
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Hybrid quantum-classical hierarchy for mitigation of
decoherence and determination of excited states

Jarrod R. McClean, Mollie E. Kimchi-Schwartz, Jonathan Carter, and Wibe A. de Jong
Phys. Rev. A 95, 042308 — Published  6 April 2017

DOI: 10.1103/PhysRevA.95.042308

http://dx.doi.org/10.1103/PhysRevA.95.042308


Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and
Determination of Excited States

Jarrod R. McClean,1, ∗ Mollie E. Kimchi-Schwartz,2 Jonathan Carter,1 and Wibe A. de Jong1

1Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Quantum Nanoelectronics Laboratory, Department of Physics,
University of California, Berkeley, Berkeley, CA 94720, USA

Using quantum devices supported by classical computational resources is a promising approach to
quantum-enabled computation. One powerful example of such a hybrid quantum-classical approach
optimized for classically intractable eigenvalue problems is the variational quantum eigensolver
(VQE), built to utilize quantum resources for the solution of eigenvalue problems and optimizations
with minimal coherence time requirements by leveraging classical computational resources. These
algorithms have been placed as leaders among the candidates for the first to achieve supremacy over
classical computation. Here, we provide evidence for the conjecture that variational approaches can
automatically suppress even non-systematic decoherence errors by introducing an exactly solvable
channel model of variational state preparation. Moreover, we develop a more general hierarchy of
measurement and classical computation that allows one to obtain increasingly accurate solutions
by leveraging additional measurements and classical resources. We demonstrate numerically on a
sample electronic system that this method both allows for the accurate determination of excited
electronic states as well as reduces the impact of decoherence, without using any additional quantum
coherence time or formal error correction codes.

A. Introduction

First conceived of by Richard Feynman [1], quantum
computers have the potential to offer radical advances in
solving important problems ranging from optimization
and eigenvalue problems to materials design. One prob-
lem of particular interest is that of quantum chemistry,
where quantum computers have the potential to offer an
exponential speedup in the determination of physical and
chemical properties [2–4]. This problem has received at-
tention both because of its great practical utility, and
because it is believed that it may be one of the first
approaches to demonstrate the superiority of a quan-
tum computer over currently available classical comput-
ers [5, 6].

Recently, there have been a number of advances in
quantum chemistry on quantum computers both algo-
rithmically and technologically. The original approaches
utilized the quantum phase estimation (QPE) algo-
rithm [7–9] and analyzed the use of adiabatic state prepa-
ration in chemical problems [2, 10–14]. Prototype im-
plementations of several QPE-like algorithms have now
been verified in the lab [15–20]. However, despite signifi-
cant developments in quantum hardware across a variety
of platforms, many of these algorithms cannot be run on
current or near-future technology with sufficient accuracy
to reproduce and predict even simple chemical properties.
This is a result of the strict coherence time limitations
of some algorithmic implementations [21], which can be
several orders of magnitude larger than the capabilities
of current hardware.

A hybrid quantum-classical approach was developed to
overcome these decoherence limitations [18, 22]. Hybrid
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FIG. 1. A cartoon schematic of the quantum subspace expan-
sion proposed in this work. One prepares a quantum state |Ψ〉
that is passed through a quantum channel. At the exit of the
channel, partial tomography of the state is used to expand in
a linear subspace around the resulting quantum state. This
subspace is used to determine both the ground and excited
states of a quantum Hamiltonian of interest while also poten-
tially correcting for errors caused by the quantum channel.

algorithms rely on quantum processors only for specific
tasks that have a strong comparative advantage in the
quantum domain. Specifically, and critically, they are
purposefully designed to require coherent quantum su-
perpositions for minimal total operation time, thus re-
ducing the overall impact of decoherence on the algo-
rithm. Hybrid quantum-classical variational approaches
work analogously to classical variational approaches, by
preparing a parameterized ansatz on the quantum device
and minimizing the energy with respect to the parame-
ters. The use of a quantum device expands the classes
of states one may explore, including many which are be-
lieved to be classically intractable to model. This ap-
proach does not require previous knowledge of the to-
tal quantum state - even a parametrized set of a priori
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unknown unitary rotations are in many cases sufficient,
provided that the unitaries contain some entangling ele-
ments. Since this approach was introduced, it has been
expanded and enhanced theoretically both in the gen-
eral sense [5, 10, 22] and for specific use with ion trap
quantum computers [23]. Recently, variants using a simi-
lar approach for thermodynamic properties and extended
systems have also appeared [24, 25].

The robustness and resource adaptive nature of this
approach places it as a strong contender for the first al-
gorithm to surpass the capabilities of a classical com-
puter. This crossover could occur on a pre-threshold
or minimally error corrected quantum device, making it
a near-term technological possibility [22]. This conjec-
ture is supported by recent experimental work comparing
the performance of quantum phase estimation with vari-
ational approaches on super- conducting qubits, which
showed that variational methods have distinct advan-
tages in practice today [21]. The first algorithm to pro-
vide a clear, demonstrable advantage in experiments over
the best classical alternatives will have enormous conse-
quences, and even more so if that application is indus-
trially or societally relevant, as in the case of chemistry.
Error resistant algorithms speed the technological path
to quantum supremacy, and therefore are critically im-
portant at this juncture in the technology as the field
moves from proof-of-principle experiments toward more
complex tasks. To date however, no theoretical stud-
ies have addressed these algorithms specifically in the
presence of noise, nor have they introduced a practical
method for leveraging their robustness for states other
than the ground state. Furthermore, current known
methods for preparing excited states are restricted to
adiabatic preparation of excited states, which suffer from
prohibitive coherence time requirements, or folded spec-
trum approaches which are prohibitively expensive from
both a measurement and optimization perspective.

In this work, we make two important strides forward
by showing that the robustness to errors holds in a
parameterization-independent model of these variational
algorithms in non-ideal conditions and extend results to
excited states with no additional coherence time costs.
We do so by developing a new model of variational state
preparation in the presence of noise, termed the varia-
tional channel state (VCS) model. We then introduce
a new method we term a Quantum Subspace Expansion
(QSE) requiring only a polynomial amount of additional
measurements and classical computation that both miti-
gates the effect of decoherence and provides approxima-
tions to electronic excited states. This approach is placed
within a more general hierarchy of quantum and classi-
cal computation that further elucidates the connection
between these two types of computational resources. Fi-
nally, the performance of these methods is demonstrated
numerically on a simple example electronic system and
the outlook of such methods are discussed.

B. Quantum Chemistry

The electronic structure problem is a problem of great
interest due both to its ability to accurately model real
molecules from first principles and the potential of quan-
tum computers to greatly accelerate finding its solutions.
Here we provide background on this topic and its map-
ping to quantum computers to make the exposition self-
contained. The problem is defined by the electronic
eigenstates of a fixed nuclear configuration with positions
and charges Ri and Zi with a fixed number of electrons
Ne. Under the Born-Oppenheimer approximation, the
non-relativistic Hamiltonian governing the interactions
is given by

H = −
∑
i

∇2
ri

2
−
∑
i,j

Zi
|Ri − rj |

+
∑
i,j>i

ZiZj
|Ri −Rj |

+
∑
i,j>i

1

|ri − rj |
(1)

in atomic units, and Ri are nuclear positions, ri elec-
tronic positions, and Mi are nuclear masses. This real-
space representation where fermion anti-symmetry may
be enforced in the solutions is called the first-quantized
representation. While progress has been made in solving
the first-quantized problem on a quantum computer [26–
30], in this work we will focus on the case where the
solution is projected into a finite orthonormal basis and
anti-symmetry is enforced through the operators, also
known as the second quantized approach [31]. In this
approach, the Hamiltonian is given by

H =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

hpqrsa
†
pa
†
qaras (2)

where the coefficients are determined by the integrals
over the chosen finite basis as

hpq =

∫
dσ ϕ∗p(σ)

(
−∇2

r

2
−
∑
i

Zi
|Ri − r|

)
ϕq(σ) (3)

hpqrs =

∫
dσ1 dσ2

ϕ∗p(σ1)ϕ∗q(σ2)ϕs(σ1)ϕr(σ2)

|r1 − r2|
(4)

where ϕi are spin-orbitals and σi are the spatial and spin
degrees of freedom of an electron as σi = (ri, si). The

operators a†i and ai obey the standard fermion commu-
tation relations as

{a†p, ar} ≡ a†par + ara
†
p = δp,r (5)

{a†p, a†r} = {ap, ar} = 0. (6)

In quantum computing, one must represent anti-
symmetric fermions by distinguishable qubits. At least
two isomorphisms are known for accomplishing this,
namely the Jordan-Wigner [32, 33] and Bravyi-Kitaev
transformations [34–36]. Each of these approaches have
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their tradeoffs in implementation, but in this work we
will use the Jordan-Wigner transformation defined by

a†p = (
∏

m<p
σzm)σ+

p (7)

ap = (
∏

m<p
σzm)σ−p (8)

σ± ≡ (σx ∓ iσy) /2 (9)

This encoding allows one to express the second-quantized
Hamiltonian entirely in terms of tensor products of Pauli
operators. Moreover, this transformation leaves the num-
ber of terms the same up to a constant factor, and may
be used to derive the Pauli representation of any desired
fermion operator.

One practical property to note with regards to this
mapping is that it encodes all particle number manifolds.
That is, the quantum chemistry Hamiltonian commutes

with the number operator N =
∑
i a
†
iai, such that the

number of electrons is a good quantum number. Equiva-
lently, the Hamiltonian can be decomposed into a block
diagonal representation where different number states are
uncoupled. Using this symmetry classically allows one
to remain in the desired number manifold at all times.
However, on a quantum device, the plethora of unphys-
ical excited states can pollute the spectrum as a result
of this wasteful encoding. While some approaches have
been developed to project out only the correct states at
the operator level [37], provably polynomial methods for
doing this are still under development. We explore in the
body of this work how these unphysical excited states
may enter in practice, and show how they can be tem-
pered using the extra structure in our method.

C. Hybrid Quantum-Classical Variational
Approach

Quantum phase estimation provided the first demon-
stration that quantum computers could aid in the solu-
tion of electronic structure problems for quantum chem-
istry [2]. However, this approach requires long coherent
sequences of quantum operations that are not easily im-
plemented on current quantum architectures. In order
to study this problem on current and near-future archi-
tectures, a hybrid quantum-classical approach called the
variational quantum eigensolver (VQE) was developed,
which leverages classical computing power alongside the
power of a quantum device to minimize coherence time
requirements. Here we briefly review the parts of this
algorithm relevant to the main body of this work, and
refer readers to the original works for more detailed al-
gorithmic analysis of the original approach [18, 22].

The VQE approach depends on the choice of a state
ansatz parameterized on some set of experimental param-

eters ~θ. These parameters could be used to specify a gate
sequence such as in the unitary coupled cluster or param-
eterized adiabatic state preparation approach [21, 22], or
they could be more directly related to the hardware such

as the angles on beamsplitters as was used in the first
experimental implementation of the algorithm [18]. In
either case, the state that is produced becomes a func-
tion of the discrete set of input parameters, and we may

call the resulting state |Ψ(~θ)〉. The goal of the algorithm

is to find a set of parameters ~θ such that the expecta-
tion value of the energy 〈H〉 is a minimum. That is, we
exploit the Rayleigh-Ritz variational formulation of the
eigenvalue problem [38, 39] such that the best approxi-
mation to the ground state eigenvalue may be found from

min
~θ
〈H〉 (~θ) =

〈Ψ(~θ)|H |Ψ(~θ)〉
〈Ψ(~θ)|Ψ(~θ)〉

. (10)

Generically, the VQE approach can be broken into three

subtasks, namely preparation of |Ψ(~θ)〉, measurement of

〈H〉 (~θ) with respect to |Ψ(~θ)〉, and the update of ~θ based
on the measured values. In this work we focus on how
projective measurement type approaches can be extended
and better utilized.

In particular, we advocate a projective measurement
approach for the determination of the average energy

〈H〉 (~θ) through repeated state preparation and partial
tomography. The specific Pauli measurements one per-
forms following state preparation can be derived from
the mapping from fermionic operators to qubits such as
the JW transformation. That is, without considering po-
tential variance reducing optimizations, the estimator for
our average may be constructed as

〈H〉 (~θ) =
∑
ij

〈a†iaj〉 (~θ) +
1

2

∑
ijkl

hijkl 〈a†ia†jakal〉 (~θ)

(11)

with each average 〈a†iaj〉 (~θ) and 〈a†ia†jakal〉 (~θ) being de-
termined by first mapping the operator to a Pauli string
through the JW transformation, and determining the av-
erage by repeated state preparation and measurement of

the resulting term on the quantum state |Ψ(~θ)〉. The
energy estimator is then evaluated by classically adding
each of the individual estimators along with the weight
factors hijkl. However, as we will emphasize, the in-
formation gained by evaluating the expectation values

〈a†ia†jakal〉 on a quantum state is actually far greater than
simply the energy.

As has been shown previously [22], the minimization
can be modified using penalty terms to enforce certain
constraints on the final solution, similar to other penalty
methods used in quantum computing [40]. This is done
by modifying to Hamiltonian to

H → H +
∑
i

λi(Oi − oi)2 (12)

where Oi and oi are the corresponding symmetry op-
erators and eigenvalues desired. In the limit that the
penalty parameters λi approach infinity, the solutions of
the minimization exactly satisfy the desired symmetry,
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assuming it is possible with the given parameterization
of the wavefunction. In practice finite values of λi are
usually sufficient to satisfy the symmetry to a desired
precision. Of particular interest in this work will be the
spin and number operators S2 and N . We note that if
the symmetry operator is a one-fermion operator such as
the number operator N , then this modification requires
no additional measurements beyond those required for
the original measurements.

D. Quantum Channel State Preparation

To understand the performance of a hybrid quantum-
classical variational approach on a quantum device ex-
periencing interactions with an environment, here we de-
velop a theoretical model of variational state prepara-
tion that we term the variational channel state (VCS)
preparation. Specifically, we define the VCS model as
the preparation of an arbitrary pure state followed by the
action of a quantum channel defined by a set of Kraus
operators [41]. This model is well-suited to the study of
quantum variational algorithms that are designed such
that the computation time is dominated by state prepa-
ration, and the total run time is much smaller than the
coherence time of the device. The purpose of this model
is to allow one to the study the optimal possible per-
formance of quantum-classical variational algorithms in
experiments separate from the considerations of ansatz
choice or experimental protocol.

In this model, the problem to solve is to find the pure
state |Ψ〉 that minimizes the energy given a target Hamil-
tonian H after action by a quantum channel that maps

ρ = |Ψ〉 〈Ψ| → ∑
iKiρK

†
i , where Ki are the Kraus op-

erators defining effective non-unitary actions of a dissi-
pative quantum channel, potentially determined by prior
experiments. We assume that errors in the system are
independent between qubits, and thus the Kraus oper-
ators have efficient local descriptions. While this is not
required for the theory to describe the optimal state un-
der given circumstances, it represents a situation where
one would expect to be able to obtain this information
experimentally in an efficient way. Mathematically we
may state this as choosing the pure state |Ψ〉 that mini-
mizes

Tr

[(∑
i

Ki |Ψ〉 〈Ψ|K†i

)
H

]
. (13)

This problem is equivalent to an eigenvalue problem on

the transformed Hamiltonian H ′ =
∑
iK
†
iHKi (see sup-

plemental materials for a short proof) such that one may
solve

H ′ |Ψ〉 = E |Ψ〉 (14)

for the lowest eigenvalue and eigenvector pair to find the
solution, which both quantifies the optimal performance

of a quantum variational algorithm in these conditions
and determines the input state that achieves this optimal
performance, independent of state parameterization.

In Fig. 2 we use the VCS model to compare the fidelity
of a 4-qubit quantum state representing H2 communi-
cated through several channels with and without varia-
tional optimization, with details of the channels given as
supplemental information. We find that variational opti-
mization in the presence of the channel is able to improve
the fidelity and find decoherence resistant subspaces au-
tomatically in some cases. In the case of the dephasing
channel, the variational algorithm automatically locates
a decoherence free subspace, whereas input of the ideal
solution without variational relaxation (or exact diago-
nalization of the untransformed Hamiltonian, possible in
this case due to the limited number of qubits) in the
presence of the channel degrades in quality. The plot is
shown as a function of R due to the different nature of the
quantum ground state over the course of the dissociation,
which leads to susceptibility to different types of errors.
In particular, as the bond stretches, the required entan-
glement increases, and correspondingly the sensitivity to
dephasing and symmetry breaking.

The discontinuities in the variational curves of Fig. 2
correspond to a spin symmetry breaking in the Hamilto-
nian resulting from an effective interaction induced by the
quantum channel. The nature of these discontinuities is
highlighted by plotting the expected value of S2 for each
of the channels, which is known to be 0 for the exact
ground state. The discontinuous change from a singlet
to a mixed spin state near a triplet correlates exactly with
the kink seen in the curve. This is an instance where the
VCS model has automatically found that triplet states
are naturally more resistant to this type of environmen-
tal noise, resulting in an effective symmetry breaking in
the preferred state. Interestingly, in the case of a purely
dephasing channel in this representation, the spin triplet
state forms an effective decoherence free subspace. Thus
we see that the variational eigensolver is partially self-
correcting in the presence of inevitable qubit decay and
dephasing.

E. Quantum Channels

While the quantum channels used in this work are stan-
dard, for completeness we detail the specific Kraus opera-
tors and channels used in this section as well as our map-
pings between the experimental parameters correspond-
ing to the total experiment time Tp, the decay time T1,
and the dephasing time T2. In particular, we will recall
the Kraus operator definitions for the dephasing, ampli-
tude and phase damping, and depolarizing channel in
terms of these parameters.

One of the simplest quantum channels is the dephas-
ing channel, which is related to the T2 time of quantum
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FIG. 2. The fidelity of the initial and final states as a func-
tion of internuclear distance (R) in H2 after being passed
through three different quantum channels (Ph–Dephasing,
AP–Amplitude and Phasing Damping, Depol–Depolarizing)
improves under variation in the presence of the channel (VCS
solution, solid lines with markers) when compared to the ex-
act less ground state as input (ground state of untransformed
Hamiltonian, markers only). The dotted lines represent the
expected value of S2 for the same color line under the ideal
solution with a channel (solid line). From this, one can see
the kinks correspond precisely to discontinuous changes in the
spin-symmetry. The discontinuities are indicators of locating
a decoherence resistant state that is symmetry broken with
respect to the exact, ideal solution. The channels are charac-
terized by an experiment time Tp relative to coherence time
parameters T1 = T2 = Tdepol time such that Tp/T1 = 0.05.

systems. It has a set of Kraus operators defined by

FP (p̃i)[ρ] =
∑
i

KiρK
†
i (15)

K0 =

√
1.0− p̃i

2
I (16)

K1 =

√
p̃i
2
Z (17)

where Z is the standard Pauli z matrix. The effect of
this map on an arbitrary one-particle density matrix is
given by

FP (p̃i)[ρ] =

(
ρ00 (1− p̃i)ρ01

(1− p̃i)ρ10 ρ11

)
(18)

where we choose the values of p̃i = 1−exp(−Tp/T2) such
that the resulting action on a one qubit density matrix
is given by

FP (p̃i)[ρ] =

(
ρ00 e−Tp/T2ρ01

e−Tp/T2ρ10 ρ11

)
(19)

Another important quantum channel we will consider
in more detail in this work is an amplitude and phase

damping channel applied independently to each qubit
with three input parameters, namely a total time of
state preparation Tp and the qubit decay and dephas-
ing times T1 and T2. Mathematically, we construct the
amplitude and phase damping channels in a Kraus opera-
tors formalism such that the quantum map FAP (pi)[ρ] =
FP (p̃i) [FA(pi)[ρ]] where FA and FP are amplitude and
phase damping operators. FP is defined as above, and
FA is given by

FA(pi)[ρ] =
∑
i

KiρK
†
i (20)

K0 =

(
1 0
0
√

1− pi

)
(21)

K1 =

(
0
√
pi

0 0

)
. (22)

The probabilities are determined by the probability such
an event would have occurred in the preceding gate op-
eration, given some values of T1 and T2.

The effect of the composite map on an arbitrary one-
particle density matrix is given by

FAP (pi)[ρ] =

(
ρ00 + piρ11 (1− p̃i)

√
1− piρ01

(1− p̃i)
√

1− piρ10 (1− pi)ρ11

)
(23)

and the values of pi and p̃i are determined such that

FAP (p̃i)[ρ] =

(
ρ00 + (1− e−Tp/T1)ρ11 e−Tp/T2ρ01

e−Tp/T2ρ10 e−Tp/T1ρ11

)
.

(24)

It’s clear from this construction that the relevant dimen-
sionless parameters that determine performance will be
Tp/T1 and Tp/T2, or the ratios of the state preparation
time to the decay and dephasing time of the qubits.

Finally, we also consider the depolarizing quantum
channel FD that corresponds to uniform contraction of
the Bloch sphere of a qubit, and has corresponding Kraus
operators given by

FD(pi)[ρ] =
∑
i

KiρK
†
i (25)

K0 =
√

1− pi (26)

K1 =

√
pi
3
X (27)

K2 =

√
pi
3
Y (28)

K3 =

√
pi
3
Z (29)

where X, Y , and Z correspond to the standard Pauli
matrices. In the case of the depolarizing channel, we
choose pi = 1− exp(−Tp/T2).

The qualitative effects of a different number of channels
under the VCS model on the electronic ground state of H2
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FIG. 3. The exact solution of the VCS model for the ground
state of H2 is shown for a number of different quantum chan-
nels including amplitude and phase damping (AP), dephasing
only (Ph), and depolarizing noise (Dep). These results are
shown along side both the exact (Ex) ground state, an anti-
symmetric product state approximation (RHF), and the best
solution of a dephasing channel constrained to have correct
spin (S2 = 0). It is seen that dephasing noise is sufficient
to destroy the entanglement required to describe the dissoci-
ated limit, in that the solution without symmetry constraints
obtains an accurate energy, but only by breaking spin symme-
try in an unphysical way, as evidenced by the difference when
compared to the optimal dephasing solution under symme-
try constraints. Other types of noise raise the energy of the
whole curve due to number symmetry breaking. The kink
in the curves without symmetry enforcement results from a
spin symmetry breaking in the variationally optimal solution
in the presence of decohering noise.

in a STO-3G basis are depicted in Fig. 3. In this work, all
channels utilize parameters of (Tp/T1) = (Tp/T2) = 0.05,
or a total gate sequence time corresponding to roughly
5% of an expected coherence time.

F. Quantum Subspace Expansion for Excited
States

We now move on to extensions of the variational
method to the capturing of excited states. To date,
hybrid variational quantum-classical algorithms have fo-
cused on the ground state in ideal conditions, however we
will show that through a straightforward extension of the
original machinery, one may both substantially mitigate
decoherence and obtain excited states. The original VQE
algorithm determines 1- and 2- electron reduced density
matrices (1- and 2-RDM) of the system from which static
properties of the chemical or material can be determined
without any additional quantum experiments. The 1-
and 2- electron reduced density matrices for fermionic

FIG. 4. A cartoon schematic of the basis hierarchy obtained
from expanding about the VQE solution reference. At k = 1
one has the linear response (LR) subspace and at k = 2 one
has the the quadratic response (QR) space continuing to k =
Ne where one spans the entire subspace corresponding to the
particle number of the reference state.

systems are defined as

1Di
k = 〈Ψ| a†iak |Ψ〉 = Tr[a†iakρ] (30)

2Dij
kl =

1

2
〈Ψ| a†ia†jalak |Ψ〉 =

1

2
Tr[a†ia

†
jalakρ] (31)

where here a†i and ai are fermionic creation and annihi-
lation operators acting on spin-orbitals or a generic lat-
tice and ρ = |Ψ〉 〈Ψ| but may represent a more general
mixed quantum state ρ. The average energy is obviously
expressible as the following contraction once the 1- and
2-RDM are determined

〈H〉 =
∑
ik

hik
(

1Di
k

)
+
∑
ijkl

hijkl

(
2Dij

lk

)
. (32)

Extending this idea, we now develop a method that re-
quires only a polynomial number of additional measure-
ments to determine the 3- and 4-RDM of the system (see
supplemental information for explicit matrix elements),
from which excited state energies and properties can be
determined. More explicitly, we expand about the refer-
ence |Ψ〉 to form a linear subspace spanned by the vectors

a†iaj |Ψ〉 . (33)

The justification for including these particular states is
that they are the dominant contribution in a linear re-
sponse (LR) theory of local time-dependent perturba-
tions to the system [42]. This expansion is commonly
referred to within the quantum chemistry community as
a configuration interactions singles (CIS) expansion [31].
This choice targets excited states within the lowest-lying
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FIG. 5. The energy of different electronic states as a func-
tion of internuclear separation for the H2 molecule in a mini-
mal STO-6G basis, encoded into qubits by the Jordan-Wigner
mapping. Both the entire exact spectrum is shown with dot-
dashed lines, as well as the exact spectrum restricted to a
neutral molecule (Ne = 2). The blue dotted lines depict only
ionic Ne 6= 2 states that are not the focus in this study. This
depicts the volume of states in an näıve mapping that must
be avoided to capture physical solutions. In this case the lin-
ear response (LR) approximation from an exact reference is
sufficient to capture exactly the excited states with the cor-
rect number symmetry, as the excitation operators conserve
the number from the exact reference state.

energy manifolds, as the energy of the system is related
in many cases to the number of excitations of the refer-
ence system. These states make dominant contributions
to the photochemistry and photophysics for systems of
interest.

In this linear subspace, the optimal solution within this
subspace can be found by solving the generalized eigen-
value problem

HLRC = SLRCE (34)

for the ground and excited states, where HLR is the
Hamiltonian in this subspace, SLR is the overlap ma-
trix, E is the diagonal matrix of eigenvalues and C is
the matrix of eigenvectors. One may continue to ex-
pand the subspace about the reference to an arbitrary
order. In quantum chemistry these orders are enumer-
ated by the number of excitations away from the ground
state in a configuration interaction expansion, such as
configuration interaction with single and double excita-
tions (CISD). This forms a natural hierarchy of subspaces
built from the quantum reference state with bases

Bkf = {a†i1aj1a
†
i2
aj2 . . . a

†
ik
ajk |Ψ〉 | ik, jk ∈ [1,M ]}. (35)

where B1
f is clearly the linear response space above, with

more and more of the space being spanned until k = Ne

and BNe

f spans the entire Ne-Fermion space. At this
point, the classical diagonalization is equivalent to clas-
sical exact diagonalization and provides an exact result
but has a computational cost that scales exponentially
in the size of the system. While exact diagonalization
is not advantageous from a complexity point of view, at
fixed levels of the hierarchy before this, one efficiently
determines a result that is difficult to obtain classically
by virtue of the difficulty of preparing and manipulat-
ing |Ψ〉 and attains more information from |Ψ〉 from only
additional measurements and classical computation. We
refer to this approach generically as fermionic quantum
subspace expansion (QSE). A cartoon schematic of this
work is depicted in Fig. 1, where the effect of a quan-
tum channel contracts an ideal pure state, and expanding
about the result allows one to compensate for the effect
of the dissipative channel while also capturing additional
information with the structure of the linear subspace.

G. Symmetries in the subspace

One advantage of the QSE approach is that the addi-
tional structure of the linear subspace allows one to ex-
actly enforce symmetries. As discussed in the body of the
text, with this representation of the operator and overlap
in this linear subspace, the optimal solution within this
subspace can be found by solving the generalized eigen-
value problem

HLRC = SLRCE. (36)

Expanding the problem into a linear subspace also al-
lows the use of additional analysis and solution tools.
One tool of great practical is the ability to enforce par-
ticular symmetries in this linear subspace. For example,
in the JW encoding of the quantum chemistry Hamilto-
nian, all number states from Ne = 0 to M are encoded,
however often only a particular number state is of phys-
ical interest. The non-linear penalty method introduced
for the VQE is one way to enforce this symmetry on the
reference, however it can be prohibitively expensive and
also may not generalize well to excited states if they are
of a different symmetry than the ground state. An exam-
ple of this is when the ground state is known to be a spin
singlet while excited states of interest are spin triplets.

To enforce desired symmetries in the linear subspace,
one first constructs the matrix representation of both the
Hamiltonian and the symmetry operator O in the lin-
ear response subspace as was done for the Hamiltonian.
General expressions for these expansions are given later
in the supplemental information. The eigenvectors cor-
responding to the desired symmetry eigenvalues of OLR

may then be used to project the Hamiltonian into a par-
ticular symmetry subspace, where a subsequent diagonal-
ization yields the optimal solution subject to the symme-
try constraint.
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H. Spin Quantum Subspace Expansion

While the fermionic specification of the quantum sub-
space expansion (QSE) is of great interest for the study
chemistry and materials, it is valuable to consider such
expansions at the level of qubits as well. Moreover, be-
fore using a quantum device, fermionic problems are first
mapped to qubit systems where similar considerations
will apply. Given a quantum state of N qubits |Ψ〉, we
can define a qubit QSE about that state as

Bkq =
{
σα1
i1
σα2
i2
. . . σαk

ik
|Ψ〉 | αi ∈ [I,X, Y, Z]

}
(37)

where an operator σαi is Pauli operator acting on qubit
i and α identifies if the operator is I, X, Y , or Z. This
hierarchy expands in a basis that has low Hamming dis-
tance (or number of spins different) from the original
state. Whether this constitutes a good approximation
hierarchy will depend on this problem of interest, and
indeed hierarchies should be based on the interactions
the problems are likely to experience. However, low or-
der truncations of this hierarchy play an interesting role
with respect to error suppression.

Specifically, imagine that after preparation of |Ψ〉 the
state is passed through a channel in which one if its
spins is acted upon by a Pauli error operator such as
X1. By expanding in B1

q , the original desired state is
contained within the subspace, and the error can be cor-
rected exactly through the solution of the linear eigen-
value problem on B1

q . More generically, k qubit errors
can be mitigated by solving the problem in the subspace
Bkq , requiring again, only additional measurements and
classical computation. This is especially appealing for
pre-threshold devices and those with minimal error cor-
rection, as it utilizes classical computation to extend the
capabilities of the quantum device. Our numerical work
exclusively focuses on the performance of error supres-
sion in fermionic QSE in this work, leaving more general
expansions as a subject of future research.

I. Linear Response Representations from RDMs

In this short section we explicitly construct the repre-
sentations of one- and two-body fermion operators in the
linear response subspace from the reduced density ma-
trices of the system. The reduced density matrices are
defined as

kDi1i2...ik
j1j2...jk

=
1

k!
〈Ψ| a†i1a

†
i2
...a†ikajkajk−1

...aj1 |Ψ〉

=
1

k!
Tr[a†i1a

†
i2
...a†ikajkajk−1

...aj1ρ] (38)

where we call kD the k fermion reduced density matrix
or k−RDM. We will examine matrix elements that cou-
ple the reference state |Ψ〉 denoted by index g and the
linear response space. For any operator O, these matrix

elements are defined as

Oijg = 〈Ψ| (a†iaj)†O |Ψ〉 = Tr[(a†iaj)
†Oρ] (39)

Oijkl = 〈Ψ| (a†iaj)†Oa†kal |Ψ〉 = Tr[(a†iaj)
†Oa†kalρ] (40)

A crucial factor in all the above calculations is the overlap
operator or metric S, which in the linear subspace of ρ is
given by

Sijg = 1Dj
i (41)

Sijkl = δik
1Dj

l − 2 2Djk
li . (42)

One-electron operators F =
∑
pr a
†
par have the following

matrix elements

F ijg =
∑
pr

[
δip

1Dj
r − 2 2Djp

ri

]
(43)

F ijkl =
∑
pr

[
−2δik

2Djp
rl + δipδkr

1Dj
l + 2δip

2Djk
rl

−2δkr
2Djp

li − 6 3Djkp
rli

]
. (44)

Two-body operators V =
∑
pqrs a

†
pa
†
qaras have matrix

elements given by

V ijg =
∑
pqrs

[
2δip

2Djq
sr − 2δiq

2Djp
sr + 6 3Djpq

sri

]
(45)

V ijkl =
∑
pqrs

[
6δik

3Djpq
srl + 2δipδkr

2Djq
sl − 2δipδks

2Djq
rl

− 6δip
3Djkq

srl − 2δiqδkr
2Djp

sl + 2δiqδks
2Djp

rl

+ 6δiq
3Djkp

srl + 6δkr
3Djpq

sli − 6δks
3Djpq

rli

−24 4Djkpq
srli

]
. (46)

The Hamiltonian and any other operators expressed
as sums of one- and two-body operators in the linear re-
sponse subspace can be formed by simply summing these
expressions together.

J. Numerical Application on Excited States

We assess the performance of the QSE extension to
the original hybrid quantum classical approach on the
spectrum of a simple molecule, H2 in a minimal STO-6G
basis [43] under the Jordan-Wigner (JW) qubit encod-
ing [32], using the VCS model.

First we examine the performance of the fermionic
LR expansion in determining excited states on the ex-
act ground state of H2. This allows one to understand
properties of the method in situations where very good
approximations to the ground state may be prepared.
The excellent accuracy of the method in this case is ex-
emplified in Fig. 5. One sees from this plot a nice feature
of the LR method, which is that it confines one to the
physical subspace ofNe = 2 particles exactly even though
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FIG. 6. In examining the energy as a function of separation
for the ground state of H2 under a particular amplitude and
phase damping channel (AP), one sees that in the linear re-
sponse subspace (AP LR), the solution quality in increased
with respect to the optimal solution of the quantum channel
model (AP). The qualitative kink in the approximate solu-
tion can be repaired by enforcing the correct spin symmetry
(S2 = 0). This also demonstrates the effect on the energy
between variational minimization with the channel (AP) and
without (No Var).

the Jordan-Wigner transformation encodes the unphysi-
cal space of Ne = 0 to the number of spin-orbital sites.

In an imperfect preparation, a quantum channel effec-
tively restricts the space of preparable quantum states.
As such, it’s reasonable that re-expanding the resulting
state and solving the problem within the expanded space
may also help to improve the quality of the ground state.
This calculation is shown in Fig. 6 for an amplitude and
phase damping channel with an experiment time Tp rel-
ative to coherence parameters T1 = T2 of Tp/T2 = 0.05,
demonstrating the capability of the expansion to improve
the quality of the solution under noise.

K. Conclusions

In this work, we explore a variational channel state
model to understand the performance of quantum vari-
ational algorithms in currently-realizable physical sys-
tems. We introduce a simple but powerful approach
that naturally mitigates noise, improves estimates of the
ground state, and finds excited states based on the pro-
jective measurement scheme of the original VQE, which
we call the quantum subspace expansion. Additionally,
we develop a variational channel state model (VCS) to
understand the potential performance of quantum varia-
tional algorithms in non-ideal conditions. This approach
motivates a general hierarchy of quantum-classical ap-
proximations, in which a tradeoff between numbers of

measurements and system accuracy can be easily tai-
lored to suit computational purposes. We believe our
advances pave the way for better understanding of quan-
tum devices in the role of co-processors and pushes the
boundaries of our capabilities closer to the edge of outper-
forming a purely classical computing device in the near
future.
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M. Appendix

1. Quantum Channel Model Solution

Here we present the short proof that the quantum
channel state preparation model is equivalent to a Hermi-
tian eigenvalue problem on the transformed Hamiltonian

H ′ =
∑
iK
†
iHKi. We include this proof largely for illus-

trative purposes in order to emphasize the requirement
that the initial state is pure, and that the transformation
preserves Hermiticity of the Hamiltonian. Starting with
the original problem

min
|Ψ〉

Tr

[(∑
i

Ki |Ψ〉 〈Ψ|K†i

)
H

]
. (47)

we require that the function we are minimizing vanish
under arbitrary variations in the state 〈Ψ| → 〈Ψ| +
〈δΨ| (note that we only need consider variations in the
bra(dual) for simplicity due to the symmetric real val-
ued nature of this functional), and enforce the constraint
of normalization on the pure state through a Lagrange
multiplier E, resulting in

Tr

[(∑
i

Ki |Ψ〉 〈δΨ|K†i

)
H

]
− E〈δΨ|Ψ〉 = 0 (48)

By cyclic invariance of the trace and independence of |Ψ〉
from i, equivalently

Tr [|Ψ〉 〈δΨ|H ′]− E〈δΨ|Ψ〉 = 0 (49)

Expanding the trace over a basis composed of |Ψ〉 and
its orthogonal complement

〈δΨ|H ′ |Ψ〉 − E〈δΨ|Ψ〉 = 0. (50)
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By requiring that this vanish under arbitrary variations
〈δΨ| we arrive at the eigenvalue equation

H ′ |Ψ〉 = E |Ψ〉 (51)

and the Hermiticity of H ′ follows trivially from the Her-
miticity of H and the form of H ′, guaranteeing it may
be diagonalized by a unitary matrix.

2. Cumulant Expansions of the k−RDMs

Here we document the cumulant expansions of the re-
duced density matrices up to k = 4, which are important
in approximation schemes for the reduced density ma-
trices. The fermionic k−RDM on a quantum state ρ is
defined by

kDi1i2...ik
j1j2...jk

=
1

k!
Tr
[
a†i1a

†
i2
...a†ikajkajk−1...aj1ρ

]
(52)

The cumulant expansions decompose the reduced den-
sity matrices into their non-separable (connected) com-
ponents and separable unconnected components, and are
quite useful for both developing approximations and en-
hancing understanding. A convenient notation for ex-
pressing these expansions is given by the Grassmann
wedge product defined generally by

a ∧ b =

(
1

N !

)2∑
π,σ

ε(π)ε(σ) π σ a⊗ b (53)

where π and σ are permutations on the upper and lower
indices of the tensor a ⊗ b and ε denotes the parity of
each permutation. As an example one might consider
the wedge product of a cumulant matrix with itself[

1∆ ∧ 1∆
]i1i2
j1j2

=
1

2

(
1∆i1

j1
1∆i2

j2
− 1∆i1

j2
1∆i2

j1

)
. (54)

With this notation, the reduced density matrices up to
k = 4 are iteratively defined in terms of the cumulant
expansions as

1D = 1∆ (55)
2D = 2∆ + 1∆ ∧ 1∆ (56)
3D = 3∆ + 32∆ ∧ 1∆ + 1∆ ∧ 1∆ ∧ 1∆ (57)
4D = 4∆ + 43∆ ∧ 1∆ + 32∆ ∧ 2∆

+ 62∆ ∧ 1∆ ∧ 1∆ + 1∆ ∧ 1∆ ∧ 1∆ ∧ 1∆. (58)

Physically, we may interpret terms such as m∆ ∧ n∆ as
the product between irreducible m and n body correla-
tions which contribute to the overall (m + n) body cor-
relations.

3. Approximate QSE

While the fermionic QSE approach has favorable co-
herence time requirements, it can still be prohibitively
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FIG. 7. The ground and first two excited states of H2 are
plotted as a function of internuclear separation using both
the Zero Approximation (ZA) and the Zero Approximation
under the commutator construction (ZC). Both methods re-
quire only the original measurements used for the ground state
to approximate the excited states, and we see here that ZC
achieves an extremely high accuracy, while ZA is qualitatively
correct in some cases but produces sub-variational solutions
in others.

expensive in the number of measurements required. As
such, we examine here some techniques that have been
developed in classical electronic structure theory for 2-
RDMs for approximating the eigenvalue problem requir-
ing only the 3-RDM or even only the 2-RDM for ap-
proximating the solution in the linear response space
B1
f following closely the techniques developed by Mazz-

iotti [44, 45]. In such a scheme, even the original measure-
ments used to determine the ground state energy are suf-
ficient to determine approximations for the excited states
of the system.

Suppose that the quantum state prepared |Ψ〉 is the
exact ground state. In this case, the following commu-
tator identity may be used to remove dependence of the
solution on the 4-RDM

Hij
kl = 〈Ψ| (a†iaj)†[H, a†kal] |Ψ〉+ Eg 〈Ψ| (a†iaj)†a†kal |Ψ〉

(59)

where Eg is the eigenvalue associated with the exact
ground state, or expectation value of |Ψ〉 in the case
of an approximation, which depends at most on the 2-
RDM. The commutator reduces the rank of this expres-
sion such that it depends at most on the 3-RDM requir-
ing only O(M6) terms to be measured, and is exact in
the case that |Ψ〉 is exact. The explicit dependence on
the 3-RDM can be removed through approximate den-
sity matrix reconstruction techniques, requiring only the
original 2-RDM measurements to produce excited state
approximations. The simplest such approximation ne-
glects the irreducible 3-body correlations in the commu-
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tator expansion above, setting 3∆ = 0, where 3∆ is the
3 particle cumulant, and we call this approximation the
zero in commutator approximation (ZC).

Another similar approximation starts from the origi-
nal expression for the 4-RDM without the commutator
reduction, and assumes that both the irreducible 3 and
4 particle correlations are negligible and reconstructs the

4-RDM from only the 2-RDM assuming 4∆ = 3∆ = 0.
We term this this full zero approximation, or ZA. The
performance of the ZC and ZA methods are shown in
Fig. 7. We see that the extra structure in the ZC ap-
proximations yields superior qualitative and quantitive
accuracy for the sample problem.
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