
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Refined weak-coupling limit: Coherence, entanglement,
and non-Markovianity

Ángel Rivas
Phys. Rev. A 95, 042104 — Published  6 April 2017

DOI: 10.1103/PhysRevA.95.042104

http://dx.doi.org/10.1103/PhysRevA.95.042104


Refined Weak Coupling Limit: Coherence, Entanglement and Non-Markovianity
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We study the properties of a refined weak coupling limit that preserves complete positivity in
order to describe non-Markovian dynamics in the spin-boson model. With this tool, we show the
system presents a rich and new non-Markovian phenomenology. This implies a dynamical difference
between entanglement and coherence: the latter undergoes revivals whereas the former not, despite
the induced dynamics is fully incoherent. In addition, the evolution presents “quasi-eternal” non-
Markovianity, becoming non-divisible at any time period where the system evolves qualitatively.
Furthermore, the method allows for an exact derivation of a master equation that accounts for a
reversible energy exchange between system and environment. Specifically, this is obtained in the
form of a time-dependent Lamb shift term.

I. INTRODUCTION

The description and characterization of non-
Markovian quantum dynamics has been and is an
active area of research [1–15]. Besides the fundamental
point of view, this has been motivated by the potential
utility of non-Markovian dynamics in different contexts
such as quantum metrology and hypothesis testing
[16–19], preservation of entanglement and coherence
[20–24], and quantum information and computation
[25–27].

At sufficiently short times the dynamics of any open
quantum systems is expected to be non-Markovian [3, 4,
9, 10, 28]. This is because the Born-Markov-Secular ap-
proximation is no longer valid at a time scale smaller (or
of the same order) than the width of the bath correlation
functions, and so the evolution is not given by a quan-
tum dynamical semigroup [28, 29]. Nevertheless, pro-
vided that the system-bath coupling is small enough to
justify the second order perturbation treatment, several
approaches have been suggested to deal with the dynam-
ics in the short time scale. For instance, one approach
avoids the secular approximation and consider the so-
called Redfield equation [30]. However, it has been shown
this equation does not preserve positivity [31] (see also
[32, 33]). The schemes to overcome this last drawback
range from restrictions of valid system states to the sub-
set that remains positive under that dynamical equation
[34], to the inclusion of slippage operators [35]. Although
these proposals can be useful in some situations, they do
not provide a completely general and satisfactory answer.
For example, they may present problems for multipartite
systems [36–38].

Alternatively, in [39] Schaller and Brandes proposed a
method they refer to as “Dynamical Coarse Graining”
which, in principle, allows for a description of the sec-
ond order dynamics for all time scales in a completely
positive way (see also [9]). This proposal has been suc-
cessfully applied to several situations [40–43], and it can
be seen as a “refined” weak coupling limit [43]. However,
as far as we know [42], low attention has been payed to
study whether or not it accounts for the non-Markovian

features expected at the short time scale.
In these regard, the non-Markovian properties of the

paradigmatic spin-boson model [44, 45] are still poorly
understood. This model applies to a two-level system in-
teracting linearly with a thermal bath of bosons at some
temperature T . It plays a central role in solid state
physics [46–48], chemical physics [49–51], quantum op-
tics [52–54], or quantum information technologies [55–
57]. However, the absence of a completely positive de-
scription for the spin-boson model out of the Markovian
regime makes the analysis in terms of measures of non-
Markovianity problematic [58]. These allow us to analyze
in a quantitative and rigorous way to what extent the
model presents non-Markovian behavior. Crucially, the
positivity preservation is essential when applying mea-
sures of non-Markovianity. They are typically non-linear
functions of the dynamics which have only a clear mean-
ing under the presupposition that the dynamics is phys-
ical and preserve the positivity of the density matrix.
Specifically, this implies the celebrated complete positiv-
ity condition in the case of initial system-environment
factorization (see e.g. [9]).

The objective of this communication comprises both
problems by applying the refined weak coupling limit to
study in detail the spin-boson model at finite tempera-
ture T , and examine its non-Markovian features. Partic-
ularly, we highlight the following findings:

i) We solve the dynamics of the transverse spin-boson
model using the refined weak coupling method and obtain
the exact Liouvillian operator for this dynamics. To our
knowledge, this represents the most precise positivity-
preserving master equation among the ones proposed for
this problem.

ii) We find a new time-dependent Lamb shift, describ-
ing damped oscillations towards the standard Lamb shift
value in the long time scale.

iii) We obtain that non-Markovianity increases for
low temperatures and the system presents “quasieternal”
non-Markovianity at T = 0. Namely, the dynamics is
non-divisible at any time instant during the period of
time where the system state changes appreciably.

iv) We show a new dynamical feature between entan-
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glement and coherence. Despite the dynamics is fully
incoherent, the non-Markovian evolution may induce re-
coherence cycles but does not generate entanglement re-
vivals.

II. REFINED WEAK COUPLING LIMIT

Though originally exposed in a slightly different terms,
the idea behind the refined weak coupling limit of Schaller
and Brandes can be succinctly explained as follows. The
exact dynamics of some open system S is formally given
by ρS(t) = TrE [U(t, t0)ρS(t0) ⊗ ρE(t0)U†(t, t0)], with
ρS(t0) and ρE(t0) the open system and environmental
initial states, respectively; and U(t, t0) the unitary oper-
ator describing the joint evolution of system and environ-
ment. For some generic Hamiltonian H = HS +HE +V ,
with system (HS) and environment (HE) Hamiltonians,
and interaction term V , the system evolution in the inter-
action picture and up to second order V (or equivalently
for short times) can be written as (t0 = 0)

ρ̃S(t) = ρS(0)

− 1

2
T
∫ t

0

dt1

∫ t

0

dt2TrE

[
Ṽ (t1),

[
Ṽ (t2), ρS(0)⊗ ρβ

]]
+O(V 3), (1)

where X̃(t) stands for the interaction picture of the oper-
ator X, T is the time-ordering operator and we have al-
ready assumed the environment to be in thermal equilib-
rium (bath) ρE(0) = ρβ = exp(−βHE)/Tr[exp(−βHE)].
By applying T under the integral sings and reordering
terms we obtain

ρ̃S(t) ' ρS(0)− i[Λ(t), ρS(0)] (2)

+ TrE
[
W (t)ρS(0)⊗ ρβW (t)− 1

2

{
W 2(t), ρS(0)⊗ ρβ

}]
,

with Hermitian operators Λ(t) = 1
2i

∫ t
0
dt1
∫ t

0
dt2sgn(t1 −

t2)TrE [Ṽ (t1)Ṽ (t2)ρβ ] and W (t) :=
∫ t

0
Ṽ (t′)dt′. Then, by

writing V =
∑
k Ak⊗Bk with also Hermitian Ak and Bk

and after a bit of algebra in Eq. (2) we find (for further
details see Appendix B):

ρ̃S(t) ' ρS(0)− i[Λ(t), ρS(0)]

+
∑
ω,ω′

∑
k,l

Γkl(ω, ω
′, t)
[
Al(ω

′)ρS(0)A†k(ω) (3)

− 1
2{A

†
k(ω)Al(ω

′), ρS(0)}
]
≡ ρS(0) + Z(t)[ρS(0)].

where we have used the decomposition of Ak =∑
ω Ak(ω) in eigenoperators of the system Hamiltonian,

[HS , Ak(ω)] = −ωAk(ω), and

Γkl(ω, ω
′, t) =

∫ t
0
dt1
∫ t

0
dt2e

i(ωt1−ω′t2)Tr[B̃k(t1 − t2)Blρβ ].

(4)

Similarly, Hamiltonian correction becomes Λ(t) =∑
ω,ω′

∑
k,l Ξkl(ω, ω

′, t)A†k(ω)Al(ω
′) with

Ξkl(ω, ω
′, t) = 1

2i

∫ t
0
dt1
∫ t

0
dt2sgn(t1 − t2)

· ei(ωt1−ω
′t2)Tr[B̃k(t1 − t2)Blρβ ]. (5)

From Eq. (2) we infer that Z(t) has the GLKS form [59],
so it turns out that the coefficients Γk,l(ω, ω

′, t) form a
positive-semidefinite matrix. Despite the Z(t) can be
seen (for fixed t) as the generator of a dynamical semi-
group, Eq. (3) does not provide a completely positive
(CP) dynamics as the positivity condition can be vio-
lated at order V 3. Nevertheless, for weak coupling (or
for short times), we can safely approximate the dynam-
ics by eZ(t), which is indeed CP because the GKSL form
of Z(t). Crucially, it can be proven [39] that for long
times Z(t) ≈ LDt, where LD is the standard generator
of the weak coupling limit [3, 4, 9, 60]. Thus, the refined
weak coupling limit consists in taking the quantity Z(t),
which we refer to as the Schaller-Brandes exponent, and
describe the evolution by eZ(t)ρS(0). This is CP for all
times, gives the exact correct dynamics at short times,
and reproduces the celebrated Born-Markov-Secular gen-
erator for long times.

Finally, one may ask about the Liouvillian operator
LZ(t) such that the solution to the differential equation
dρ̃S(t)
dt = LZ(t)[ρ̃S(t)] gives the refined weak coupling evo-

lution ρ̃S(t) = eZ(t)ρS(0). To this end, we write

dρ̃S(t)
dt =

[
d
dte
Z(t)

]
ρS(0) =

{[
d
dte
Z(t)

]
e−Z(t)

}
ρ̃S(t)

⇒ LZ =
{[

d
dte
Z(t)

]
e−Z(t)

}
. (6)

Combining this with the well-known identity [61] for the
derivative of the exponential of an operator, d

dte
Z(t) =∫ 1

0
dsesZ(t)

[
dZ(t)
dt

]
e(1−s)Z(t)ds, we obtain the Liouvillian

from the Schaller-Brandes exponent by means of the re-
lation

LZ =

∫ 1

0

dsesZ(t)

[
dZ(t)

dt

]
e−sZ(t)ds. (7)

Of course, this refined weak coupling Liouvillian satisfies
limt→∞ LZ(t) = LD.

III. SPIN-BOSON MODEL IN THE REFINED
WEAK COUPLING LIMIT

For the spin-boson model the system, environment,
and interaction Hamiltonians are given by HS = ω0

2 σz,

HE =
∑
k ωka

†
kak, and V =

∑
k gkσx(ak + a†k), re-

spectively, with Pauli matrices σx and σz, and bosonic
bath operators ak. In this case the eigenoperators are
A1(∓ω0) = σ±, and the computation of the Schaller-
Brandes exponent for this model yields (Appendix B,
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FIG. 1: Dynamics in the refined weak coupling limit. The excited state population (left) shows a similar decay as for the
standard weak coupling case, even in the short-time regime. The amount of coherence encoded in the off-diagonal element ρS12

(middle) undergoes oscillations approaching the weak coupling value in the long time scale. The Lamb shift becomes time-
dependent (right); it presents long lived small oscillations towards the static weak coupling value in the asymptotic limit. For
these computations we have taken an Ohmic spectral density with exponential cut-off, and parameters α = 0.05 and ωc = 5ω0

(see main text).

Sec. 3)

Z(t)[ρS ] =− i[Ξ(t, T )σz, ρS ]

+
∑

µ,ν=+,−
Γµν(t, T )[σνρSσ

†
µ − {σ†µσν , ρS}],

(8)

here σ± = (σx±iσy)/2 are the lowering and raising Pauli
matrices and the coefficients are given by

Ξ(t, T ) =
1

4π

∫ ∞
−∞

dωt2
{

sinc2
[

(ω0−ω)t
2

]
− sinc2

[
(ω0+ω)t

2

]}{
P.V.

∫ ∞
0

dυJ(υ)
[
n̄T (υ)+1
ω−υ + n̄T (υ)

ω+υ

]}
, (9)

Γ−−(t, T ) =

∫ ∞
0

dωt2J(ω)
{

[n̄T (ω) + 1]sinc2
[

(ω0−ω)t
2

]
+ n̄T (ω)sinc2

[
(ω0+ω)t

2

]}
, (10)

Γ++(t, T ) =

∫ ∞
0

dωt2J(ω)
{

[n̄T (ω) + 1]sinc2
[

(ω0+ω)t
2

]
+ n̄T (ω)sinc2

[
(ω0−ω)t

2

]}
, (11)

Γ+−(t, T ) = Γ∗−+(t, T ) =

∫ ∞
0

dωt2J(ω)[2n̄T (ω) + 1]e−iω0tsinc
[

(ω0+ω)t
2

]
sinc

[
(ω0−ω)t

2

]
, (12)

where J(ω) is the spectral density of the bath, n̄T (ω) =
[exp(ω/T ) − 1]−1 is the mean number of bosons in the
bath with frequency ω, and sinc(ω) := sinω

ω .
In Fig. 1 (left and middle) we represent the population

ρS11 and coherence |ρS12| in the refined weak coupling.
We compare them with their values in the standard weak
coupling (semigroup eLDt) for different temperatures and
for an Ohmic spectral density J(ω) = αωe−ω/ωc (α =
0.05, ωc = 5ω0). It can be seen both dynamics differ in
the small time regime where the standard weak coupling
limit fails, but approach the same value for long times as
expected.

Notably, it is possible to obtain a closed expression for
the refined weak coupling Liouvillian for the spin-boson
model. This is so because the different summands in the
Schaller-Brandes exponent, Eq. (8), close a Lie algebra.
This, jointly with Eq. (7) lead to a Liouvillian with the

same form as Z(t):

dρ̃S
dt

= LZ(t)[ρS ] = −i[∆(t, T )σz, ρS ]

+
∑

µ,ν=+,−
γµν(t, T )[σνρSσ

†
µ − {σ†µσν , ρS}], (13)

where the explicit expressions of ∆(t, T ) and γµν(t, T )
are provided in Appendix A. This is a very remark-
able result, because, to the best of our knowledge, this
is the most accurate master equation for the weakly cou-
pled spin-boson model that guarantees complete positiv-
ity. Furthermore it allows to study how decay rates and
energy shifts vary as a function of the time in the short
time scale. For instance in Fig. 1 (right), we depict
the evolution of the refined weak coupling Lamb shift
∆(t, 0). It is shown the way that the energy levels are
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initially renormalized and reach, after some transient, the
standard Lamb shift as computed by the weak coupling
procedure. Notably, the oscillations of ∆(t, 0) decay very
slow, and account for a reversible exchange of energy be-
tween system and environment not predicted with the
standard semigroup approach. The experimental deter-
mination of ∆(t, 0) may be used as an indicator for the
time when system and environment started interacting
and the strength of this interaction.

IV. NON-MARKOVIANITY IN THE
SPIN-BOSON MODEL

It is easy to check that for any diagonal state ρd in
the basis of eigenstates of HS , Z(t)[ρd] is also a diagonal
state. Thus eZ(t) is an incoherent operation [62] and any
measure of coherence must decrease monotonically for a
Markovian (or CP-divisible) eZ(t) [63]. As exemplified in
Fig. 1 (middle), the absolute value of the nondiagonal
component |ρS12| is not monotonically decreasing, and
since |ρS12| is indeed a measure of coherence for a qubit
[62], we can certainly assert that the dynamics we are
studying is non-Markovian.

Actually, the spin-boson model in the refined weak cou-
pling limit presents a rich and odd non-Markovian phe-
nomenology. A remarkable feature is that entanglement,
as a difference of coherence, does present non-Markovian
effects which could be used to witness non-Markovianity
[8]. More specifically, entanglement between the spin sys-
tem and an inert ancilla decreases monotonically with
time [see Fig. 2 (left)]. However the amount of coherence
of the same state presents revivals. This strange phe-
nomenon differentiates in a dynamical way the concepts
of entanglement and coherence. In addition, the oscilla-
tory behavior is also shared by other non-Markovinanity
witnesses as the trace distance [7], see Fig. 2 (middle).
Note that in our computations we have taken the loga-
rithmic negativity [64] and the l1-measure of coherence
[62], which are parallel proposals for quantifying entan-
glement and coherence, respectively.

The instantaneous amount of non-Markovianity can be
quantified by means of the function g(t) as defined in [8],
which in terms of the Liouvillian LZ has the form

g(t) = lim
ε→0+

‖[1+ εLZ(t)⊗ 1]|Φ〉〈Φ|‖1 − 1

ε
≥ 0, (14)

where ‖ · ‖1 denotes the trace norm and |Φ〉 is the maxi-
mally entangled state between the system and some an-
cilla of the same dimension. Alternatively, this func-
tion can also be obtained by computing the canonical
decay rates of the Liouvillian [65]. One easily obtains
g(t) = 1

2 [|λ+(t)| − λ+(t) + |λ−(t)| − λ−(t)] where the
canonical decay rates are:

λ±(t) =
γ++(t)+γ−−(t)±

√
[γ++(t)−γ−−(t)]2+4|γ+−(t)|2

2 .
(15)

In Fig. 2 (right) we have represented the function g(t)
for different temperatures, obtaining larger period of non-
Markovianity at low temperatures. This behavior fit with
the intuition regarding the width of the bath correlation
functions, which in this case increases very rapidly as T
approaches 0 [66]. The case of T → 0 is actually very
relevant. In the inset plot of Fig. 2 (right) we have plot-
ted λ−(t) for T = 0 (bath in the vacuum). It becomes
zero at long times because the refined Liouvillian LZ(t)
approaches to the standard weak coupling Liouvillian.
This only has one nonzero decay rate at T = 0: the one
associated to the emission process related to λ+(t) for
long times. Since the function λ−(t) remains negative
for most of the time where the system evolves qualita-
tively, this can be thought as a form of “quasi-eternal
non-Markovianity”. The extreme case of “eternal non-
Markovianity” introduced in [65] denotes the situation
where the dynamics is non-Markovian for all time in-
stant. We know see that the spin-boson model in the
refined weak coupling limit presents a weak form of that
case, where non-Markovianity is not kept eternally, but
during the time period where the induced system change
is mostly relevant.

V. CONCLUSIONS

We have studied the non-Markovian features of the re-
fined weak coupling limit proposed by Schaller and Bran-
des in [39] by applying it to the concrete example of the
spin-boson model. Our conclusion is that this technique
is not only able to account for highly non-Markovian ef-
fects, but that actually the spin-boson model presents a
rich and new phenomenology of non-Markovianity. The
amount of entanglement with an ancilla does not show
revivals [8], however the amount of coherence does it.
This surprising effect represents a new dynamical differ-
ence between entanglement and coherence. In addition,
the system is more non-Markovian as the temperature
decreases, and becomes non-Markovian for every time
instant during the period of qualitative evolution for an
environment at zero temperature. This effect reminds
the case “ethernal non-Markovianity” theroretically pro-
posed in [65]. We may see know that the ubiquitous
spin-boson model can behave very similarly.

Furthermore, we find that time-dependent Lamb shift
term, describing a reversible exchange of energy between
system and environment. This is not detected by the
standard weak coupling treatment where the environ-
ment leads only to irreversibilities.

Besides the fundamental interest on these new effects,
the large amount of controlled systems well described by
the paradigmatic spin-boson model provides this work
with a practical perspective. Thus, the results here re-
ported are very suited to be verified experimentally in
platforms of AMO and solid-state physics.
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FIG. 2: Non-Markovian features of the spin-boson model in the refined weak coupling limit. The entanglement (logarithmic
negativity) between the system and an inert ancilla initially prepared in a maximally entangled state |Φ〉 decays monotonically.
However, the coherence (l1-measure of coherence [62]) of the same state presents revivals (left). The trace distance between
two the ±1-eigenstates of σy also shows a non-monotonic decay (middle). The g(t) function [8] is also plotted for several
temperatures (right). As expected, the dynamics is non-Markovian (non-divisible) in the short-time scale. For T = 0 the
dynamics is non-divisible at any time instant in the period where the system evolves qualitatively (up to 27ω−1

0 in the plot).
The inset plot in the right part shows the time evolution of the smallest canonical decay rate. For these computations we have
taken an Ohmic spectral density with exponential cut-off, and parameters α = 0.05, and ωc = 5ω0 (see main text).
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Appendix A: Refined weak coupling Liouvillian for the spin-boson model

The Schaller-Brandes exponent Z(t) is a linear combination of the operators Zz = [σz, ·], Z+− = σ+(·)σ− −
{σ−σ+, ·}/2, Z−+ = σ−(·)σ+ − {σ+σ−, ·}/2, Z−− = σ−(·)σ−, and Z++ = σ+(·)σ+. These operators close a Lie
algebra

[Z+−,Z−+] = Z+− −Z−+, [Z++,Z−−] = Zz/2, [Zz,Z−−] = 4Z++, [Zz,Z++] = −4Z−−, (A1)

with zero value for the rest of cases. This, because Eq. (7), leads immediately to Eq. (13). After a rather tedious but
straightforward algebra the coefficients in the Liouvillian can be computed to be:

γ++ =
1

(Γ++ + Γ−−)2

{[
(e−(Γ+++Γ−−) − 1

]
(Γ++Γ̇−− − Γ̇++Γ−−) + (Γ̇++ + Γ̇−−)(Γ2

++ + Γ++Γ−−)
}
, (A2)

γ−− =
1

(Γ++ + Γ−−)2

{[
e−(Γ+++Γ−−) − 1

]
(Γ̇++Γ−− − Γ++Γ̇−−) + (Γ̇++ + Γ̇−−)(Γ2

−− + Γ++Γ−−)
}
, (A3)

(A4)

γ+− = γ∗−+ =
1

2 (|Γ+−|2 − Ξ2)

{
2Γ+−[Re(Γ̇−+Γ+−)− Ξ̇Ξ]− i(Γ̇+−Ξ− Γ+−Ξ̇)

[
1− cosh(2

√
|Γ+−|2 − Ξ2)

]
+i

Γ+−Im(Γ−+Γ̇+−) + Ξ(Γ+−Ξ̇− Γ̇+−Ξ)√
|Γ+−|2 − Ξ2

sinh(2
√
|Γ+−|2 − Ξ2)

}
, (A5)

∆ =
1

2 (|Γ+−|2 − Ξ2)

{
2Ξ[Re(Γ̇−+Γ+−)− Ξ̇Ξ] + Im(Γ̇−+Γ+−)

[
1 + cosh(2

√
|Γ+−|2 − Ξ2)

]
+

Re(Γ̇−+Γ+−)Ξ− |Γ+−|2Ξ̇√
|Γ+−|2 − Ξ2

sinh(2
√
|Γ+−|2 − Ξ2)

}
. (A6)

Here, for the sake of compactness, we have omitted the (t, T ) dependence of the coefficients and denoted dX/dt ≡ Ẋ.
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Appendix B: Further Details About The Refined Weak Coupling Limit

Consider the total Hamiltonian H = HS + HE + V with the usual product initial condition ρ(0) = ρS(0) ⊗ ρE ,
where ρE is a stationary state of the environment [HE , ρE ] = 0. In the interaction picture the reduced state at time
t is

ρ̃S(t) = TrE
[
U(t, 0)ρS(0)⊗ ρEU†(t, 0)

]
, (B1)

where

U(t, 0) = T e−i
∫ t
0
Ṽ (t′)dt′ (B2)

is the unitary propagator, X̃(t) stands for the operator X in the interaction picture, and T denotes the time-ordering
operator. The propagator to the first non-trivial order in Eq. (B1) gives

ρ̃S(t) = ρS(0)− 1

2
T
∫ t

0

dt1

∫ t

0

dt2TrE

[
Ṽ (t1),

[
Ṽ (t2), ρS(0)⊗ ρE

]]
+O(V 3). (B3)

Here we have made the common assumption that the first order term vanishes Tr[Ṽ (t)ρB ] = 0 [9]. From the definition
of the time-ordering operation we obtain

T
∫ t

0

dt1

∫ t

0

dt2TrE

[
Ṽ (t1),

[
Ṽ (t2), ρS(0)⊗ ρE

]]
=

∫ t

0

dt1

∫ t

0

dt2θ(t1 − t2)TrE

[
Ṽ (t1),

[
Ṽ (t2), ρS(0)⊗ ρE

]]
+

∫ t

0

dt1

∫ t

0

dt2θ(t2 − t1)TrE

[
Ṽ (t2),

[
Ṽ (t1), ρS(0)⊗ ρE

]]
≡ 2Z1[ρS(0)] + Z2[ρS(0)] + Z3[ρS(0)], (B4)

where, after expanding the double commutators we find three kind of terms, Z1, Z2 and Z3. The first one is given by

Z1[ρS(0)] = −
∫ t

0

dt1

∫ t

0

dt2θ(t1 − t2)TrE

[
Ṽ (t1)ρS(0)⊗ ρE Ṽ (t2)

]
+ θ(t2 − t1)TrE

[
Ṽ (t1)ρS(0)⊗ ρE Ṽ (t2)

]
= −

∫ t

0

dt1

∫ t

0

dt2TrE

[
Ṽ (t1)ρS(0)⊗ ρE Ṽ (t2)

]
; (B5)

defining W (t) :=
∫ t

0
Ṽ (t′)dt′ we have

Z1[ρS(0)] = −TrE [W (t)ρS(0)⊗ ρEW (t)] . (B6)

The factor 2 in front of Z1 in Eq. (B4) comes from another analogous term corresponding to the exchange t1 ↔ t2
inside the double commutator. The second term goes like

Z2[ρS(0)] =

∫ t

0

dt1

∫ t

0

dt2θ(t1 − t2)TrE

[
Ṽ (t1)Ṽ (t2)ρS(0)⊗ ρE

]
+ θ(t2 − t1)TrE

[
Ṽ (t2)Ṽ (t1)ρS(0)⊗ ρE

]
=

∫ t

0

dt1

∫ t

0

dt2[θ(t1 − t2) + θ(t2 − t1)]TrE

[
Ṽ (t2)Ṽ (t1)ρS(0)⊗ ρE

]
+

∫ t

0

dt1

∫ t

0

dt2θ(t1 − t2)TrE

{
[Ṽ (t1), Ṽ (t2)]ρS(0)⊗ ρE

}
= TrE

[
W 2(t)ρS(0)⊗ ρE

]
+

∫ t

0

dt1

∫ t

0

dt2θ(t1 − t2)TrE

{
[Ṽ (t1), Ṽ (t2)]ρS(0)⊗ ρE

}
. (B7)

Similarly the remaining term can be expressed as

Z3[ρS(0)] = TrE
[
ρS(0)⊗ ρEW 2(t)

]
−
∫ t

0

dt1

∫ t

0

dt2θ(t1 − t2)TrE

{
ρS(0)⊗ ρE [Ṽ (t1), Ṽ (t2)]

}
. (B8)

Thus, everything together gives ρ̃S(t) ≡ ρS(0) + Z(t)[ρS(0)] +O(V 3) with

Z(t)[ρS(0)] = −1

2
(2Z1[ρS(0)] + Z2[ρS(0)] + Z3[ρS(0)])

= −i[Λ(t), ρS(0)] + TrE

[
W (t)ρS(0)⊗ ρEW (t)− 1

2

{
W 2(t), ρS(0)⊗ ρE

}]
. (B9)
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Here, the self-adjoint operator Λ(t) is given by

Λ(t) =
1

2i

∫ t

0

dt1

∫ t

0

dt2θ(t1 − t2)TrE

{
[Ṽ (t1), Ṽ (t2)]ρE

}
=

1

2i

∫ t

0

dt1

∫ t

0

dt2sgn(t1 − t2)TrE

[
Ṽ (t1)Ṽ (t2)ρE

]
, (B10)

where we have used the relation θ(x) = [1 + sgn(x)]/2. By taking the spectral decomposition of ρE it is immediate to
check that for any fixed t, Z(t) has the GKSL form [59].

Since at first non-trivial order we have

ρ̃S(t) = [1+ Z(t)]ρA(0) +O(V 3) ' eZ(t)ρA(0), (B11)

the refined weak coupling dynamics given by eZ(t) is a completely positive dynamical map that approaches the exact
one at the short time scale. Furthermore, Schaller and Brandes [39] proved that for large times eZ(t) provides a
consistent second order approximation that becomes closer to the usual weak coupling dynamics. For the sake of
completeness we shall reproduce their result in the following subsections.

1. Schaller-Brandes Exponent in Terms of the HS Eigenoperators

The interaction Hamiltonian can always be written in the form

V =
∑
k

Ak ⊗Bk, (B12)

where A†k = Ak, B†k = Bk are seft-adjoint operators of system and environment respectively [9]. Now, assuming for
the sake of simplicity that the system Hamiltonian HS has discrete spectra and |ε〉 are the associated eigenstates
HS |ε〉 = ε|ε〉, we define

Ak(ω) =
∑

ε−ε′=ω
|ε〉〈ε|Ak|ε′〉〈ε′|, (B13)

where the summation runs over every pair of energies ε and ε′ such that their difference is ω. The operators Ak(ω) so
defined are in fact eigenoperators of the superoperator [HS , ·] with eigenvalue −ω:

[HS , Ak(ω)] = −ωAk(ω), (B14)

so that in the interaction picture Ãk(ω, t) = e−iωtAk(ω). Moreover, they satisfy the following properties (see e.g. [9]):

A†k(ω) = Ak(−ω), (B15)∑
ω

Ak(ω) =
∑
ω

A†k(ω) = Ak, (B16)

[HS , A
†
k(ω)Al(ω)] = 0. (B17)

Thus the interaction Hamiltonian in the interaction picture can be written as:

Ṽ (t) =
∑
ω,k

e−iωtAk(ω)⊗ B̃k(t) =
∑
ω,k

eiωtA†k(ω)⊗ B̃k(t). (B18)

Using these decompositions in Eq. (B10) we obtain:

Λ(t) =
∑
ω,ω′

∑
k,l

Ξkl(ω, ω
′, t)A†k(ω)Al(ω

′), (B19)

with

Ξkl(ω, ω
′, t) =

1

2i

∫ t

0

dt1

∫ t

0

dt2sgn(t1 − t2)ei(ωt1−ω
′t2)Tr

[
B̃k(t1 − t2)BlρE

]
. (B20)
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Here, we have assumed that the environment is in a stationary state [HE , ρE ] = 0 so that the environmental correlation
functions just depend on the time difference (t1 − t2). Similarly we can write the non-Hamiltonian part of (B9) in
terms of eigenoperators Ak(ω) so that Schaller-Brandes exponent yields

Z(t)[ρS(0)] = −i[Λ(t), ρS(0)] +
∑
ω,ω′

∑
k,l

Γkl(ω, ω
′, t)
[
Al(ω

′)ρS(0)A†k(ω)− 1
2{A

†
k(ω)Al(ω

′), ρS(0)}
]
, (B21)

with:

Γkl(ω, ω
′, t) =

∫ t

0

dt1

∫ t

0

dt2e
i(ωt1−ω′t2)Tr

[
B̃k(t1 − t2)BlρE

]
. (B22)

2. Long time limit

In order to study the behavior of Z(t) for long times we first prove a preliminary lemma.

Lemma. The following identity holds true in the distributional sense

lim
t→∞

t sinc
[

(ω+a)t
2

]
sinc

[
(ω+b)t

2

]
= 2πδa,bδ(ω + a). (B23)

Namely, for any (sufficiently well-behaved) test function f(ω) we have

lim
t→∞

∫
I

f(ω)t sinc
[

(ω+a)t
2

]
sinc

[
(ω+b)t

2

]
dω = 2πδa,bf(−a), (B24)

for −a ∈ I, and zero otherwise.

Proof. Let f(ω) be a differentiable function with compact support I = (−ω0, ω0). Suppose a 6= b, using that sinc(x) =
sin(x)/x and decomposing in partial fractions we obtain

lim
t→∞

∫
I

f(ω)t sinc
[

(ω+a)t
2

]
sinc

[
(ω+b)t

2

]
dω = lim

t→∞

4

(b− a)

∫
I

f(ω)

{
sin[ (ω+a)t

2 ] sin[ (ω+b)t
2 ]

t(ω + a)

−
sin[ (ω+a)t

2 ] sin[ (ω+b)t
2 ]

t(ω + b)

}
dω. (B25)

Since
∣∣ sin(x/2)

x

∣∣ ≤ 1
2 each of both integrands on the right hand side are dominated by |f(ω)|/2 which is integrable in

I. Then the Lebesgue’s dominated convergence theorem [68] allows us to exchange the limit and the integral sing
obtaining straightforwardly zero integrals.

Consider now the case a = b. Then, we have

lim
t→∞

∫
I

f(ω)t sinc2

[
(ω + a)t

2

]
dω = lim

t→∞

{∫
I

[f(ω)− f(−a)]t sinc2

[
(ω + a)t

2

]
dω + f(−a)

∫
I

t sinc2

[
(ω + a)τ

2

]
dω

}
,

(B26)
where we have added and subtracted f(−a). Integrating by parts the last integral of the right hand side yields

lim
t→∞

∫
I

t sinc2

[
(ω + a)t

2

]
dω = 2 lim

t→∞

{
cos[t(ω + a)]− 1

t(ω + a)

∣∣∣∣ω0

−ω0

+

∫ t(ω+a)

0

sinc(x)dx

∣∣∣∣∣
ω0

−ω0

}
= 2π, (B27)

for −a ∈ I, as
∫∞

0
sinc(x)dx = π

2 . It is also straightforwardly checked that if −a /∈ I, the integral vanishes. Finally,
the remaining integral in Eq. (B26) is

lim
t→∞

∫
I

[f(ω)− f(−a)]t sinc2

[
(ω + a)t

2

]
dω = lim

t→∞
4

∫
I

[f(ω)− f(−a)]

(ω + a)

sin2
[

(ω+a)τ
2

]
(ω + a)t

dω. (B28)

The above integrand is dominated by the function
∣∣∣ [f(ω)−f(−a)]

(ω+a)

∣∣∣, which has no problem in ω = −a because f(ω) is

supposed to be differentiable everywhere. Therefore the exchange of the limit and the integral sign gives the zero
value.
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All of this is equally applicable to a sufficiently fast decaying function f(ω) but not necessarily with compact support.
For that case we may split the integration interval in three subintervals I = (−∞,−ω0) ∪ (−ω0, ω0) ∪ (ω0,∞) with
−a ∈ (−ω0, ω0). The integrals on (−∞,−ω0) and (ω0,∞) become zero due to the Lebesgue’s dominated convergence
theorem for sufficiently fast decaying f(ω).

Let us now reproduce the Schaller and Brandes result [39] for the long time limit of Z(t). Consider Γkl(ω, ω
′, t) in

Eq. (B22),

Γkl(ω, ω
′, t) =

∫
dυ

∫ t

0

dt1

∫ t

0

dt2e
i[(ω−υ)t1−(ω′−υ)t2]Tr [Bk(υ)BlρE ] , (B29)

where we have used the decomposition Bk =
∫
dυBk(υ) in terms eigenoperators Bk(υ) of HE with frequency υ. This

is similar to Eq. (B16) but the sum is here substituted by an integral since the environment is assumed to have an

infinite (potentially continuous) number of degrees of freedom. Performing the integrals
∫ t

0
dseixs = teixt/2sinc(xt/2)

we obtain

Γkl(ω, ω
′, t) =

∫
dυt2 exp

[
i (ω−ω′)t

2

]
sinc

[
(ω−υ)t

2

]
sinc

[
(ω′−υ)t

2

]
Tr [Bk(υ)BlρE ] . (B30)

Therefore, due to the Lemma above, we can assert that

lim
t→∞

Γkl(ω, ω
′, t)

t
= 2πδω,ω′Tr [Bk(υ)BlρE ] . (B31)

The quantity γkl := 2πTr [Bk(υ)BlρE ] is just the decay rate in the standard weak coupling limit [9] and δω,ω′ performs
the secular approximation.

For the Hamiltonian part one needs a bit more effort. Firstly, we introduce the decomposition Bk =
∫
dυBk(υ) in

the expression sgn(t1 − t2)Tr
[
B̃k(t1 − t2)BlρE

]
obtaining:∫

dυ sgn(τ)e−iυτ [Bk(υ)BlρE ] , (B32)

with τ = t1 − t2. Now we take Fourier transform with respect to τ ,∫
dυ

∫ ∞
−∞

dτ sgn(τ)ei(ϕ−υ)τ [Bk(υ)BlρE ] . (B33)

A well-known result in distribution theory says that the Fourier transform of the sign function sgn(τ) in the distribu-
tional sense is 2i times the Cauchy principal value distribution [68], namely

2iP.V.

∫
dυ

[Bk(υ)BlρE ]

ϕ− υ
. (B34)

Therefore, by taking inverse Fourier transform we find the relation

sgn(τ)Tr
[
B̃k(τ)BlρE

]
=

i

π

∫ ∞
−∞

dϕe−iϕτP.V.

∫
dυ

[Bk(υ)BlρE ]

ϕ− υ
. (B35)

This equality combined with Eq. (B20) yields

Ξkl(ω, ω
′, t) =

1

2π

∫ ∞
−∞

dϕ

∫ t

0

dt1

∫ t

0

dt2e
i[(ω−ϕ)t1−(ω′−ϕ)t2]P.V.

∫
dυ

[Bk(υ)BlρE ]

ϕ− υ
. (B36)

Finally, by following the same steps as in Eq. (B29) for the Γkl(ω, ω
′, t), it is straightforward to prove that

lim
t→∞

Ξkl(ω, ω
′, t)

t
= δω,ω′P.V.

∫
dυ

[Bk(υ)BlρE ]

ω − υ
. (B37)

Here Skl(ω) := P.V.
∫
dυ [Bk(υ)BlρE ]

ω−υ are the shifts obtained in the standard weak coupling limit [9] and δω,ω′ performs
the secular approximation, as commented.

Summarizing, we have obtained that limt→∞Z(t)/t = LD where LD is the Liouvillian of the standard weak coupling
limit under the Born-Markov-Secular approximation. Hence for long times both dynamics are the same eZ(t) ' eLDt.
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3. Schaller-Brandes Exponent for the Spin-Boson Model

The interaction Hamiltonian reads V =
∑
lAl ⊗ Bl = A1 ⊗ B1, for A1 = σx and B1 =

∑
k gk(ak + a†k). Moreover

we have that

A1 = A1(−ω0) +A1(ω0), and B1 =
∑
k

B1(ωk) +B1(−ωk), (B38)

with A1(∓ω0) = σ±, and B1(ωk) = gkak and B1(−ωk) = gka
†
k, the eigenoperators of [HS , ·] and [HE , ·], respectively.

Considering the environmental modes to be in thermal equilibrium, ρE = ρβ = e−βHS/Tr(e−βHS ), the bath
correlation functions become

Tr
[
B̃1(t1 − t2)B1ρE

]
=
∑
k

g2
k

{
e−iωk(t1−t2)Tr

[
aka
†
kρβ

]
+ eiωk(t1−t2)Tr

[
a†kakρβ

]}
=

∫ ∞
0

dωJ(ω){e−iω(t1−t2)[nT (ω) + 1] + eiω(t1−t2)nT (ω)}, (B39)

where n̄T (ω) = Tr(a†kakρβ) = [exp(ω/T )− 1]−1, and we have taken the continuous limit in the environmental modes
by introducing the bath spectral density J(ω) ∼

∑
k g

2
kδ(ω − ωk).

Thus, the coefficient Γ(ω, ω′, t) for ω = ω′ = −ω0 in (B22) is

Γ(−ω0,−ω0, t) ≡ Γ++(t, T ) =

∫ ∞
0

dωJ(ω)

∫ t

0

dt1

∫ t

0

dt2e
−iω0(t1−t2){e−iω(t1−t2)[nT (ω) + 1] + eiω(t1−t2)nT (ω)}

=

∫ ∞
0

dωt2J(ω)
{

[n̄T (ω) + 1]sinc2
[

(ω0+ω)t
2

]
+ n̄T (ω)sinc2

[
(ω0−ω)t

2

]}
. (B40)

Similarly, the remaining coefficients written in the main text are Γ−−(t, T ) = Γ(ω0, ω0, t) and Γ+−(t, T ) = Γ∗−+(t, T ) =
Γ(−ω0, ω0, t).

For the shifts, we introduce (B39) in Eq. (B20) and use the Fourier transform to substitute the function sgn(t1− t2)
in terms of the principal value of the integral as in Eq. (B35). Then by taking into account that σ+σ− = (1 +
σz)/2, σ−σ+ = (1− σz)/2, and σ2

+ = σ2
− = 0, the Hermitian part of the Schaller-Brandes exponent can be written as:

Λ(t) =

[
Ξ(ω0, ω0, t)− Ξ(−ω0,−ω0, t)

2

]
σz ≡ Ξ(t, T )σz, (B41)

with

Ξ(ω0, ω0, t) =
1

2π

∫ ∞
−∞

dωt2sinc2
[

(ω0−ω)t
2

]{
P.V.

∫ ∞
0

dυJ(υ)

[
n̄T (υ) + 1

ω − υ
+
n̄T (υ)

ω + υ

]}
, (B42)

Ξ(−ω0,−ω0, t) =
1

2π

∫ ∞
−∞

dωt2sinc2
[

(ω0+ω)t
2

]{
P.V.

∫ ∞
0

dυJ(υ)

[
n̄T (υ) + 1

ω − υ
+
n̄T (υ)

ω + υ

]}
. (B43)
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