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We observe the nonlinearity of the Jaynes-Cummings (JC) ladder in the Autler-Townes spec-
troscopy of the hyperfine ground states for a Rydberg-dressed two-atom system. Here the role of
the two-level system in the JC model is played by the presence or absence of a collective Rydberg
excitation, and the bosonic mode manifests as the number n of single-atom spin flips, symmetrically
distributed between the atoms. We measure the normal-mode splitting and /n nonlinearity as a
function of detuning and Rabi frequency, thereby experimentally establishing the isomorphism with

the JC model.

The Jaynes-Cummings (JC) model [1] describes the
interaction between a two-level atom and a single mode
of the quantized electromagnetic field. While originally
introduced in the context of cavity quantum electrody-
namics (QED) [2-5] for single atoms [6-9], it applies also
in solid state systems, where a qubit (encoded in two dis-
crete energy levels) is strongly coupled to a cavity mode
in the optical or microwave regime, as observed in quan-
tum dots [10-12], and most dramatically in supercon-
ducting circuits in which a phase, flux, or charge qubit is
coupled to a quantized mode of a microwave cavity [13—
15]. More generally, the JC model describes a spin-boson
system where a qubit is coupled to a bosonic mode, e.g.,
it describes the dynamics of trapped atomic ions in which
two internal atomic levels are coupled to a phononic mode
of ion vibration [16].

Given its simplicity, the nonlinear coupling of the JC
model has been a staple of quantum optics for decades
as a platform for quantum control [17, 18]. At its base is
the spectrum of dressed states, the well known JC ladder,
which exhibits nonlinear normal-mode splitting propor-
tional to /n, for n bosons coupled to the qubit on res-
onance. This nonlinearity is responsible for the collapse
and revival of Rabi oscillations [19-21], and the genera-
tion of nonclassical states, such as squeezed states [22-26]
and cat states. Spectroscopy of the JC ladder has been
carried out in a single two-level atom in a high finesse cav-
ity [7] and in a superconducting microwave circuit QED
system [13, 27].

In this letter we perform spectroscopy on a completely
different instantiation of the JC model — symmetric
Rydberg-blockaded atomic ensembles [28-31]. Here, the
role of the qubit is played by the presence or absence of
a collective Rydberg excitation, and the bosonic mode is
the symmetric many-body ground state of an ensemble
of n identical atoms that can be coupled to the Ryd-
berg level. Similar to the cavity QED system, there is a
\/n nonlinearity arising from the Rydberg blockade, and
the symmetric coupling between a single Rydberg-excited
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atom and the collective ground-state of the atomic en-
semble [30-36]. In this system, the dressed states of
the JC ladder are the laser-induced Rydberg-dressed
states [32, 37]. The normal mode splitting is intimately
related to the Autler-Townes splitting of the light shifted
states [38, 39]. The nonlinearity of the dressed-state spec-
trum was recently employed with two atoms to generate
Bell states based on a spin-flip blockade [40].

Here we study the Rydberg-dressed protocol in which
we use a laser to dress one of the clock states of ground-
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FIG. 1. (a) Energy level diagram of the **Cs atom. The
states are |0) = |6S;/2, F' = 3,mp =0) and [1) = [6S;2, F =
4,mp = 0), where A, is the detuning from |1) to |r) =
|54P5/5,my = +3/2) transition. (b) Energy level diagram
of an ensemble of N bare state atoms, symmetrically coupled
under the assumption of a perfect Rydberg blockade; |g,n) =
(02N 1)) Cand Je,n) = {0)EY T DENRY L
(c) Energy level diagram of dressed ground state atoms show-
ing the Autler-Townes splitting and exhibiting the nonlinear-
ity of the JC model. The states of |g,n) and |e,n — 1) are
the ground-like and Rydberg-like dressed states, respectively;
[g,n) = cos(0,/2)|g,n) + sin(6,/2)|e,n — 1) and [€,n — 1) =
cos(0n/2)|e,n—1)—sin(0,/2)|g, n), where tan 6,, = /nQ,/A,.



state cesium with an excited Rydberg state [31, 40-43].
The resulting Rydberg-dressed states [37], are a super-
position of a Rydberg state and a ground clock state
allowing both a strong, tunable electric dipole-dipole in-
teraction (EDDI) and a long coherence time. We measure
the resulting JC ladder with two-photon stimulated Ra-
man spectroscopy on the microwave clock transitions in
the ground state manifold. While the nonlinearity of the
Hamiltonian plays an important role in our previous ex-
periments [40, 43], due to advances in the control of our
apparatus, we are now able to explore the JC Hamilto-
nian in complete detail.

In our model [31], each atom is described by three
states {|0),]1),|r)}, where we encode in the 33Cs clock
states, |0) |6S1/2, FF = 3,mp = 0) and [1) =
|6S1/2, F = 4,mp = 0), and |r) = |54P3/5,m; = 3/2)
is a chosen Rydberg level coupled to |1) via an optical
transition (the detuning is small compared to the clock-
state splitting) as shown in Fig. 1 (a). The Hamiltonian

for the atomic ensemble is H = Ef\il H® 4+ Vpp, where
H® = thF|1><1|(i)
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is the Hamiltonian for the 7" atom coupling to the laser
in the rotating frame, and where fwgp is the ground-
state hyperfine splitting; zero energy is set at the |0)
state. We assume the laser Rabi frequency €2, and detun-
ing A, are equal for all atoms. Vpp is the Hamiltonian
describing the EDDI-induced blockade interaction. If we
assume that all atoms are within the blockade radius,
and that the blockade is perfect, the spatial dependence
of Vpp is no longer relevant and the Hamiltonian is sym-
metric under the exchange of any two atoms. We can thus
restrict our attention solely to symmetric states. For a
fixed total number of atoms IV, the basis for the symmet-
ric subspace is determined by two indices, the number of
atoms n, in the |r) state, and the number of atoms n
in the |1) state. In the perfect blockade limit, second-
and-higher excitations are prevented, and Vpp can be
conveniently accounted for by projecting into the sub-
space of states with n,. < 1. Our state space of interest is
thus indexed by n and a binary variable {e, g} denoting
the presence of a Rydberg excitation or all atoms in the
electronic ground state. Explicitly, the bare basis states
for the symmetric, perfectly blockaded subspace are
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sym’
where “sym” denotes symmetrization over all possible
permutations. Note, the states |g,n) are the Dicke states
associated with N-qubits [44]. For example |g,1) is the
W-state, associated with one atom excited to |1) and the
remainder in |0) (see Fig. 1 (b)).

The Rydberg laser excites atoms in the bare ground
state |g,n) to its Rydberg counterpart |e,n) state, with
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FIG. 2. Experimental Setup. The Rydberg laser and the Ra-
man lasers are aligned along the x-axis. Two optical tweezers
are formed by two lasers with an angular separation 6. In
this set-up, eight electrodes null the electric fields near the

trapped atoms. The bias magnetic field is applied along the
X-axis.
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a Rabi frequency enhanced by the collective factor /n.
The total Hamiltonian in the bare symmetric basis is thus

N
H= Z (nthF|g,n>(g,n|

n=0
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This is isomorphic to the well known cavity QED
JC Hamiltonian Hjyc = hwala + TwegG 16— +
hg (&Tﬁ_ + &&+), projected onto the bare basis for up to
N excitations [31]. Here the cavity frequency w. — wyr;
the bosonic mode is the number of atoms symmetrically
excited to |1). The two-level system is the presence or
absence of the symmetric single Rydberg excitation, with
energy wey — wpr — A,. The vacuum Rabi frequency
2g — Q. The eigenstates of the JC Hamiltonian are the
Rydberg-dressed states,

g,m),  (4)
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where tan8,, = /n€./A,. In the case of A, > 0 (< 0),
the ground-like dressed state |g,n) is in the blue (red)-
detuned microwave frequencies, and the Rydberg-like
dressed state |&,n — 1) is in the red (blue)-detuned mi-
crowave frequencies as shown in Fig. 3. The JC ladder is
given by eigenvalues of the dressed states,

Fn s = nhwsrt o (~A & sign(A,)/iZ + 52, (6)

where the splitting |E,, + — E,, _|/k = /nf, on Rydberg
resonance (A, = 0). As in [40], this results in an interac-
tion strength between two Rydberg-dressed atoms, which
is determined by the nonlinear shift of the dressed state.



The nonlinear shifts of the ground-like dressed state (k)
and Rydberg-like dressed state (k_) are defind as follows:

Ry = E2,+ - 2E1,+ = <§7 2|IA{|§5 2> - 2<§5 1|ﬁ|§7 1>a (7)
ko= FEy_ —2E,_ = (¢,1|H|g,1) — 2(¢,0|H|¢,0). (8)

We find k+ = 2 (A, +sign(A,) (V202 + AZ — 202 + A?))
(see Fig. 3); the nonlinear shift of the ground-like state x4 is
defined as J for A, > 0 in [40].

We demonstrate this mapping with two Rydberg-dressed
cesium atoms. Our apparatus [43] employs two laser-cooled
133Cs atoms confined in optical tweezers at 938 nm, a magic
wavelength for the *3*Cs D2 laser cooling transition. We cre-
ate the two tweezers by focusing the 938 nm light that has
passed through an AOM (acousto-optic modulator) modu-
lated at two frequencies. By controlling the two modulation
frequencies, we obtain exquisite control over the angular sep-
aration 6 of the output and thus the spatial separation of the
tweezers as shown in Fig. 2. The focusing lens is mounted in-
side an ultra-high vacuum chamber, avoiding spherical aber-
rations from vacuum viewports within the focal path. For
detection, atomic fluorescence is collected through this same
lens and detected by two single photon detectors. We nul-
lify stray electric fields near the atoms by applying voltages
to 8 electrodes surrounding the tweezers (see Fig. 2). For
fast microwave control (~1MHz) between |0) and |1), we ap-
ply two-photon stimulated Doppler-free Raman pulses with a
laser detuned ~80 GHz red from the D2 transition and mod-
ulated at the hyperfine frequency with a fiber-based EOM
(electro-optic modulator). We couple |1) to Rydberg levels
via a 319 nm single-photon excitation laser [43] with Rabi fre-
quencies up to 4.0 MHz. This approach offers a good coher-
ence time due to reduced photon scattering, and minimizes
dipole forces when compared to a two-photon Rydberg exci-
tation method.

In the experiment, the optically trapped atoms are further
cooled to ~10 K using polarization gradient cooling followed
by adiabatic lowering of the tweezers potential. A bias field of
4.6 G along & turns on, and optically pumped atoms to |1) can
be detected with > 90% efficiency. After state preparation,
the Cs atoms are brought to a close separation distance of
R ~ 2.84 ym by ramping the AOM modulation frequencies,
and a global Raman 7-pulse brings the atoms from |g,2) to
|g,0). We then apply the Rydberg laser, detuned A, from
|54P5/5,my = +3/2), to dress the |1) states (|]g,n > 0)), and
perform spectroscopy by scanning the detuning of a second
Raman transition from |g, 0) to the Rydberg-dressed states of
[9,2), |€,1), |g,1), and |€,0). As in our previous work [40], we
momentarily extinguish the optical tweezers during this step
to avoid additional light shifts from the trapping potential.
Following this step, we perform state-dependent detection on
each atom to measure the effect of the experiment. We discard
events where one or both of the atoms are lost during the
experiment and rapidly reuse the same atoms for a subsequent
measurement should they both remain. This avoids spoiling
of the data by events where either atom projects into the
Rydberg state, and enhances the data rate. Compared to
our previous work [40]; nullifying the electric field, controlling
optical scatter, and increasing the atom-to-surface distances
from &~ 2mm to 7 mm have led to an enhancement of Rydberg
state coherence and virtually eliminated Rydberg state loss,
leading to a measured lifetime of 116+19 us.

We observe the JC ladder in the case of N = 2. First,
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FIG. 3. Jaynes-Cummings ladder and its y/n nonlinearity for
two Rydberg-dressed atoms. The x-axis is the normalized
Rydberg detuning A, /., and the y-axis gives the normal-
ized microwave detuning. Two-atom Rydberg-dressed states
of |9,2) (Je,1)) are located at the upper quadrant I and III
(IT and IV), and single-atom Rydberg-dressed states of |g,1)
(|€,0)) are positioned at the lower quadrant I and III (II
and IV). The upper/lower quadrant I and III (II and IV)
are related to the ground-like (Rydberg-like) dressed states.
The red (blue) bands are theoretical predictions of the mi-
crowave frequencies for the Autler-Townes splitting, incor-
porating measured systematic drifts (5 %) in the experi-
mental parameters (A, and €.). The green lines corre-
spond to the energy of two atoms without the interaction.
Two Rydberg transitions are considered for the theoretical
plots, |6S1/2, F = 4,my = 0) — |54P3/5,m; = +3/2) and
|54P5/5,my = +1/2). The Rabi frequencies of m; = +3/2
and +1/2 are , and Q,n/\/g7 respectively. States with my =
+3/2 and +1/2 are separated by Azeeman ~ 2.13Q, with a
4.6 G magnetic field.

the Autler-Townes splitting of Rydberg-dressed ground state
atoms is measured by microwave spectroscopy as a function
of the detuning of the Rydberg excitation laser as shown in
Fig. 3. As the detuning of the Rydberg laser varies, the split-
ting of the peaks varies according to Qcry = vVnQ2 + AZ. We
compare this data with theoretical plots that include the ef-
fect of both m; = +3/2 and the nearby my = +1/2 which is
necessary to adequately explain the data. Second, we measure
the Autler-Townes splitting of two Rydberg-dressed atoms as
a function of the Rabi frequency €2, for the case of A, = 0
as shown in Fig. 4. As expected, we measure the ratio of the
slopes between single-atom splitting and two-atom splitting to
be 1.43(0.03) ~ /2, which arises from the collective enhance-
ment of the Rabi frequency in a Rydberg-coupled two-atom
system [45].
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FIG. 4. Resonant (A, =~ 0) Autler-Townes splitting of two
Rydberg-dressed atoms as a function of Rydberg-transition
Rabi frequency. The x-axis is the Rabi-frequency of a single-
atom Rydberg excitation (€2.), and the y-axis is the Autler-
Townes splitting measured by microwave spectroscopy. The
two upper and lower data trends are the splittings of two-
atom Rydberg-dressed states between [g,2) and [€,1) and
single-atom Rydberg-dressed states between |g,1) and |, 0).
The two gray bands incorporate measured systematic drifts
(5 %) in the experimental parameters (€2, and A,). The green
line corresponds to the splitting of two atoms without the in-
teraction. Based on linear fits, the ratio of the splittings is
1.43(0.03), consistent with /2.

The JC spectrum of Rydberg-dressed states are composed
of the ground-like dressed states |g,n) and the Rydberg-like
dressed states |€,n — 1) determined by A, and €, as shown
in Fig. 3. Generally, the Rydberg-like dressed state |e, 1)
is difficult to measure due to a higher loss rate which re-
duces the detection efficiency compared to the ground-like
dressed state |g,2). Thus we explore nearly the full spec-
trum of two-atom Rydberg-dressed states with an adiabatic
ramping technique, reaching admixtures exceeding 85% Ryd-
berg character. This technique includes ramping A, and €,

such that the ensemble transfers from a Rydberg-like dressed
state to the bare state |g,n) at the end before projective state
measurement. By using this technique, we significantly re-
duce loss, projection into the Rydberg state, and extend the
range of dressed states that we can measure. To detect the
dressed states at red (blue)-detuned microwave frequencies
(see Fig. 3), opposite frequency ramping directions to map
the state back to the ground state are required. The eigen-
values of the dressed states show significantly different spec-
tral character when comparing the ground-like dressed state
|9,2) and the Rydberg-like dressed state |€,1). The magni-
tude of the nonlinear shift of the ground-like dressed states
|ks| = |Fa,+ — 2E1,4] scales as |A,|7 for |A,] > Q. (see
the upper quadrant I and III of Fig. 3). However, the magni-
tude of the nonlinear shift of the Rydberg-like dressed states
|k—| = |E2,— — 2E1,—| scales as |A,| for |Ay] > Q, (see the
upper quadrant IT and IV of Fig. 3). In this regime, we demon-
strate an interaction strength of x_ /i ~ 4 MHz which is 6
times larger than previously demonstrated [40].

In conclusion, we directly observe the full spectrum of the
JC ladder and its y/n nonlinearity in a two-atom Rydberg-
dressed system. The normal-mode splitting of symmetric
atomic ensembles with a Rydberg-blockade is the hallmark of
the nonlinear coupling of the JC model. Furthermore, the full
spectrum of the Rydberg-dressed states could offer a new ap-
proach to creating entanglement, operating phase gates, and
generating more arbitrary quantum states. Arbitrary sym-
metric entangled states can be generated using quantum op-
timal control [31] or via a collective quantum logic gate using
Rydberg superatoms [35, 36]. For example, with highly effi-
cient single-atom loading and a ~10 um Blockade radius [46—
49], this could be extended to an ensemble of > 100 atoms in
2D/3D lattices [35, 50, 51].
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