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We construct the electromagnetically induced transparency (EIT) by dynamically coupling a
superradiant state with a subradiant state. The superradiant and subradiant states with enhanced
and inhibited decay rates act as the excited and metastable states in EIT, respectively. Their energy
difference determined by the distance between the atoms can be measured by the EIT spectra, which
renders this method useful in subwavelength metrology. The scheme can also be applied to many
atoms in nuclear quantum optics, where the transparency point due to counter-rotating wave terms
can be observed.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) [1, 2]
is a quantum optical mechanism that is responsible for
important phenomena such as slow light [3–5], quan-
tum memory [6–8] and enhanced nonlinearity [9, 10]. A
probe field that resonantly couples the transition from
the ground state |g〉 to an excited state |e〉 of an atom, ex-
periences a transparency point at the original Lorentzian
absorption peak, if the excited state is coherently and res-
onantly coupled to a metastable state |m〉. EIT involves
at least three levels and naturally three-level atoms are
used in most cases. However, proper three-level struc-
tures are not available in some optical systems, such as in
atomic nuclei [11–13] and biological fluorescent molecules
[14], in which EIT can have important applications once
realized. Interestingly, it has been shown that even with
only two-level systems, EIT-like spectra can be achieved
by locally addressing the atomic ensembles [15–17]. How-
ever, strict EIT scheme with a dynamic coupling field is
still absent in two-level optical systems.
Superradiance and subradiance are the enhanced and

inhibited collective radiation of many atoms [18–20], as-
sociated with the collective Lamb shifts [21–23]. The
superradiance and subradiance of two interacting atoms
has attracted much interest both theoretically [24, 25]
and experimentally [26–30]. In this paper, we use super-
radiance and subradiance to construct EIT and inves-
tigate the new feature in the EIT absorption spectrum
involving with the cooperative effect and the counter-
rotating wave terms. For only two atoms, the symmetric
(superradiant) state has much larger decay rate than the
anti-symmetric (subradiant) state when the distance be-
tween the two atoms is much smaller than the transition
wavelength. These two states serve as the excited and the
metastable states and their splitting, depending on the
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distance between the atoms, can be measured by the EIT
spectra. In addition, the counter-rotating wave terms in
the effective coupling field between the superradiant and
subradiant states bring an additional transparency point,
which is usually not achievable in traditional EIT systems
with three-level atoms.
This paper is organized as following. In Sec. II, we

introduce the basic mechanism with two atoms and show
its application in subwavelength metrology. In Sec. III,
we extend the mechanism to many atoms and show the
additional EIT point due to the counter-rotating terms.
Finally, we make conclusion in Sec. IV. The detailed
calculations are put into the Appendices.

II. MECHANISM

Two two-level atoms have four quantum states, a
ground state |gg〉, two first excited states |ge〉 and |eg〉,
and a double excited state |ee〉. Considering the interac-
tion between the two atoms, the eigen basis of the first
excited states is composed by the symmetric and anti-
symmetric states (independent of the distance and the
dipole interaction between the two atoms [23]),

|+〉 = 1√
2
[|eg〉+ |ge〉] ,

|−〉 = 1√
2
[|eg〉 − |ge〉] ,

(1)

with decay rates γ± = γ0 ± γc and energy shifts ∆± =
±∆c. Here γ0 is the single atom decay rate, γc and ∆c are
the collective decay rate and energy shift (see Appendix
A). When the distance between the two atoms r ≪ λ
where λ is the transition wavelength, we have γc → γ0
and thus γ+ → 2γ0 and γ− → 0. The collective energy
shift ∆c is divergent with 1/r3. A weak probe field can
only resonantly excite |+〉 from |gg〉 since the collective
energy shift ∆c moves the transition between |+〉 and
|ee〉 out of resonant with the probe field [29]. We can
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neglect the two-photon absorption for a weak probe field
[28, 31]. The states |gg〉, |+〉 and |−〉 form a three-level
system, as shown in Fig. 1 (a). The symmetric and
the anti-symmetric states satisfy the requirement on the
decoherence rates for EIT, i.e., γ+ ≫ γ− when r ≪ λ.
The eigenenergies of |±〉 states are split by the collective
energy shift.
The challenge is how to resonantly couple |+〉 and |−〉

states. The key result of this paper is that |+〉 and
|−〉 states can be coupled by two off-resonant counter-
propagating plane waves with different frequencies ν1 and
ν2. If the frequency difference ν = ν1 − ν2 matches the
splitting between |+〉 and |−〉 states 2∆c, we obtain on
resonance coupling via two Raman transitions as shown
in Fig. 1 (b). The resulting Hamiltonian is (assuming
~ = 1) (see Appendix B),

H =ω+|+〉〈+|+ ω−|−〉〈−|+Ωc(t)(|+〉〈−|+ |−〉〈+|)
− Ωp(e

−iνpt|+〉〈gg|+ h.c.),
(2)

where Ωc(t) = Ω0 sin(kr) sin(νt− φ) with k = νs/c, νs =
(ν1+ν2)/2, r = x1−x2 and φ = k(x1+x2) with x1,2 being
the coordinates of the two atoms along the propagation of
the plane waves. The coupling strength Ω0 = E2d2/(ω−
νs) with E being the amplitude of the electric field of the
plane waves, d being the transition matrix element of the
atoms and ω being the single atom transition frequency.
The transition frequencies of |±〉 states are ω± = ω ±
∆c + δu(t) with δu(t) = Ω0[1+ cos(kr) cos(νt− φ)] being
a universal Stark shift induced by the two plane waves.
The absorption spectra can be calculated by the Liou-

ville equation,

∂ρ

∂t
=− i[H, ρ] +

∑

j=+,−

γj
2
[2|gg〉〈j|ρ|j〉〈gg|

− |j〉〈j|ρ− ρ|j〉〈j|].
(3)

Since H is time-dependent with frequency ν, the coher-

ence can be expanded 〈+|ρ|gg〉 = ∑

n ρ
[n]
+gge

inνt. Eq.(3)
can be solved with the Floquet theorem [32, 33] and the

absorption is proportional to Imρ
[0]
+gg, the imaginary part

of the zero frequency coherence (see Appendix C).
The counter-rotating wave terms of Ωc(t) can be ne-

glected for small distance between the two atoms and
weak coupling field when Ω0 sin(kr) ≪ ∆c. We ob-
tain typical EIT absorption spectra with two absorp-
tion peaks and one transparency point, as shown in the
black curve of Fig. 2 (a). Here the probe detuning
δp = ω + ∆c + Ω0 − νp has taken into account all the
static energy shifts of |+〉 state, including Ω0, the static
part of the universal Stark shift δu(t). The effect of the
counter-rotating wave terms and the universal shift δu(t)
emerge either when we increase the distance (reduce ∆c)
between the two atoms or increase the dynamic Stark
shift Ω0 (proportional to the intensity of the standing
wave), which are demonstrated by the multiple side peaks
in Fig. 2 (a).
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FIG. 1. (Color online) (a) Two two-level atoms form an EIT
system with the symmetric (superradiant) state being the ex-
cited state and the anti-symmetric (subradiant) state being
the metastable state. (b) The symmetric and anti-symmetric
states are resonantly coupled by the Raman transitions of two
counter-propagating plane waves. We can also understand
this coupling as induced by the time-dependent difference be-
tween the dynamic Stark shifts of the two atoms induced by
a moving standing wave with velocity v = νx̂/2k.

We can use the following procedure for the subwave-
length metrology, as shown in Fig. 2 (b). We first reduce
the intensity of the standing wave to only allow two peaks
to appear in the spectra. Then we tune the frequency
difference ν until the two absorption peaks become sym-
metric, which yields the collective energy shift ∆c = ν/2.
The distance between the two atoms can be obtained by
the relation between ∆c(r) and r (see Appendix A). Since
∆c(r) ∝ 1/r3 for small distance r ≪ λ, the sensitivity
δ∆c/δr ∝ 1/r4. Compared with the existing propos-
als for subwavelength imaging of two interacting atoms
with fluorescences [34], a natural preference for this EIT
metrology is that both the dressing field and the probe
fields are weak. This is in particular useful for the biolog-
ical samples that cannot sustain strong laser fields. This
scheme which depends on the interaction between two
atoms is different from the Heisenberg limit metrology
based on superradiance with timed Dicke states, where
the momentum of photons are stored in non-interacting
atomic ensembles [35].

The above mechanism can also be understood as a
dynamic modulation of the transition frequency differ-
ence between the two atoms (see Appendix B). We no-
tice that the difference between |+〉 and |−〉 states is
a relative π phase factor between |eg〉 and |ge〉 states.
If we can control the transition frequencies of the two
atoms such that the states |eg〉 and |ge〉 have energy
shifts Ωc and −Ωc respectively, an initial state of the
symmetric state |ψ(0)〉 = |+〉 evolves with time |ψ(t)〉 =
(e−iΩct|eg〉 + eiΩct|ge〉)/

√
2. At t = π/2Ωc, we obtain
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FIG. 2. (Color online) Absorption spectra of two-atom su-
perradiance EIT. (a) The absorption spectra for different dis-
tances r and Rabi frequencies Ω0. Black line: r = 0.1λ
(∆c = 2.60γ0, γc = 0.92γ0), Ω0 = 2γ0; red line: r = 0.2λ
(∆c = 0.38γ0, γc = 0.71γ0), Ω0 = 2γ0 and blue line: r = 0.1λ,
Ω0 = 10γ0. The coupling field is on resonance for each case,
ν = 2∆c. (b) The absorption spectra with different stand-
ing wave detunings. ν = 7γ0 (black line) 9γ0 (red line) 10.5γ0
(blue line). Ω0 = γ0. When ν = 10.5γ0 = 2∆c, the absorption
spectrum is symmetric. From the relation between ∆c and r,
we obtain the distance between the two atoms r = 0.08λ0,
which agrees with the parameters that we set.

FIG. 3. Superradiance EIT in nuclear quantum optics. A
thin-film cavity is probed by hard x-rays with grazing angle
incidence. The 57Fe nuclei are embedded in the center of the
cavity. We add an oscillating magnetic field parallel to the
electric field of the linearly polarized incident x-ray. Only the
two transitions denoted by the dashed arrows between the
magnetic Zeeman levels can happen. The energy difference of
these two transitions serve as the effective coupling between
the superradiant and subradiant states. The EIT spectra can
be detected with the reflected signal.

|ψ(t)〉 = −i|−〉. Therefore, the states |+〉 and |−〉 are
coupled by an energy difference between the two atoms.
In our scheme, the two counter propagating plane waves
create a moving standing wave that induces a time-
dependent dynamic Stark shift difference between the
two atoms, Ωc(t), which serves as the coupling field. This
picture enables us to generalize the mechanism to many
atoms, as shown later.
The single atom EIT [36] and the superradiance and

subradiance of two ions [27] have been observed in ex-
periments. The coupling between the symmetric and
anti-symmetric states has also been realized with two
atoms trapped in an optical lattice [37]. In particular,
the cryogenic fluorescence of two interacting terrylene
molecules has been used for spectroscopy with nanometer
resolution [28]. Due to different local electric fields, the
two molecules have different transition frequencies, which
corresponds to a static coupling field Ωc. By introducing
an oscillating electric field gradient or a moving standing
wave, such a system can be exploited for the current EIT
experiment of superradiance and subradiance. Very re-
cently, superradiance was also observed from two silicon-
vacancy centers embedded in diamond photonic crystal
cavities [38], which provide another platform to realize
this mechanism.
Once the EIT is achieved, we can realize other re-

lated phenomena. In particular, we can use the adiabatic
population transfer to prepare the subradiant state |−〉,
which has a long life time for quantum memory [8]. This
can be done by adiabatically tuning down Ω0 and tuning
up Ωp at the two-photon resonance. The maximum value
of Ωp should be smaller than ∆c to avoid populating the
|ee〉 state.

III. GENERALIZATION TO MANY ATOMS

The mechanism can be extended to large ensembles of
two-level systems. Let us consider two atomic ensem-
bles, one with |e〉 and |g〉, and the other with |a〉 and
|b〉 as their excited and ground states. Each ensemble
has N atoms and both ensembles are spatially mixed to-
gether. The transition frequency difference between the
two atomic ensembles is within the linewidth such that
a single photon can excite the two ensembles to a super-
position of two timed Dicke states [39, 40],

|+k〉 =
1√
2
(|ek〉+ |ak〉) (4)

where

|ek〉 =
1√
N

N
∑

n=1

eik·rn |g1, ..., en, ..., gN〉 ⊗ |b1, b2, ..., bN〉,

|ak〉 = |g1, g2, ..., gN〉 ⊗ 1√
N

N
∑

n=1

eik·sn |b1, ..., an, ..., bN〉.

(5)
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Here rn and sn are the positions of the nth atom in the
two ensembles. k is the wave vector of the single photon.
The timed Dicke states |ek〉 and |ak〉 are excited from the
same ground state |G〉 ≡ |g1, g2, ..., gN〉 ⊗ |b1, b2, ..., bN 〉
by a single photon. They have directional emission in
the direction of k, so as their superposition state |+k〉,
associated with enhanced decay rate and collective Lamb
shift. On the other hand, the state

|−k〉 =
1√
2
(|ek〉 − |ak〉), (6)

is a subradiant state in the sense that its decay rate is
estimated to be similar to that of a single atom [41].
The directional emissions of |ek〉 and |ak〉 are canceled
because of the relative phase factor −1 between them.
The collective Lamb shift of |−k〉 can be very different
from that of the |+k〉 state.
We can dynamically couple |+k〉 and |−k〉 states in a

well studied nuclear quantum optical system [11, 40, 42],
as shown in Fig. 3. The nuclei embedded in a waveguide
are 57Fe with the transition frequency ω = 14.4keV and
the linewidth γ0 = 4.7neV. In the presence of a magnetic
field, the ground and excited states with Ig = 1/2 and
Ie = 3/2 split into multiplets with Zeeman energy split-
ting δj (j = e, g). Applying a magnetic field B parallel to
the incident and outgoing electric fields Ein and Eout and
perpendicular to k, the linearly polarized input x-ray can
only couple two transitions, as shown in Fig. 3. At room
temperature, the populations on the two magnetic sub-
levels of the ground state are approximately equal [40].
Here we can use a magnetically soft 57FeNi absorber foil
with zero magnetostriction [13] to avoid the mechanical
sidebands and other complications in a time-dependent
external magnetic field.
The Hamiltonian in the interaction picture can be writ-

ten as,

H =Ωc(t)(|+k〉 〈−k| e−iω0t + |−k〉 〈+k| eiω0t)

− Ωp(e
−iδpt|+k〉〈G|+ h.c.),

(7)

where Ωc(t) = Ω1 cos (νt) with Ω1 = (δg + δe) /2 is in-
duced by a magnetic field B = B0 cos νt. ω0 is the col-
lective Lamb shift difference between the states |+k〉 and
|−k〉. δp is the probe detuning from the |+k〉 state. The
reflectance of the thin film cavity is dominated by the
coherence |ρ+G|2 where ρ+G ≡ 〈+k|ρ|G〉 (see Appendix
D),

|R|2 ∝ lim
T→∞

1

T

T
∫

0

|ρ+G(t)|2dt =
∑

n

∣

∣

∣
ρ
[n]
+G

∣

∣

∣

2

, (8)

where we have made average in a time interval T ≫ 1/ν.
The coherence ρ+G has multiple frequency components

ρ+G(t) =
∑

n ρ
[n]
+Ge

i2νt due to the counter-rotating wave
terms. Only when ν = 0, no time average is needed.
The typical collective Lamb shift of 57Fe nuclear en-

semble is 5 ∼ 10γ0 [11]. The internal magnetic field in
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FIG. 4. (Color online) The reflectance of x-ray with effective
Rabi frequencies (a) Ω1 = 5γ0 and (b) Ω1 = 20γ0. The decay
rates of |+k〉 and |−k〉 are γ+ = 50γ0 and γ− = γ0. The
collective Lamb shift difference ω0 = 10γ0. The oscillation
frequencies of the magnetic fields are ν = 15γ0 (blue dash
line), 10γ0 (green dot line), 5γ0 (red dash dot line) and 0
(black solid line).

the 57Fe sample can be tens of Tesla in an external radio-
frequency field [13, 43]. The effective coupling field Rabi
frequency Ω1 can be easily tuned from zero to 20γ0. The
magnetic field amplitudes corresponding to the effective
coupling strengths Ω1 = 5γ0 and Ω1 = 20γ0 taken in
Fig. 4 (a) and (b) are B0 = 5.3T and B0 = 21.3T, re-
spectively.

The reflectance spectra can be used to investigate the
effect of the counter-rotating wave terms of the coupling
field and to determine the collective Lamb shift. For a rel-
atively small Ω1, there are two dips in a single Lorentzian
peak, as shown in Fig. 4 (a). The left and right ones cor-
respond to the rotating and counter-rotating wave terms
of the coupling field, respectively. The distance between
the two dips is approximately 2ν. When ν = 0, these
two dips merge and the spectrum is the same as the one
of the previous EIT experiments with a static coupling
between two ensembles mediated by a cavity [15]. For
a larger Ω1 = 20γ0 in Fig. 4 (b), we still have the two
dips since Ω1 < γ+ and the vacuum induced coherence
still exists [42], but we also have two peaks basically cor-
responding to the two magnetic transitions in Fig. 3.
Compared with the result in [40] where |+k〉 and |−k〉
have the same energy and the magnetic field is static,
here the two peaks are not symmetric for ν = 0 due to a
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finite Lamb shift difference. Therefore, the results can be
compared with experimental data to obtain the collective
Lamb shifts.

IV. CONCLUSION

We construct an EIT scheme by dynamically coupling
the superradiant state with the subradiant state. The
interaction between atoms can be measured by the EIT
spectra. Compared with the EIT-like schemes with a
static coupling in atomic ensembles [15, 17, 40, 42, 44],
the local dynamical modulation of the transition frequen-
cies of the atoms introduces a tunable detuning for the
coupling field. Therefore, our scheme contains all the in-
gredients of EIT. In particular, for the systems where the
splitting between the superradiant and subradiant states
is larger than the decay rate of the superradiant state,
the dynamic modulation can bring the EIT dip to the
Lorentzian absorption peak of the superradiant state, as
shown in Fig. 2 (b). The dynamic modulation enables a
precise measurement of the distance between two atoms
and brings new physics of the EIT point due to counter-
rotating wave terms.

The authors thank G. Agarwal, A. Akimov, A.
Belyanin, J. Evers, W. Ge, O. Kocharovskaya, W.-
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APPENDIX A. COLLECTIVE DECAY RATE

AND ENERGY SHIFT

In the bare basis of two two-level atoms, the master
equation for the density matrix is (~ = 1) [20]

∂ρ

∂t
=− i[H, ρ]− i∆c

2
∑

i6=j=1

[σ+
i σ

−
j , ρ]

−
2

∑

i,j=1

γij
2
(σ+

i σ
−
j ρ− 2σ−

j ρσ
+
i + ρσ+

i σ
−
j ),

(9)

where σ+
i ≡ |ei〉〈gi| and σ+

i ≡ |gi〉〈ei| are the raising
and lowering operators of the ith atom. Here γ11 =
γ22 = γ0 is the single atom radiative decay rate, γ0 =
d2ω3/(3πε0c

3) where d is the dipole moment, ω is the
transition frequency, ε0 is the vacuum permittivity and
c is the speed of light in vacuum. γ12 = γ21 = γc and ∆c

are the collective decay rate and collective energy shift,

γc =
3

2
γ0

{

sin2 η
sin k0r

k0r

+
(

1− 3 cos2 η
)

[

cos k0r

(k0r)
2 − sin k0r

(k0r)
3

]}

, (10)

∆c =
3

4
γ0

{

− sin2 η
cos k0r

k0r

+
(

1− 3 cos2 η
)

[

sin k0r

(k0r)
2 +

cos k0r

(k0r)
3

]}

, (11)

where η is the angle between the dipole moment d and
the two-atom displacement r, k0 = ω/c is the magnitude
of the transition wave vector.
All through this paper, we adopt η = π/2, which means

that the transition dipole moment and also the probe
light polarization is perpendicular to the line connecting
the two atoms. This assumption, of course, is just for
the sake of simplicity. We can change η by exciting dif-
ferent transition dipoles with probe light polarized in the
corresponding directions.

APPENDIX B. EFFECTIVE COUPLING

BETWEEN SYMMETRIC AND

ANTI-SYMMETRIC STATES

The result of the effective coupling Ωc(t) can be ob-
tained by calculating the second order transition strength
between |+〉 and |−〉 states via the moving standing wave,
as shown in Fig. 1 (b). The interaction Hamiltonian of
two counter-propagating plane waves coupled with the
two atoms is

Hd =
Ed

2
e−iν1t(eikx1σ+

1 + eikx2σ+
2 )

+
Ed

2
e−iν2t(e−ikx1σ+

1 + e−ikx2σ+
2 ) + h.c..

(12)

In the following, we calculate the Raman transition ma-
trix elements between |+〉 and |−〉 states in the effective
Hamiltonian. Starting from |+〉 state, the atoms can emit
a ν1 photon and transit to |gg〉 state and then absorb a
ν2 photon to transit to |−〉 state. The matrix element is

E2d2

4(ω − ν1)
|−〉〈−|e−iν2t(e−ikx1σ+

1 + e−ikx2σ+
2 )|gg〉

〈gg|eiν1t(e−ikx1σ−
1 + e−ikx2σ−

2 )|+〉〈+|

=
E2d2

8(ω − ν1)
eiνt(e−2ikx1 − e−2ikx2)|−〉〈+|.

(13)
The atoms can also first absorb a ν2 photon and transit
to |ee〉 state, and then emit a ν1 photon and transit to
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|−〉 state, The matrix element is

− E2d2

4(ω − ν2)
|−〉〈−|eiν1t(e−ikx1σ−

1 + e−ikx2σ−
2 )|ee〉

〈ee|e−iν2t(e−ikx1σ+
1 + e−ikx2σ+

2 )|+〉〈+|

=
E2d2

8(ω − ν2)
eiνt(e−2ikx1 − e−2ikx2)|−〉〈+|.

(14)
Under the condition in our paper, we can take ω − ν1 =
ω − ν2 = ω − νs. The total matrix element between |+〉
and |−〉 states is the summation of Eqs. (13) and (14),

E2d2

ω − νs

eiνt−iφ

2i
sin(kr)|−〉〈+|, (15)

which is the rotating-wave coupling between |+〉 and |−〉
states. All other terms in Ωc(t) and the universal energy
shifts δu(t) can be calculated in a similar way.
Alternatively, we can also obtain the effective interac-

tion Hamiltonian by calculating the dynamic Stark shifts
of the two atoms. The two atoms are dressed by a moving
standing wave Es = Ecos (ν1t− k1x) +E cos (ν2t+ k2x)
with detuning between forward and backward fields ν ≡
ν1− ν2. Under the condition that ν ≪ ν1, ν2 , the stand-
ing wave can be rewritten as

Es = 2E cos (νst) cos (νt/2− kx) , (16)

where νs = (ν1 + ν2) /2 and k = (k1 + k2) /2. Under the
rotating-wave approximation (RWA) and in a rotating
frame, the single atom time-dependent Hamiltonian can
be written as

Hs(t) =

[

ω − νs Ed cos (νt/2− kx)
Ed cos (νt/2− kx) 0

]

,

(17)
The time-dependent eigenvalues of the Hamiltonian are

E±(t) =
1

2
(ω − νs)

± 1

2

√

(ω − νs)
2
+ 4E2d2 cos2 (νt/2− kx).

(18)

In the limit that Ed≪ |ω − ν|, the dynamic shift of the
transition frequency is

∆S = E+ − E− − (ω − νs) =
2E2d2 cos2 (νt/2− kx)

ω − νs
.

(19)
Since the two atoms have two different positions at

x1 and x2, they have different dynamic Stark shift. We
rewrite the dressed Hamiltonian of the two atoms in the
basis of symmetric and anti-symmetric states:

Hd(t) =∆S(x1) |eg〉 〈eg|+∆S(x2) |ge〉 〈ge|
=Ωc(t) (|+〉 〈−|+ |−〉 〈+|) + δu(t)(|+〉 〈+|
+ |−〉 〈−|),

(20)

where

Ωc(t) ≡ [∆S(x1)−∆S(x2)] /2

=
E2d2

ω − νs
sin (kr) sin (νt− φ) ,

(21)

and

δu(t) ≡ [∆S(x1) + ∆S(x2)] /2

=
E2d2

ω − νs
[1 + cos (kr) cos (νt− φ)] .

(22)

For the sake of simplicity we set φ = 0, which does not
change any results in the EIT absorption.

APPENDIX C. EIT SPECTRA OF

SUPERRADIANT AND SUBRADIANT STATES

WITHOUT RWA OF THE COUPLING FIELD

In this section, we calculate the EIT absorption spectra
of two atoms dressed by a moving standing wave. The
total Hamiltonian can be written as

H ′ = H0 +HI , (23)

where

H0 = [ω+ + δu (t)] |+〉 〈+|+ [ω− + δu (t)] |−〉 〈−| , (24)

and

HI =Ωc (t) (|+〉 〈−|+ |−〉 〈+|)
− Ωp

(

e−iνpt |+〉 〈gg|+ h.c.
)

. (25)

We transform the wave function into the interaction pic-
ture,

|ψI〉 = U0(t) |ψS〉 , (26)

where U0 (t) = exp
[

i
~

∫ t

0
dt′H0 (t

′)
]

. The Schrödinger

equation in the interaction picture is i~∂t |ψI〉 = V |ψI〉
with the interaction Hamiltonian

V =U0 (t)HIU
−1
0 (t)

=−
[(

Ωr +Ωcre
i2νt

)

eiδct |+〉 〈−|+ h.c.
]

−
[

Ωpe
iδpt+if sin νt |+〉 〈gg|+ h.c.

]

, (27)

where the detuning of the probe field δp = ω+ +Ω0 − νp,
the detuning of the driving field δc = 2∆c − ν, the cou-
pling strength of rotating terms Ωr = −iΩ0 sin (kr) /2,
the coupling strength of counter rotating terms Ωcr =
iΩ0 sin (kr) /2 and f = Ω0 cos (kr)/ν.
We rewrite the master equation in Eq. (9) in the basis

of the |±〉 states,
∂ρ

∂t
=− i [V, ρ] +

∑

j=+,−

γj
2

[2 |gg〉 〈j| ρ |j〉 〈gg|

− |j〉 〈j| ρ− ρ |j〉 〈j|] . (28)
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The dynamic evolution of the relevant matrix elements
are

∂ρ+gg

∂t
=iΩpe

iδpt+if sin νt (ρgggg − ρ++)

+ i
(

Ωr +Ωcre
i2νt

)

eiδctρ−gg −
γ+
2
ρ+gg, (29)

and

∂ρ−gg

∂t
=− iΩpe

iδpt+if sin νtρ−+

+ i
(

Ω∗
r +Ω∗

cre
−i2νt

)

e−iδctρ+gg −
γ−
2
ρ−gg,

(30)

where ρgggg = 〈gg|ρ|gg〉, ρ±gg = 〈±|ρ|gg〉 and ρ+− =
〈+|ρ|−〉. For a weak probe field, the population is mainly
in the level |gg〉. To the first order of Ωp, we make the
approximation ρgggg = 1, ρ++ = ρ−− = ρ−+ = 0. By
introducing

ρ+gg = eiδptρ̃+gg, (31)

and

ρ−gg = ei(δp−δc)tρ̃−gg, (32)

we obtain the dynamic evolution of the slowly varying
components,

∂ρ̃+gg

∂t
=
(

−iδp −
γ+
2

)

ρ̃+gg + i
(

Ωr +Ωcre
i2νt

)

ρ̃−gg

+ iΩpe
if sin νt, (33)

∂ρ̃−gg

∂t
=

(

−iδ2ph − γ−
2

)

ρ̃−gg + i
(

Ω∗
r +Ω∗

cre
−i2νt

)

ρ̃+gg,

(34)
where δ2ph = δp − δc. According to the Floquet theory,
the steady-state solution of equations (33) and (34) can
be expanded in a Fourier series,

ρ̃+gg =
∑

n

ρ̃
[n]
+gge

inνt, (35)

ρ̃−gg =
∑

n

ρ̃
[n]
−gge

inνt. (36)

Substituting Eq. (35) and Eq. (36) into Eq. (33) and
Eq. (34), and using the following expansion

exp (if sin νt) =
∑

k

Jk (f) e
ikνt (37)

where Jk (f) is the kth order Bessel function of the first
kind, we obtain

∂

∂t
ρ̃
[n]
+gg =

(

−iδp −
γ+
2

− inν
)

ρ̃
[n]
+gg

+ iΩrρ̃
[n]
−gg + iΩcrρ̃

[n−2]
−gg + iΩpJn (f) , (38)

∂

∂t
ρ̃
[n]
−gg =

(

−iδ2ph − γ−
2

− inν
)

ρ̃
[n]
−gg

+ iΩ∗
r ρ̃

[n]
+gg + iΩ∗

crρ̃
[n+2]
+gg . (39)

In the steady state, ∂ρ
[n]
+gg/∂t = 0 and ∂ρ

[n]
−gg/∂t = 0, we

obtain

(

δp − i
γ+
2

+ nν
)

ρ̃
[n]
+gg = Ωrρ̃

[n]
−gg+Ωcrρ̃

[n−2]
−gg +ΩpJn (f) ,

(40)

(

δ2ph − i
γ−
2

+ nν
)

ρ̃
[n]
−gg = Ω∗

r ρ̃
[n]
+gg +Ω∗

crρ̃
[n+2]
+gg . (41)

From Eq. (41), we obtain

ρ̃
[n]
−gg =

Ω∗
r ρ̃

[n]
+gg +Ω∗

crρ̃
[n+2]
+gg

δ2ph − iγ−/2 + nν
. (42)

Substituting Eq. (42) into Eq. (40), we obtain

(

δp − i
γ+
2

+ nν
)

ρ̃
[n]
+gg =Ωr

Ω∗
r ρ̃

[n]
+gg +Ω∗

crρ̃
[n+2]
+gg

δ2ph + nν − iγ−/2
+ Ωcr

Ω∗
r ρ̃

[n−2]
+gg +Ω∗

crρ̃
[n]
+gg

δ2ph + (n− 2) ν − iγ−/2
+ ΩpJn (f)

=

[

|Ωr|2
δ2ph + nν − iγ−/2

+
|Ωcr|2

δ2ph + (n− 2) ν − iγ−/2

]

ρ̃
[n]
+gg

+
ΩrΩ

∗
cr

δ2ph + nν − iγ−/2
ρ̃
[n+2]
+gg +

Ω∗
rΩcr

δ2ph + (n− 2) ν − iγ−/2
ρ̃
[n−2]
+gg +ΩpJn (f) . (43)

By defining the following quantities

Pn = (δp + nν − iγ+/2)−
(

Rn |Ωr|2 +Rn−2 |Ωcr|2
)

,

(44)

and

Rn =
1

δ2ph + nν − iγ−/2
, (45)



8

Eq. (43) can be rewritten as

Pnρ̃
[n]
+gg = RnΩrΩ

∗
crρ̃

[n+2]
+gg +Rn−2Ω

∗
rΩcrρ̃

[n−2]
+gg +ΩpJn (f) .

(46)
The above linear equations can be solved numerically.

After we obtain ρ̃
[n]
+gg, we need to transform it back to

the Schrödinger picture

ρ+gg → U−1
0 (t)ρ+ggU0(t)

= e−i(ω++Ω0)t−if sin νteiδptρ̃+gg

= e−if sin νtρ̃+gge
−iνpt. (47)

Therefore, the zero frequency coherence in the
Schrödinger picture is

ρ
[0]
+gg =

∑

n

J−n (−f) ρ̃[n]+gg. (48)

The absorption is proportional to Imρ
[0]
+gg.

APPENDIX D. DERIVATION OF THE CAVITY

REFLECTION COEFFICIENT

In this section we follow the procedure in refs. [40, 44]
to calculate the x-ray reflection coefficient R of the planar
cavity as sketched in the main text Fig. 3,

R =
〈aout〉
ain

, (49)

where ain and aout are the field amplitudes of the incident
and output x-ray fields. The output field operator can
be calculated by using the input-output formalism [45],

aout =− ain (â
∗
out · âin)

+
√
2κR [(â∗out · â1) a1 + (â∗out · â2) a2] . (50)

where â1 and â2 = â1 × k̂ are the unit polarization vec-
tors of two cavity modes with annihilation operators a1
and a2, k is the wave vector of the incident x ray and
κR characterizes the coupling between the output (and
input) field and the cavity modes. The Hamiltonians of
the cavity and the nucleus in the interaction picture are
[40, 44]

HC =∆CAa
†
1a1 +∆CAa

†
2a2

+

2
∑

j=1

i
√
2κR

[

(

â
∗
j · âin

)

aina
†
j − (â∗in · âj) a∗inaj

]

,

(51)

HN =

N
∑

n=1

[

δg
2
|gn〉 〈gn|+

(

−δe
2

−∆

)

|en〉 〈en|
]

+

N
∑

n=1

[

−δg
2
|bn〉 〈bn|+

(

δe
2

−∆

)

|an〉 〈an|
]

+

2
∑

j=1

[(

d̂
∗ · âj

)

gS+aj +
(

d̂ · â∗j
)

g∗a†jS−

]

,

(52)

where ∆CA = ωC −νp is the cavity detuning, ∆ = νp−ω
is the energy difference between the external x-ray field
and the bare transition frequency of the nucleus, S+ =
∑N

n=1(|en〉〈gn| + |an〉〈bn|) and S− = S†
+ are the nuclear

collective raising and lowering operators, g is the cou-
pling strength between the cavity mode and the nuclei,

and d̂ is the unit vector of the transition dipole moment.
Since the magnetic field is parallel to the direction of the
electric field of input x ray, there are only two linearly
polarized transitions can happen between states (|g〉, |e〉)
and (|b〉, |a〉), respectively. The Heisenberg equation for
the operator aj,

d

dt
aj = i [HC +HN , aj ]− κaj , (53)

where κ is the decay rate of the cavity. In the bad cavity
regime, which is the situation for the thin-film cavities,
κ is large. In the steady state, daj/dt = 0 and we have

aj =

√
2κR

(

â
∗
j · âin

)

ain − i
(

d̂ · â∗j
)

g∗S−

κ+ i∆CA

. (54)

Inserting Eq. (54) into Eq. (50), we obtain the reflection
coefficient

R =

(

2κR
κ+ i∆CA

− 1

)

(â∗out · âin)

− i
1

ain

√
2κR

κ+ i∆CA

[

d̂ · (â1â∗1 + â2â
∗
2) · â∗out

]

g∗
〈

S−
〉

=

(

2κR
κ+ i∆CA

− 1

)

(â∗out · âin)

− i
1

ain

√
2κR

κ+ i∆CA

(â∗out · âin)
√
2Ng∗ρ+G. (55)

In the above equation, the first part is due to the direct
reflection of the incident light ain from the cavity. In Fig.
4 in the main text we use typical parameters [40] κ = 45ξ
and κR = 25ξ with ξ = 18000γ0 a scaling factor. The
cooperative factor

√
2Ng∗ =

√
1400ξ. For the collective

Lamb shift ω0 = 10γ0, the cavity detuning should be
∆CA = 34ξ. Due to the cooperative effect, the second
term in Eq. (55) is dominant, although in Fig. 4 we
included both terms. The reflectance is approximately,

|R|2 ∝ |ρ+G|2, (56)

where ρ+G can be calculated following the same pro-
cedure as in the section III. Typically, ρ+G(t) =
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∑

n ρ
[n]
+Ge

i2νt has multiple frequency components. The
reflectance is an average over time and in the time scale
T ≫ 1/ν,

|R|2 ∝ lim
T→∞

1

T

T
∫

0

|ρ+G(t)|2dt =
∑

n

∣

∣

∣
ρ
[n]
+G

∣

∣

∣

2

. (57)

Only when ν = 0, we come back to the case of static
coupling field as described in [40]. There is only a single
frequency in ρ+G and no time average is needed.

[1] K.-J. Boller, A. Imamoğlu, and S. E. Harris, Phys. Rev.
Lett. 66, 2593 (1991).

[2] M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, Rev.
Mod. Phys. 77, 633 (2005).

[3] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi,
Nature (London) 397, 594 (1999).

[4] M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg,
G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and
M. O. Scully, Phys. Rev. Lett. 82, 5229 (1999).

[5] O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully,
Phys. Rev. Lett. 86, 628 (2001).

[6] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84,
5094 (2000).

[7] M. Fleischhauer and M. D. Lukin, Phys. Rev. A 65,
022314 (2002).

[8] M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).
[9] S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev.

Lett. 64, 1107 (1990).
[10] M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E.

Harris, Phys. Rev. Lett. 77, 4326 (1996).
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