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Recently, a generalization of the standard optical multiport was proposed [Phys. Rev. A 93,
043845 (2016)]. These directionally unbiased multiports allow photons to reverse direction and exit
backwards from the input port, providing a realistic linear-optical scattering vertex for quantum
walks on arbitrary graph structures. Here, it is shown that arrays of these multiports allow the
simulation of a range of discrete-time Hamiltonian systems. Examples are described, including a
case where both spatial and internal degrees of freedom are simulated. Because input ports also
double as output ports, there is substantial savings of resources compared to feed-forward networks
carrying out the same functions. The simulation is implemented in a scalable manner using only
linear optics, and can be generalized to higher dimensional systems in a straightforward fashion,
thus offering a concrete experimentally-achievable implementation of graphical models of discrete
time quantum systems.

I. INTRODUCTION

Quantum computers have been shown to be capable
of performing certain kinds of tasks exponentially faster
than classical computers. As a result, an enormous
amount of effort has gone into their development. Al-
though advances have been made, the ultimate goal of a
large-scale programable, general-purpose quantum com-
puter still seems to be a relatively long way off. Therefore
it is useful to consider the more easily attainable possi-
bility of special-purpose quantum computers designed to
carry out specific tasks. In particular, one might consider
returning to Feynman’s original motivation for discussing
quantum computers [1]: using simple quantum systems
to simulate the behavior of other physical systems.

A number of such quantum simulators appear in the
literature; reviews may be found in [2, 3]. Here we present
a new and relatively simple approach to creating a partic-
ular type of quantum simulator using only linear optics.
We illustrate the method via the simulation of Hamil-
tonians for one-dimensional discrete-time physical mod-
els. Such models could represent, for example, the dy-
namics of spin chains or of electrons hopping along one-
dimensional polymers. The basic approach can be easily
generalized to higher dimensions.

The method presented here implements the simulation
optically by using chains of simple linear optical units.
These basic units are the directionally-unbiased optical
multiports proposed in [4]. These devices are essentially
generalized beam splitters, but they differ from the usual
beam splitter in two main respects: (i) they can have any
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number of input and output ports, and (ii) the photons
can reverse direction inside, allowing them to exit back
out the initial input port. These directionally unbiased
multiports can be thought of as scattering centers that al-
low physical implementation of optical quantum walks on
graphs [5–8]. (A different approach to scattering-based
walks has also been taken in [9].) In a graph model, an
incident photon is constrained at each time step to scat-
ter into one of a finite number of modes, one of which is
the time-reversed version of the input mode. In [4], sev-
eral applications of these multiports were demonstrated,
including their use as quantum gates for qubits consist-
ing of either single photons or of entangled photon pairs.
Here, we show that they may also be used to implement
quantum simulators for Hamiltonians that can exhibit a
wide range of behaviors.

In the following sections, we first review unbiased mul-
tiports and discrete-time Hamiltonian systems, then give
two examples of one-dimensional Hamiltonian systems
whose dynamics can be simulated by quantum walks on
sequences of directionally-unbiased three-ports. In each
of these cases the same three-port devices are used, but
different Hamiltonians are implemented simply by linking
them in different manners. There are a number of obvious
generalizations that can be made, such as using n-ports
with n > 3, of allowing the properties of the n-ports to
vary with position, or of connecting the n-ports into two-
and three-dimensional networks. But even in the simple
cases considered here (one-dimensional three-port chains
with all of the three-ports having identical parameters),
an array of different physical system behaviors can al-
ready be seen to occur. The examples discussed show
that systems with both spatial and internal degrees of
freedom can be simulated, and it is clear that, by means
of multiports with large n, high-dimensional systems can
be implemented in a straightforward manner by simply
extrapolating the same methods. Since there is no im-
pediment to putting each linear-optical multiport on a
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FIG. 1: (Color online) (a) The beam splitter is a four-port
device. Initially, all four ports are symmetric. (b) But when
a photon is input to one port the symmetry is broken: the
photon can exit from ports 3 and 4, but not 1 or 2. The fact
that the photon cannot reverse direction and exit out input
port 1 is referred to by saying that the beam splitter is direc-
tionally biased : the presence of the photon in one port biases
the output toward two of the four possible output directions.

chip for high stability, the approach is highly scalable.
In addition to the topologically-trivial examples dis-

cussed in the current paper, it will be shown elsewhere
[10] that a different arrangement of the same multiports
can simulate physical systems that support states with
non-zero winding number and topologically-protected
boundary states.

II. DIRECTIONALLY-UNBIASED

MULTIPORTS

A. Directionally-unbiased multiports and photon

reversibility

An ordinary beam splitter or its standard multiport
generalization is, in a certain sense, a one-way device.
Although all four ports of a beam splitter are initially
on an equal footing, once a photon enters one port (say
port 1 of Fig. 1), then it can exit only from ports 3 or
4, not from 1 or 2. However it is possible to construct
a multiport system, with any number n of ports, such
that a photon entering any port can leave any port. In
particular, the photon may exit back out the initial input
port. Such a multiport, which allows the light to reverse
direction, is referred to as directionally-unbiased.
Examples of unbiased n-ports for n = 3 and n = 4

are shown in Fig. 2(a) and (b). As in [4] the focus here
will be on the three-port device. The cases of higher n
are similar. The key to constructing such directionally
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FIG. 2: (Color online) (a) The directionally-unbiased three-
port. (b) The directionally-unbiased four-port. The rect-
angles after the beam splitters in (a) and (b) represent the
vertex unit shown in (c); this unit consists of a mirror and a
phase-shifter. The distance between each beam splitter and
the adjacent mirror unit is half the distance d between one
beam splitter and the next.

unbiased multiports using only linear optics is to build it
from vertex units of the form shown in Fig. 2(c). Each
unit is at one port of an ordinary beam splitter, and is
constructed from a mirror and a phase shifter. At each
beam splitter, one port is used for input/output to the de-
vice, and two ports feed into the interior of the multiport.
The remaining beam splitter port reflects back on itself
via the mirror inside the vertex unit. The beam splitter-
to-mirror distance d

2 is half of the distance d between the
vertex units in the multiport. The internal phase shifter
provides control of the properties of the multiport, since
different choices of phase shift at the vertices affect how
the different photon paths through the device interfere
with each other.

Given any input and any output port, there will be
multiple paths joining them, and these paths will have
different lengths. Therefore, for any input there will be
transient states within the device that will decay over
time as longer paths exit the multiport. Because of this
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range of exit times, there will be a lengthening of input
pulses, and a gradual loss of coherence. These effects
may be minimized by taking the physical size of the mul-
tiports small enough compared to the distances between
them, and by taking the pulses to be sufficiently short
compared to the other time scales in the system. Quan-
titative estimates of the sizes and time scales required
may be found in [4]; here we simply assume that the
multiport is small enough to be treated as coherent and
point-like. In that case, the three-port takes an input
state |ψ0〉 to an output state |ψ〉 = U |ψ0〉, where

U = − i

3





1 −2 −2
−2 1 −2
−2 −2 1



 . (1)

Here the rows and columns refer to the three ports A, B,
C. This matrix reproduces the scattering amplitudes of
the diamond-shaped graph used as an example in [6, 7].
For an arbitrary n-port with the same choice of vertex

phases, the matrix of Eq. 1 generalizes to

Un = − i

n











n− 2 −2 −2 . . .

−2 n− 2 −2
−2 −2 n− 2
...

. . .











. (2)

Note that this is the form of an n-dimensional Grover
coin [11], and so provides a physical implementation of
the Grover coin for quantum walks in any number of di-
mensions. The behavior of this matrix versus n should
also be noted: for n = 3 the exit probability is lowest at
the input port. For n = 4, the exit probabilities at all
four ports are equal, while for n > 4 the exit probability
becomes highest at the input port. As n → ∞ the mul-
tiport acts effectively as a mirror, with the probability of
exiting back out the input port going to 100%.

B. Strictly unbiased multiports with equal

probabilities

For the choice of vertex phases given above, it is clear
that the exit probability at the input port differs in gen-
eral from the probabilities to exit at the other two ports.
In the three-port case, for example, input at exit A leads
to exit probabilities PA = 1

9 and PB = PC = 4
9 . The term

“directionally-unbiased” here refers to the fact that both
forward and backward are possible, not necessarily that
all exit probabilities are equal. However, for some values
of phases the multiports are unbiased in the stricter sense
of having equal exit probabilities at all ports. As can be
seen from Eq. 2, this is already true for the four port
with the choice of phases used here: the exit amplitudes
at all four ports are the same, up to a minus sign.
The same equality of exit probabilities can also be

achieved for the three-port by appropriate choices of ver-
tex phases; for example, for φA = φB = φC = π

6 all three

ports have exit probability 1
3 , with transition matrix

U =
1√
3
e

2πi

3







e
−2πi

3 1 1

1 e
−2πi

3 1

1 1 e
−2πi

3






. (3)

Such cases where the exit probabilities are all equal will
be referred to as strictly unbiased. The strictly unbi-
ased multiport is useful for some applications, such as the
conversion of position eigenstates into momentum eigen-
states (see Section IVD) or for quantum state discrimi-
nation methods (to be discussed elsewhere).
In the remainder of the paper we will not require this

strict unbiasedness. We will instead follow the example
of [4], focusing on the special case of the three-port with
equal phases of φ = − 3π

4 , leading to the transition matrix
of Eq. 1. This choice is convenient for quantum walk
applications because all of the transition amplitudes have
the same phase (up to minus signs), reducing the number
of phase factors that have to be tracked and eliminating
complicated interference terms.

III. DISCRETE-TIME HAMILTONIANS

In a discrete time system, the Hamiltonian is obtained
from a discrete-time evolution matrix U that takes the
system forward one time-step. So if the initial state is
|ψ(0)〉 and the unit time step is T , then the state at time
nT is

|ψ(nT )〉 = Un|ψ(0)〉. (4)

The evolution operator can then be written (for ~ = 1)

in the form U = e−iĤT , which defines the discrete time
Hamiltonian, Ĥ . The Hamiltonian generates time evo-
lution, and the matrix elements of U give the transition
amplitudes per time step between the states of the sys-
tem.
If the system is spatially periodic, then Bloch’s theo-

rem says that the solutions should be of the form

ψ(x) ∼ u(x)eikx, (5)

where u(x) is a periodic solution and x is the spatial po-
sition. The period of u(x) is the same as that of the un-
derlying system. The phase factor eikx defines the crystal
momentum or quasi-momentum k, which describes how
fast the phase accumulates as you move along the peri-
odic lattice. Because of this phase factor, the periodicity
of ψ(x) is not necessarily the same as the periodicity of
the lattice. In addition, a quasi-energy E can then be
defined, which will be possibly multi-valued function of
k. Each steady state of the system is characterized by a
fixed value of k and E.
The role of position in the following will be taken by

the dimensionless integer m that labels the lattice sites,
where each lattice site consists of some combination of
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unbiased multiports. Because the position is given by a
dimensionless variable, the quasi-momentum will also be
dimensionless. A single Brillouin zone runs from 0 to 2π,
and k is only conserved modulo 2π.
The Hamiltonian generates time evolution in some

space that may include both spatial and internal degrees
of freedom. As the momentum is varied over the width
of a full Brillouin zone, the Hamiltonian will trace out a
closed path in this internal space. There may be topolog-
ical obstructions that prevent some of these paths from
being contracted to a point or from being deformed con-
tinuously into each other as the system parameters are
varied. When such obstructions exist, then the paths
fall into different topological classes, categorized by the
values of topologically invariant quantities such as the
winding number in one-dimensional lattice systems or the
Chern number in two-dimensional systems. When two
systems with different topological invariants are brought
into contact, consistency between the solutions in the two
subsystems requires that the band gap between quasi-
energy levels vanish at the boundary. The closing of the
gap allows states to change winding number, and implies
the existence of states that are exponentially localized in
the vicinity of the boundary [12, 13]. In this paper we re-
strict ourselves to states with vanishing winding number;
the extension to systems with non-trivial topological as-
pects will be examined elsewhere. Reviews of topological
insulators and related ideas may be found in [13, 14].
If the Hamiltonian describes internal, as well as spa-

tial, degrees of freedom, then it is convenient to write
it as a position-dependent matrix in the space of inter-
nal variables. For example, if the internal space is two-
dimensional, as is the case for electron spins or photon
polarizations, then the Hamiltonian will generically be of
the form

Ĥ(k) = d0(k)I + dx(k)σx + dy(k)σy + dz(k)σz (6)

= d0(k)I + d(k) · σ, (7)

where the dj(x) are real functions. The Pauli matri-
ces appear are the generators of su(2), the Lie algebra of
traceless 2×2 unitary matrices. Any 2×2 unitary matrix,
such as the matrices representing single qubit quantum
gates, can be built from a superposition of these matri-
ces and the identity, so the Hamiltonian describing the
dynamics of the two-dimensional internal space will be
formed from them. Similarly, in the example to be dis-
cussed in Section V, the Hamiltonian may be expressed
as a matrix in a three-dimensional internal space, analo-
gous to the state space of a spin-1 particle or of a quark
in its three-dimensional color space. In this case, Ĥ can
be written in the form

Ĥ = d0I +
∑

j=18

djΛj = d0I + d ·Λ, (8)

where the 3× 3 Gell-Mann matrices Λ1 . . .Λ8, which are
widely used in elementary particle physics, form a basis
for the algebra of 3×3 traceless, unitary matrices, su(3).

As k is varied, the Hamiltonian will trace out a path in
the resulting space.
In the following sections we show that chains of

directionally-unbiased three-ports allow simulation of
two different Hamiltonians with very different character-
istics. In Section IV a system with a single three-valued
degree of freedom will be presented; these three values
may be thought of as either three positions on a periodic
spatial lattice, or as three values of an internal variable at
a single, fixed spatial point. The second example, in Sec-
tion V will allow simulation of both spatial and internal
degrees of freedom simultaneously.

IV. DYNAMICS ON A DISCRETE

THREE-POINT CONFIGURATION SPACE

A. A discrete-time system

Recall that the unbiased three-port is described by the
matrix U of Eq. 1, where the rows and columns refer to
the three ports A, B, C. For convenience in what follows,
let us instead label the three ports by numbers (modulo
3) instead of letters:

A = 1 (mod 3), B = 2 (mod 3), C = 3 (mod 3).

The three input/output ports are now thought of as dis-
crete points on a circle; with each passage through a mul-
tiport, photons hop among these points. U has three
eigenstates, given (up to an arbitrary overall phase) by

|ψ1〉 =
1√
3





1
1
1



 , |ψ2〉 =
1√
2





−1
0
1



 , (9)

|ψ3〉 =
1√
2





−1
1
0



 , (10)

with respective eigenvalues

λ1 = +i, λ2 = λ3 = −i. (11)

Now suppose a sequence of three-port units are con-
nected as shown in Figure 3(a). Each output of one mul-
tiport feeds directly as input to the next. It can be ar-
ranged (for example by means of optical circulators) so
that the photons always travel from left to right and do
not reflect backward. In other words, the spatial location
increases monotonically and plays the role of time. It is
assumed that the multiports are very small compared to
the length of the lines joining them, so that the time
spent inside the multiport can be taken to be negligible.
If photons are fed in from the left, they can be thought
of as experiencing a periodic potential, as in the lattice
of a one-dimensional solid or a one-dimensional polymer.
Each multiport is viewed as the site of an “interaction”,
where the state of the photon can change. Over n time
steps the unitary transition matrix U is simply applied
n times.
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FIG. 3: (Color online) (a) A string of multiports connected
sequentially, with each output of one feeding directly into the
input of the next. There is a three-state quantum walk among
the three lines as the photons progress spatially from left to
right. (For clarity, the figures are not drawn to scale: the
multiports should be very small compared to the distances
between them.) (b) State preparation occurs on the left and
photons are coupled into the system through the three in-
put ports. Detection occurs on the right, with a detector in
each line. Depending on the experiment being performed, the
detectors may be connected in coincidence.

B. Position-space Hamiltonian

Given that U is known, the Hermitian Hamiltonian
operator Ĥ , is easily found:

Ĥ = +i lnU =
π

6





1 −2 −2
−2 1 −2
−2 −2 1



 = i
π

2
U. (12)

Here, the discrete unit of time is taken as the time to go
from one multiport to the next; in other words, units are
chosen so that T = 1. For this system Ĥ turns out to
be proportional to U itself, so the eigenstates are those
given in Eq. 11, with corresponding energy eigenvalues

E1 = −π
2
, E2 = E3 = +

π

2
. (13)

These eigenvalues can also be found by computing the
expectation value of the Hamiltonian in each of the three

eigenstates, Ej = 〈ψj |Ĥ |ψl〉 for j = 1, 2, 3. In terms of
the position eigenstates |m〉, the Hamiltonian operator
can be written as

Ĥ =
π

6

3
∑

m=1

[|m〉〈m| − 2 (|m+ 1〉〈m|+ |m〉〈m+ 1|)] .

(14)
Note that the eigenvalues of this Hamiltonian will not
be the photon energies ~ν, but instead give the ”quasi-
energies” associated with the various wave solutions
propagating in the system. Higher quasi-energy occurs
for standing waves that oscillate more rapidly in space.
In this Hamiltonian, the first term is an effective mass

term, giving the state a sort of “inertia” or probabil-
ity of being at the same point at successive times. It
contributes a constant, position-independent background
energy π

6 . The other terms serve as a nearest-neighbor
interaction. This system can be viewed in several dif-
ferent ways. It can be thought of as a single three-state
system, where the three links or positions labeled by m
correspond to the three states. Alternatively, this may
be seen as a coupled set of three two-level systems: each
of the three links can be in the ground state (no photon)
or an excited state (one photon).

C. Momentum-space Hamiltonian

The quasi-momentum eigenstates |k〉 are found by
Fourier transforming the position states |m〉:

|k〉 = 1√
3

3
∑

m=1

eimk|m〉. (15)

In momentum space, the Hamiltonian has the form

Ĥ(k) =
π

6

∑

k

(1− 4 cos (k)) · |k〉〈k|. (16)

For a three-dimensional configuration space there will be
three momentum eigenstates, with momenta kn = 2πn

3
for n = 0,±1; these have the energies given above, and
any other state will be a superposition of them. When
a single photon is input into the system, the physical
meaning of the momentum eigenstates is easy to identify:
(1) There is a spatially uniform “rest” state with mo-

mentum k = 0 and energy E1 = −π
2 . In this state, the

photon amplitude is evenly spread among the three ports.
This state is constant in time.
(2) There is a steady state with the average photon

position moving clockwise by one step per unit time,
∆m = +1. This state has momentum k = 2π

3 and energy
E2 = +π

2 .
(3) The remaining steady state has the average photon

position moving counterclockwise by one step per unit
time, ∆m = −1. This state has momentum k = − 2π

3
and energy E3 = +π

2 .
Because of the periodic nature of the configuration

space, these are the only possibilities with fixed k. For
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example, it can be seen that the motion with ∆m = −2
per step is the same as that with ∆m = +1 per step. All
other periodic motions around the triangle are therefore
equivalent to one of the three cases above.
In the preceding, m has represented a spatial degree

of freedom, but we may also think of it as simulating an
internal degree of freedom at a single point. As one pos-
sible application of this approach, the three ports may
be thought of as representing the three spin states of a
spin-1 particle. Although the vertices of the multiports
have been held at fixed parameter values in this paper,
the mirror reflectances and the phase shifts added at each
vertex can be changed, which allows control over the in-
teraction terms and hopping amplitudes; this could for
example lead to simulation of the behavior of a spin 1
particle in a time-dependent potential. By replacing the
unbiased three-port with a larger n-port, the same proce-
dure can be used to model dynamics in an n-dimensional
internal configuration space at each lattice point, or in
other words a system of spin j, with 2j + 1 = n.

D. State preparation and measurement

The system of Fig. 3(a) simulates the time evolution
and the Hamiltonian. To complete the description of the
system, the initial state preparation and the measure-
ment of the final state must be included. As shown in
3(b), the input state is introduced at left, the sequence of
multiports simulates time evolution as the photons move
left to right, and measurements are made at the final
output ports on the right.
To introduce an initial position state, |m〉, single pho-

ton states are inserted at one of the left-hand input
ports. High quality approximations to single photon in-
put states may be achieved by means of highly atten-
uated laser coherent states or via heralded parametric
down conversion. The three inputs may be populated
randomly by a sequence of such states in order to study
the full dynamics of the system.
Arrangements of beam splitters also allow a single pho-

ton state to be uniformly superposed over the three input
ports. In fact, an additional three port may be used to
prepare such a superposition state: as mentioned in Sec-
tion II, using phase shifts of π

6 at the vertices of a three-
port makes the exit amplitudes of all three ports equal
(up to phase) for any input port. By addition of ap-
propriate external phase shifts to the three output lines,
momentum eigenstates of the form of Eq. 15 may be
initialized from this superposition.
At the right end of the system, a single-photon detector

may be placed at each output line. The final state for a
given input is then built up by making multiple measure-
ments to determine the various transition probabilities.
The measurements may be taken one step further by us-
ing homodyne detection to determine the output phases
relative to the input. In this way, the transition ampli-
tudes, not just the probabilities, may be determined.

1
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State
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Detection

Optical Switch Optical Circulator

(b)

FIG. 4: (Color online) (a) A compact system equivalent to
that of Fig. 3, but which operates using just two multiports;
the spatial evolution from left to right in Fig. 3 is replaced by
time evolution within a single region. The photons travel in
opposite directions on successive time steps. (For clarity, the
figures are not drawn to scale: the multiports should be very
small compared to the distances between them.) (b) After
coupling the input into the system, a gated optical switch
allows measurement of the output state after a fixed number
of time steps.

In the current paper, we consider only separable input
states, but various forms of superposition states and en-
tangled states could also be considered. In this case, the
detectors would be connected in coincidence in order to
determine the final state correlations.

In passing, it should be pointed out that the method
described above for producing momentum eigenstates
also provides a simple means of producing spatial W-
states. With π

6 vertex phases and appropriate phase
shifts at the output lines, a three-port with a single pho-
ton input at any vertex can be made to output the state
1√
3
(|100〉+ |010〉+ |001〉) , with equal amplitudes to be

in three different spatial modes. Here, |mnp〉 denotes
the state with m, n, and p photons exiting respectively
at ports A, B, and C. Clearly, this tripartite W-state
can be generalized to an n-partite W-state by replacing
the three-port with an n-port of larger n.
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E. A compactified system

Instead of using a chain of multiports, an equivalent
system can be formed with fewer resources by taking just
two multiports connected as shown Fig. 4(a). The pho-
tons then reflect back and forth between the two multi-
ports, with no circulators needed. At each discrete time
step the photons will alternate direction, but will always
remain localized in the same spatial region, between the
two multiports. The time evolution then generates super-
positions of random sequences of values m1,m2,m3, . . . ,
where each value in the sequence is given by the label
of one of the three ports. Thinking of the lines between
the multiports as three spatial positions, the Hamiltonian
generates dynamics that cause random motions among
these three discrete spatial points. There will then be a
momentum variable (a dimensionless quasi-momentum)
describing the motion between these points. There can
be superpositions between clockwise and counterclock-
wise motions, allowing standing waves to occur.
Optical circulators are used to separate input and out-

put, with electro-optical switches used to release the out-
put to the detectors after the desired number of time
steps as shown in Fig. 4(b). In this way, walks of arbi-
trarily long duration can be simulated with a single unit
containing only two multiports. The maximum number
of steps achievable will then be limited only by coherence
considerations.

V. A SYSTEM WITH BOTH SPATIAL AND

“INTERNAL” DEGREE OF FREEDOM

A. Time-reversible systems

The previous section allowed simulation of a system
with one three-valued degree of freedom, which could be
taken to represent either a spatial or internal degree of
freedom. The system of this section incorporates both
spatial and internal variables simultaneously.
An additional important difference between this sec-

tion and the previous one is related to the idea of re-
versibility. In the last section it was assumed that the
system had been arranged to make sure that the photons
flowed only in one direction, from left to right. The states
were labelled by the positions of the photons, with no
need to distinguish direction of motion. In this case, the
unitary transition matrix was found to be proportional to
a Hermitian matrix that could serve as the Hamiltonian.
Now we wish to restore the time reversal symmetry of

the system and allow the light to move in any direction
though the network. Therefore, we need to distinguish
states moving in different directions, and for any possible
transition that can occur we must also allow its time-
reversed version. The time-reversed transition matrix is
obtained from U by taking its Hermitian conjugate, U †.
If the states are labelled by both position and direction
of motion of the photons, then the number of possible

states is doubled. Imagine that the states of the three-
port are now labelled by both the port label and a binary
label such as “ingoing/outgoing” or “left-moving/right-
moving”. Then the matrix U is replaced by the larger
matrix

Ĥ =

(

0 U †

U 0

)

, (17)

which includes the time-reversed transitions. One of the
nonzero blocks represents transitions from ingoing or left-
going states at a vertex to outgoing or right-going states;
the other block represents transitions in the other direc-
tion. Because U is unitary, U †U = 1, it is easily checked
that this expanded matrix is both unitary and Hermitian
and that it squares to the identity, Ĥ2 = I. As a result,
we find that the corresponding matrix

V ≡ e−iĤT = I cosT − iĤ sinT (18)

is also unitary. Thus, from the transition amplitudes de-
termined by the original U , we form (i) a new operator Ĥ
which can serve as a Hamiltonian, and (ii) a correspond-
ing unitary operator V that acts as the full transition
operator associated with this Hamiltonian. V is double
the dimension of the original U . When Ĥ is of the form
of Eq. 17, notice that if the period is taken to be T = π

2
then the Hamiltonian and the transition matrix V are
the same, up to overall constants, as was the case in the
previous section.
Additional terms may also appear in the diagonal

blocks of Ĥ representing, for example, left → left or right
→ right transitions, as long as they are real and diagonal
or occur in Hermitian conjugate pairs. Such extra terms
in the diagonal block can appear because of, for exam-
ple, the possibility of a left-moving mode on one edge
becoming left-moving on an adjacent edge at the next
step.

B. Analogy with beam splitters

An example of the sort of situation described above is
for an ordinary non-polarizing beam splitter. Normally,
two ports (for example ports 1 and 2 in Fig. 1) are used
as input, and two as output (ports 3 and 4). The beam
splitter is then described by a unitary matrix, which can
be taken to be

U
(2)
BS =

1√
2

(

1 i
i 1

)

. (19)

The two columns represent the two input directions,
while the two outputs are represented by the rows. But
if the beam splitter is connected in a network, where
photons could be coming from any direction, any of the
four ports could be used for either input or output at
any given moment, so the matrix must have four input
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m-1 m+2m+1m

+1

-1

0

FIG. 5: (Color online) A system that can support three or
six internal states per lattice site. m labels the site, and
three edges within the site are labeled 0,±1. If propagation
direction of the light is included, then this doubles the number
of states per site.

columns and four output rows and is of the form given
in Eq. 17:

U
(4)
BS =

1√
2







0 0 1 −i
0 0 −i 1
1 i 0 0
i 1 0 0






=

(

0 U
(2)†
BS

U
(2)
BS 0

)

. (20)

It is easily verified in this case that e−
iπ

2 U
(4)
BS is propor-

tional to U
(4)
BS , so that a matrix of this form can serve as

both Hamiltonian and evolution operator.

C. A discrete time-reversible system

Now consider a collection of three-ports connected to
form the chain shown in Fig. 5. The chain is divided

again up into a string of lattice sites, indicated in the
figure by the dashed boxes. Integer m is used to label
the lattice sites (i.e the horizontal position), with m in-
creasing from left to right. The states within each site are
labeled by an additional integer from among {−1, 0,+1}:
+1 means the photon is on the upper horizontal branch,
−1 means the lower horizontal branch, and 0 is the verti-
cal branch. Further, we label the direction the photon is
moving at each moment according to the symbols L or R.
L corresponds to leftward motion on a horizontal branch
or upward on a vertical branch. R represents rightward
or downward motion. Therefore, the states are denoted
by

|m, j,D〉, (21)

where m = 1, . . . , N for a lattice containing N sites, j ∈
{0,−1, 1}, D ∈ {L,R}.
The input and detection considerations are similar to

those of the last section. In the current case, since the
evolution is left/right symmetric, it may be desired to
couple the input state into the middle of the system (by
means similar to that of Fig. 4(b)), and make measure-
ments at both ends of the chain.

The Hamiltonian at each cell should be of the form of
Eq. 17, plus possible terms in the diagonal blocks due
to inter-cell transitions. It is straightforward to use the
local transition matrix U for the individual multiports to
find the global transition amplitudes of the full system
between the states of Eq. 21. This gives the transition
operator Uc for the full chain. The resulting Hamiltonian
Ĥ ′

c is:

Ĥ ′
c =

1

3

N
∑

m=1

{

1
∑

j=−1

[

|m, j,R〉〈m, j, L|+ |m, j, L〉〈m, j,R|
]

(22)

−2
[

|m, 1, R〉〈m, 0, L|+ |m, 0, R〉〈m, 1, L|+ |m,−1, R〉〈m, 0, R|+ |m, 0, L〉〈m,−1, L|
+|m− 1, 1, L〉〈m, 0, L|+ |m− 1,−1, L〉〈m, 0, R|+ |m− 1, 1, L〉〈m, 1, L|+ |m− 1,−1, L〉〈m,−1, L|

+|m+ 1, 1, R〉〈m, 1, R|+ |m+ 1, 0, R〉〈m, 1, R|+ |m+ 1,−1, R〉〈m,−1, R|+ |m+ 1, 0, L〉〈m,−1, R|
]

}

Ĥ ′
c represents a system with one spatial dimension and

a six-dimensional “internal” space. Experimentally, mea-
suring the photon direction along with its position adds
complications, so here we simplify matters by reducing
to a three-dimensional internal space. If propagation di-

rection is never measured, then the Hamiltonian can be
projected onto the diagonal subspace of left- and right-
moving modes. If the projection operator is P , then the
resulting operator Ĥc = P †Ĥ ′

cP becomes
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Ĥc =
1

3

∑

m







∑

j={0,±1}
|m, j〉〈m, j| −

√
2
∑

j={±1}

[

|m, j〉〈m, 0|+ |m, 0〉〈m, j|
]

−
√
2
∑

j={±1}

[

|m− 1, j〉〈m, j|+ |m+ 1, j〉〈m, j|+ |m− 1, 0〉〈m, j|+ |m− 1, j〉〈m, 0|
]

}

.

Going to momentum space, define

|m, j〉 = 1√
N

∑

k

e−imk|k, j〉. (23)

The momentum space Hamiltonian then becomes

Ĥc = − i

3

∑

k

{

|k, 0〉〈k, 0|+ (|k, 1〉〈k, 1|+ |k,−1〉〈k,−1|)
(

1− 2
√
2 cos k

)

(24)

−2
√
2 cos

(

k

2

)

[

eik/2 (|k, 1〉+ |k,−1〉) 〈k, 0|+ e−ik/2|k, 0〉 (|k, 1〉+ |k,−1〉)
]

}

= − i

3

∑

k

|k〉〈k|





1− 2
√
2 cos k −2

√
2eik/2 cos k

2 0

−2
√
2e−ik/2 cos k

2 1 −2
√
2e−ik/2 cos k

2

0 −2
√
2eik/2 cos k

2 1− 2
√
2 cos k



 . (25)

The matrix is written here in the basis of internal states,
(+1, 0,−1). It can be diagonalized in order to find the
eigenstates, leading to a set of three eigenvectors for each
fixed k value, given (up to normalization and phase) by

|ψ1〉 =





−1
0
1



 , |ψ2〉 =





1

−2
√
2

1



 , (26)

|ψ3〉 =





−1

2
√
2(1 + cos k)

1



 , (27)

with respective energy eigenvalues

E1 =
1

3

(

1− 2
√
2 cos k

)

(28)

E2 =
1

3

(

1− 2
√
2 (1− cos k)

)

(29)

E3 =
1

3

(

1 + 2
√
2
)

. (30)

These are plotted in Fig. 6. Notice that the energy
eigenvalues always satisfy

E1 + E2 + E3 = 1, (31)

for all k. In all, there are 3N eigenvectors, corresponding
to the N momentum values (k = 2πn

N for n = 1, . . .N)
and the three values of the internal index (0,±1). As
in the last section, the constant terms on the diagonal

FIG. 6: (Color online) Energy level diagram of the three state
system of Fig. 5. E3 is constant, while E1 and E2 oscillate
with k. Note that E1 has no gap with E2 or E3, but that E2

and E3 are always separated by a gap.

contribute a constant (x- and k-independent) background
term, in this case of energy 1

3 .

D. Energy band structure

For each k, there are three energy levels. They are non-
degenerate in general, except at isolated k values where
the levels cross or become tangent to each other. Note
also that there is always an energy gap between E2 and
E3, but that E1 has k values where its gap with the other
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two states closes. Levels 1 and 3 meet (E1 = E3) at the
value k = π, while E1 = E2 at the values k = ±π

3 .
Thus, at those momenta there can be transitions from
eigenstate |ψ1〉 to the other two states, |ψ2〉 and |ψ3〉, if
the system is perturbed. However, |ψ2〉 and |ψ3〉 never
transition directly to each other; they can only go via
|ψ1〉 as an intermediate state; moreover, such a transi-
tion would be indirect in the terminology of solid state
physics, since it requires a change of k as well. Because
transitions between |ψ2〉 and |ψ3〉 are always mediated by
passage through |ψ1〉, |ψ1〉 plays a role similar to that of
a photon or other intermediate gauge boson in particle
physics. A more sophistication simulation setup along
these lines might therefore eventually open the way for
optical simulation of gauge theory models such as quan-
tum chromodynamics, with the role of nonlinear interac-
tions being simulated via interference effects.
As mentioned in Section III, the Hamiltonian can be

written in the form

Ĥc = d0I +
∑

j=18

djΛj = d0I + d ·Λ, (32)

where the Gell-Mann Λj matrices play the same role
for the algebra su(3) that the Pauli matrices play for
su(2). As the parameters are varied, the vector d =
(d0, d1, . . . , d8) does not explore the full nine-dimensional
space, but remains contained in a 7-dimensional subspace
spanned by the set {I,Λ1,Λ2,Λ3,Λ6,Λ7,Λ8}. The ex-
plicit form of the Hamiltonian in terms of the Λj may
be found in the Appendix. The paths on this large sub-
space have enough room to avoid topological obstructions
as the system parameters are varied, so that any of the
possible paths can be smoothly deformed into any other
as the parameters are continuously changed. The system
is therefore always topologically trivial. It remains to be
investigated as to whether varying the parameters of the
three-port may allow simulation of more general SU(3)
Hamiltonians.

VI. CONCLUSIONS

Through the examples discussed in the previous sec-
tions, it has been shown that the behavior of Hamilto-
nian systems with both spatial and internal degrees of
freedom can be simulated using one-dimensional chains
of directionally-unbiased three-ports. A number of ob-
vious generalizations exist, such as using n-ports with
higher n, connecting the n-ports into two- and three-
dimensional arrays with different connection topologies,
or varying the multiport parameters. In this way, a vari-
ety of Hamiltonians involving nearest neighbor couplings
can be implemented. By changing the phase shifts at
the multiport vertices, the relative strengths of the in-
teractions between different nearest-neighbor pairs can
be altered, allowing the simulation of spatially-varying
potentials. Additional degrees of freedom that can be
used to increase the complexity of the simulated systems

include phase shifts on the edges of the multiports or be-
tween multiports, and varying the transmission profile of
the beam splitters within the multiports. The results of
the previous sections provide hints that such generalized
versions of this approach may be useful for simulating the
types of Hamiltonians that appear in solid state physics
and particle physics, possibly including strongly interact-
ing Hamiltonians for which perturbative methods break
down.

One generalization of special interest is that the simu-
lating system can be built out of unit cells that are com-
binations of several multiports, possibly with additional
phase shifts or other effects added on the connections
between them. By periodically altering the parameters
of these complex unit cells, the behavior of particles in
periodic crystal lattices can be simulated. In particular,
it will be shown elsewhere [10] that by this means the
Su-Schreiffer-Heeger Hamiltonian, which supports phases
of nonzero winding number and topologically-protected
boundary states, can be simulated.

In general, it seems to be possible to simulate arbitrary
physical systems with nearest neighbor interactions by
varying the parameters appropriately to adjust the al-
lowed energy levels. Similarly, varying these parameters
spatially along the chain can simulate interactions with
arbitrary external (discrete-space) potentials. Variation
of the phases allows for the positions of the energy lev-
els to be varied in a controllable manner. For example,
the setup in Section IV has two degenerate levels. The
degeneracy is due to the equality of all the vertex phases
and can be lifted by changing those phases; for some pa-
rameter ranges, if two phases are held constant then the
energy-level splitting varies approximately linearly with
the other phase, allowing easy control of the system’s be-
havior. This could be used for example to simulate the
behavior of systems in magnetic fields, with the difference
between two of the vertex phases playing the role of the
field, or to simulate three- or four-level atomic systems.

Such generalizations hold promise for simulating a
large range of effects, and possibly carrying out complex
high-dimensional computations of the properties of such
discrete-time systems. It should be emphasized again
that all of these simulations are implemented by means
of local linear optics effects only. In addition, all of the
elements used can be placed on-chip, which increases sta-
bility and allows large networks to be built up in a highly
scalable manner. As a result, this approach seems espe-
cially promising for the simulations of complex physical
systems by relatively simple means.

Appendix

The Hermitian Gell-Mann matrices form a basis for the
8-dimensional algebra of su(3) in the same manner that
the Pauli matrices form a basis of the three-dimensional
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su(2). Explicitly, these matrices are given by [15]

Λ1 =





0 1 0
1 0 0
0 0 0



 Λ2 =





0 −i 0
i 0 0
0 0 0



 (33)

Λ3 =





1 0 0
0 −1 0
0 0 0



 Λ4 =





0 0 1
0 0 0
1 0 0



 (34)

Λ5 =





0 0 −i
0 0 0
i 0 0



 Λ6 =





0 0 0
0 0 1
0 1 0



 (35)

Λ7 =





0 0 0
0 0 i
0 i 0



 Λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



(36)

The corresponding SU(3) group generated by exponenti-
ating elements of the algebra is spanned by these matrices
together with the identity matrix.
In terms of the group basis, the Hamiltonian of Eq. 23

can be written as

Ĥc =
1

3

{(

1− 4
√
2

3
cos k

)

I +
√
2

[

Λ8√
3
− Λ3 (37)

− (1 + cos k) (Λ1 + Λ6) + sin k (Λ2 − Λ7)

]}

,

which lives on the seven-dimensional subspace of the full
nine-dimensional group space spanned by the basis ele-
ments {I,Λ1,Λ2,Λ3,Λ6,Λ7,Λ8}. Any closed path in this
space is contractible: it can be shrunken to a point while
avoiding the missing zero-energy point at the origin. As
a result all Hamiltonians in the space are topologically
trivial.
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