, J. Ferber, and F. K. Wilhelm, Phys. Rev. A 75,
012302 (2007).

[45] P. Rebentrost and F. K. Wilhelm, Phys. Rev. B 79, 060507
(2009).

[46] V. Nebendahl, H. Häffner, and C. F. Roos, Phys. Rev. A 79,
012312 (2009).

[47] J. Kelly et al., Phys. Rev. Lett. 112, 240504 (2014).
[48] S. Machnes, D. J. Tannor, F. K. Wilhelm, and E. Assémat,

“Gradient optimization of analytic controls: the route to high
accuracy quantum optimal control,” (2015), arXiv:1507.04261.

[49] D. J. Egger and F. K. Wilhelm, Superconductor Science and
Technology 27, 014001+ (2014).

[50] P. J. Liebermann and F. K. Wilhelm, Phys. Rev. Applied 6,
024022+ (2016).

[51] P. Rebentrost, I. Serban, T. Schulte-Herbrüggen, and F. K. Wil-
helm, Phys. Rev. Lett. 102, 090401 (2009).

[52] D. J. Egger and F. K. Wilhelm, Phys. Rev. Lett. 112, 240503+
(2014).

[53] R. L. Kosut, M. D. Grace, and C. Brif, Phys. Rev. A 88, 052326
(2013).

[54] F. Dolde et al., Nature Communications 5 (2014),
10.1038/ncomms4371.

[55] F. Platzer, F. Mintert, and A. Buchleitner, Phys. Rev. Lett. 105,
020501 (2010).

[56] P. Watts, J. Vala, M. M. Müller, T. Calarco, K. B. Whaley, D. M.
Reich, M. H. Goerz, and C. P. Koch, Phys. Rev. A 91, 062306+
(2015).

[57] M. H. Goerz, G. Gualdi, D. M. Reich, C. P. Koch, F. Mot-
zoi, K. B. Whaley, J. Vala, M. M. Müller, S. Montangero, and
T. Calarco, Phys. Rev. A 91, 062307+ (2015).

[58] M. H. Goerz, F. Motzoi, K. B. Whaley, and C. P. Koch, “Chart-
ing the circuit QED design landscape using optimal control the-
ory,” (2016), arXiv:1606.08825.

[59] T. E. Skinner, T. O. Reiss, B. Luy, N. Khaneja, and S. J. Glaser,
Journal of magnetic resonance (San Diego, Calif. : 1997) 167,
68 (2004).

[60] K. Kobzar, T. E. Skinner, N. Khaneja, S. J. Glaser, and B. Luy,
Journal of Magnetic Resonance 170, 236 (2004).

[61] K. Kobzar, T. E. Skinner, N. Khaneja, S. J. Glaser, and B. Luy,
Journal of Magnetic Resonance 194, 58 (2008).

http://dx.doi.org/10.1088/1367-2630/11/10/105032
http://dx.doi.org/10.1063/1.3691827
http://dx.doi.org/10.1063/1.3691827
http://arxiv.org/abs/1008.5126
http://dx.doi.org/10.1103/physreva.68.062308
http://dx.doi.org/10.1007/978-1-4899-2326-4_24
http://dx.doi.org/10.1007/978-1-4899-2326-4_24
http://dx.doi.org/10.1063/1.475576
http://dx.doi.org/10.1063/1.475576
http://dx.doi.org/10.1063/1.476575
http://dx.doi.org/10.1063/1.476575
http://dx.doi.org/10.1063/1.1650297
http://dx.doi.org/10.1063/1.1650297
http://dx.doi.org/10.1063/1.1564043
http://dx.doi.org/10.1063/1.1564043
http://dx.doi.org/ 10.1103/physreva.75.033407
http://dx.doi.org/10.1016/j.cam.2007.04.029
http://dx.doi.org/10.1016/j.cam.2007.04.029
http://dx.doi.org/10.1016/j.cpc.2007.09.007
http://dx.doi.org/10.1016/j.cpc.2007.09.007
http://portal.acm.org/citation.cfm?id=541500
http://dx.doi.org/10.1109/ijcnn.1989.118638
http://dx.doi.org/10.1109/ijcnn.1989.118638
http://dx.doi.org/10.1016/j.patcog.2004.01.013
http://dx.doi.org/10.1145/1390156.1390170
http://dx.doi.org/10.1145/1390156.1390170
http://dx.doi.org/10.1007/978-3-540-88693-8_44
http://dx.doi.org/10.1145/1553374.1553486
http://dx.doi.org/10.1145/1553374.1553486
http://dx.doi.org/10.1109/icdar.2005.251
http://dx.doi.org/10.1109/icdar.2005.251
http://dx.doi.org/10.1109/icdar.2005.251
http://dx.doi.org/10.1016/j.cpc.2010.05.005
http://dx.doi.org/10.1016/j.cpc.2010.05.005
http://dx.doi.org/ 10.1016/j.cpc.2010.05.002
http://view.ncbi.nlm.nih.gov/pubmed/21541963
http://stacks.iop.org/1367-2630/18/i=8/a=083036
http://stacks.iop.org/1367-2630/18/i=8/a=083036
http://dx.doi.org/10.1109/icpads.2009.8
http://dx.doi.org/10.1109/icpads.2009.8
http://dx.doi.org/10.1145/1058129.1058148
http://dx.doi.org/10.1145/1058129.1058148
http://dx.doi.org/10.1145/1058129.1058148
http://dx.doi.org/10.1038/ncomms7979
http://dx.doi.org/10.1038/ncomms7979
http://dx.doi.org/ 10.1038/nature18648
http://dx.doi.org/10.1038/nature14270
http://www.keysight.com/en/pd-2583267-pn-M8196A/92-gsa-s-arbitrary-waveform-generators?nid=-32928.1139580&cc=US&
http://www.keysight.com/en/pd-2583267-pn-M8196A/92-gsa-s-arbitrary-waveform-generators?nid=-32928.1139580&cc=US&
http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://arxiv.org/abs/1110.0573
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/ 10.1103/physreva.84.022305
http://dx.doi.org/ 10.1103/physreva.84.022305
http://dx.doi.org/10.1016/j.jmr.2010.11.008
http://dx.doi.org/ 10.1016/j.jmr.2008.11.020
http://dx.doi.org/ 10.1016/j.jmr.2008.11.020
http://dx.doi.org/10.1016/j.jmr.2010.09.003
http://dx.doi.org/10.1016/j.jmr.2010.09.003
http://dx.doi.org/10.1103/physreva.75.012302
http://dx.doi.org/10.1103/physreva.75.012302
http://dx.doi.org/10.1103/physrevb.79.060507
http://dx.doi.org/10.1103/physrevb.79.060507
http://dx.doi.org/10.1103/physreva.79.012312
http://dx.doi.org/10.1103/physreva.79.012312
http://dx.doi.org/10.1103/physrevlett.112.240504
http://arxiv.org/abs/1507.04261
http://arxiv.org/abs/1507.04261
http://arxiv.org/abs/1507.04261
http://dx.doi.org/10.1088/0953-2048/27/1/014001
http://dx.doi.org/10.1088/0953-2048/27/1/014001
http://dx.doi.org/10.1103/physrevapplied.6.024022
http://dx.doi.org/10.1103/physrevapplied.6.024022
http://dx.doi.org/10.1103/physrevlett.102.090401
http://dx.doi.org/10.1103/physrevlett.112.240503
http://dx.doi.org/10.1103/physrevlett.112.240503
http://dx.doi.org/10.1103/physreva.88.052326
http://dx.doi.org/10.1103/physreva.88.052326
http://dx.doi.org/10.1038/ncomms4371
http://dx.doi.org/10.1038/ncomms4371
http://dx.doi.org/10.1103/physrevlett.105.020501
http://dx.doi.org/10.1103/physrevlett.105.020501
http://dx.doi.org/ 10.1103/physreva.91.062306
http://dx.doi.org/ 10.1103/physreva.91.062306
http://dx.doi.org/10.1103/physreva.91.062307
http://arxiv.org/abs/1606.08825
http://arxiv.org/abs/1606.08825
http://arxiv.org/abs/1606.08825
http://arxiv.org/abs/1606.08825
http://view.ncbi.nlm.nih.gov/pubmed/14987600
http://view.ncbi.nlm.nih.gov/pubmed/14987600
http://dx.doi.org/ 10.1016/j.jmr.2004.06.017
http://dx.doi.org/ 10.1016/j.jmr.2008.05.023

14

[62] F. Motzoi, J. M. Gambetta, S. T. Merkel, and F. K. Wilhelm,
Phys. Rev. A 84, 022307 (2011), arXiv:1102.0584.

[63] Q. M. Chen, R. B. Wu, T. M. Zhang, and H. Rabitz, Phys. Rev.
A 92, 063415 (2015).

[64] I. Serban, J. Werschnik, and E. K. U. Gross, Phys. Rev. A 71,
053810 (2005).

[65] M. Bartholomew-Biggs, S. Brown, B. Christianson, and
L. Dixon, Journal of Computational and Applied Mathematics
124, 171 (2000).

[66] R. E. Wengert, Commun. ACM 7, 463 (1964).
[67] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H.

Devoret, and R. J. Schoelkopf, “Implementing a Universal Gate
Set on a Logical Qubit Encoded in an Oscillator,” (2016),
arXiv:1608.02430.

[68] J. D. Farnum and D. A. Mazziotti, Chemical Physics Letters
416, 142 (2005).

[69] J. P. Palao, R. Kosloff, and C. P. Koch, Phys. Rev. A 77, 063412
(2008).

[70] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schus-
ter, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and
R. J. Schoelkopf, Phys. Rev. A 76, 042319 (2007), arXiv:cond-
mat/0703002.pdf.

[71] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret,
Science 326, 113 (2009), arXiv:0906.0831.pdf.

[72] M. Abadi et al., “TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems,” (2016),
arXiv:1603.04467.

[73] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, SIAM J. Sci. Com-
put. 16, 1190 (1995).

[74] D. Kingma and J. Ba, “Adam: A Method for Stochastic Opti-
mization,” (2015), arXiv:1412.6980.

[75] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M.

Siskind, “Automatic differentiation in machine learning: a sur-
vey,” (2015), arXiv:1502.05767.

[76] C. Moler and C. Van Loan, SIAM Review 45, 3 (2006).
[77] M. Arioli, B. Codenotti, and C. Fassino, Linear Algebra and its

Applications 240, 111 (1996).
[78] W. J. Cody, G. Meinardus, and R. S. Varga, Journal of Approx-

imation Theory 2, 50 (1969).
[79] A. Jameson, W. Schmidt, and E. Turkel, in 14th fluid and

plasma dynamics conference (1981) p. 1259.
[80] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D.

Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. Ham-
marlund, R. Singhal, and P. Dubey, SIGARCH Comput. Archit.
News 38, 451 (2010).

[81] R. B. Sidje, ACM Trans. Math. Softw. 24, 130 (1998).
[82] Theano Development Team, arXiv e-prints abs/1605.02688

(2016).
[83] N. Bell and M. Garland, Efficient Sparse Matrix-Vector Multi-

plication on CUDA, NVIDIA Technical Report NVR-2008-004
(NVIDIA Corporation, 2008).

[84] W. Liu and B. Vinter, in 2014 IEEE 28th International Parallel
and Distributed Processing Symposium (IEEE, 2014) pp. 370–
381.

[85] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J.
Schoelkopf, L. Jiang, and M. H. Devoret, New Journal of
Physics 16, 045014+ (2013), arXiv:1312.2017.

[86] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frun-
zio, S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J.
Schoelkopf, Science 342, 607 (2013).

[87] D. C. McKay, R. Naik, P. Reinhold, L. S. Bishop, and D. I.
Schuster, Phys. Rev. Lett. 114, 080501+ (2015).

[88] A cost function for reducing evolution time (C7) was not in-
cluded in this example.

http://dx.doi.org/10.1103/physreva.84.022307
http://arxiv.org/abs/1102.0584
http://dx.doi.org/10.1103/physreva.92.063415
http://dx.doi.org/10.1103/physreva.92.063415
http://dx.doi.org/10.1103/physreva.71.053810
http://dx.doi.org/10.1103/physreva.71.053810
http://dx.doi.org/10.1016/s0377-0427(00)00422-2
http://dx.doi.org/10.1016/s0377-0427(00)00422-2
http://dx.doi.org/10.1145/355586.364791
http://arxiv.org/abs/1608.02430
http://arxiv.org/abs/1608.02430
http://arxiv.org/abs/1608.02430
http://dx.doi.org/10.1016/j.cplett.2005.09.062
http://dx.doi.org/10.1016/j.cplett.2005.09.062
http://dx.doi.org/10.1103/physreva.77.063412
http://dx.doi.org/10.1103/physreva.77.063412
http://dx.doi.org/10.1103/physreva.76.042319
http://arxiv.org/abs/cond-mat/0703002.pdf
http://arxiv.org/abs/cond-mat/0703002.pdf
http://dx.doi.org/10.1126/science.1175552
http://arxiv.org/abs/0906.0831.pdf
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://dx.doi.org/ 10.1137/0916069
http://dx.doi.org/ 10.1137/0916069
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1502.05767
http://arxiv.org/abs/1502.05767
http://arxiv.org/abs/1502.05767
http://epubs.siam.org/doi/abs/10.1137/S00361445024180
http://dx.doi.org/10.1016/0024-3795(94)00190-1
http://dx.doi.org/10.1016/0024-3795(94)00190-1
http://dx.doi.org/10.1016/0021-9045(69)90030-6
http://dx.doi.org/10.1016/0021-9045(69)90030-6
http://dx.doi.org/ 10.1145/1816038.1816021
http://dx.doi.org/ 10.1145/1816038.1816021
http://dx.doi.org/10.1145/285861.285868
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://dx.doi.org/10.1109/ipdps.2014.47
http://dx.doi.org/10.1109/ipdps.2014.47
http://dx.doi.org/ 10.1088/1367-2630/16/4/045014
http://dx.doi.org/ 10.1088/1367-2630/16/4/045014
http://arxiv.org/abs/1312.2017
http://dx.doi.org/ 10.1126/science.1243289
http://dx.doi.org/ 10.1103/physrevlett.114.080501

	Speedup for quantum optimal control from GPU-based automatic differentiation
	Abstract
	Introduction
	Theory
	Important types of cost function contributions
	Gradient evaluation

	Implementation
	Performance Benchmarking
	Showcase Applications
	CNOT gate for two transmon qubits
	Reducing duration of |0"526930B to |1"526930B state transfer
	Generating photonic Schrödinger cat states
	Hadamard transform and GHZ state preparation

	Conclusion
	Acknowledgments
	Analytical gradients and algorithms
	Gradient for C1: target-gate infidelity
	Gradient for C2: target-state infidelity
	Gradient for C5: occupation of forbidden state
	Summary

	References

