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The nonlinear optical response of a system of molecules often contains contributions whereby
the products of lower-order processes in two seperate molecules give signals that appear on top of
a genuine direct higher-order process with a single molecule. These many-body contributions are
known as cascading and complicate the interpretation of multidimensional stimulated Raman and
other nonlinear signals. In a quantum electrodynamic (QED) treatment, these cascading processes
arise from second-order expansion in the molecular coupling to vacuum modes of the radiation field,
i.e., single-photon exchange between molecules, which also gives rise to other collective effects. We
predict the relative phase of the direct and cascading nonlinear signals and its dependence on the
microsocopic dynamics as well as the sample geometry. This phase may be used to identify exper-
imental conditions for distinguishing the direct and cascading signals by their phase. Higher order
cascading processes involving the exchange of several photons between more than two molecules are
discussed.
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I. INTRODUCTION

Ultrafast nonlinear optical signals in the condensed phase usually use heterodyne detection, whereby the signal
interferes with a reference local oscillator beam. The signal then scales linearly with the number of molecules N and
is distinguished by its power dependence in the incoming fileds and its direction (phase matching) [1, 2]. Matter infor-
mation is contained in multipoint correlation functions of the dipole operator. We will refer to such signals as direct.
While linear spectroscopy reveals the one-photon excitation spectrum of the sample, nonlinear spectroscopies contain
multi-photon transitions and can probe dynamics in a controlled way. For example, in a pump-probe stimulated
Raman experiment, a sample is excited by two interactions with an initial light pulse to a vibrational coherence which
is then probed by a second pulse following a time delay T1. This technique probes the vibrational structure of the
molecule and is a 3rd-order process in the electric field (and is therefore related to χ(3), the 3rd-order susceptibility).
An extension of this technique is a 5th-order Raman process in which, following the initial delay T1, a second pair of
interactions transfers the sample from one vibrational coherence to another. The system then evovles freely during a
second interpulse delay T2 before being probed. This more general 5th-order (χ(5)) technique offers the possibility of
probing the coupling between participating vibrational modes.

Another type of signal is also generated by a sequential process: some fields interact with one molecule to generate
a field which then acts on another molecule, together with the external fields, to finally produce a signal. Such signals
scale as N2 and are known as cascading. The cascading signals have the same power dependence in the incoming
fields and the same phase matching and are thus hard to distinguish from the direct signal [3–9]. In neat liquids,
cascading dominates the direct signal due to the quadratic vs. linear scaling in molecular density. It is then hard to
separate the direct signal, which carries a higher level of molecular information. An important example is the direct
5th-order Raman χ(5) process which is accompanied by a product of two 3rd-order χ(3) signals. Separating the two
had drawn considerable attention and took several years to recognize [3, 4, 6, 7, 10–15]. This has been the main
obstacle for multidimensional Raman spectroscopy (5th-and-higher orders) [8].

A number of ideas have been pursued to separate these undesired cascading signals. The N vs. N2 scaling is an
obvious way to separate the cascading and direct contributions but in many cases (e.g., 5th-order Raman in neat
molecular liquids), it is not possible to vary the molecular density over a sufficiently-large range in order to seperate
the N - and N2-scaling contributions. Another idea comes from the fact that, in an infinite homogeneous sample, it
follows from Maxwell’s equations that the electric field emitted by a polarization is π

2 phase-shifted relative to the
polarization itself. From a macroscopic perspective, the electric field E created by a polarization P is given by the
Maxwell equation (

∂2

∂t2
− c2∇2

)
E(r, t) = − ∂2

∂t2
P(r, t) (1)

which in the frequency domain reads

E(k, ω) =
ω2

ω2 − k2c2 + iη
P(k, ω) (2)

where η is a positive infinitessimal selecting the appropriate boundary conditions of an outgoing wave. In the limit of
perfect phase matching ω2 → k2c2, we have

E(k, ω) = iπδ(ω2 − k2c2)ω2P(k, ω). (3)

This gives a π/2 phase shift between the polarization and the resulting field. We will derive a more general, geometry-
dependent result and show under what conditions it reduces to this simple macroscopic relation. The extra emission
event (from the source molecule) in a cascading process thus renders the cascading signal out of phase relative to the
direct nonlinear signal (E ∝ P − iPP ) [1, 7, 16]. This property has been parlayed into a number of successfully-
implemented techniques to select for the direct 5th-order Raman signal and eliminate the cascading contributions
[3, 4, 16, 17] (techniques based on polarization-sensitive measurements have also been pursued [18]).

In this paper, we extend our earlier treatment of cascading to study this phase shift on a microscopic level [9].
We show that the π/2 phase-shift described above occurs in the limit of macroscopic homogeneity only for certain
geometries and does not hold for samples consisting of only a few particles. The essence of this geometry-related
phase comes from 2D integrations as was described by Feynman for the emitted field by an infinite sheet of dipoles
[19]. After tracing over quantum field degrees of freedom, general expressions for cascading signals are given that
are valid in the non-perturbative regime with respect to arbitrary external fields. The result can then be expressed
solely as a product of two single-molecule dipole correlation functions and a geometric factor describing the relative
positions of the molecules in the sample. This presentation allows the calculation of cascading signals using only
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the single-molecule calculations familiar from standard treatments of nonlinear spectroscopy and a sum of c-numbers
associated with the geometry. This paper extends our previous line of reasoning [9] which framed cascading signals as a
subset of a more general class of vacuum-mediated interactions which includes local-field effects and other higher-order
processes. We then obtained microscopic expressions for the first few orders (in external fields) for these vacuum-
mediated effects. The focus of this paper is the study of the macroscopic continuum limit and a comparison with a
microscopic collection of (few) molecules.

II. DIRECT VS. CASCADING SIGNALS

In the semiclassical approach to nonlinear optical spectroscopy, a quantum material system interacts with only a
few classical modes of the radiation field and the remaining infinite number of modes, which are in their vacuum
states, are neglected. However, taking the vacuum modes into account in a fully quantum electrodynamical (QED)
treatement can result in several many-body effects caused by photon exchange, i.e., the emission of a photon by one
molecule and its absorption by another. These effects include the scrambling of the time ordering of incoming short
pulses where the free-induction decay produced by one molecule can be long-lived and interacts with another molecule,
a local-field χ(1) effect [1, 9, 20, 21]. Additional local-field effects include corrections to the transmission/reflection
of a thin film [22] and the Rabi oscillations of a quantum dot [23]. Nonlinearities are also induced in ensembles
of noninteracting harmonic oscillators which are otherwise linear [24]. Dipole-dipole coupling, responsible for, e.g.,
Forster resonant energy transfer (FRET) and spontaneous quantum synchronization, is also induced by the exchange
of photons [25, 26]. Superradiance, a cooperative spontaneous emission process, is another well-studied effect that
finds its origin in the quantum nature of the radiation field [27]. Quantum-field effects due to quantum fluctuations of
the laser field rather than the unoccupied modes of the electromagnetic field have also been noted in stimulated signals
[28]. This paper analyzes the aforementioned cascading contribution to heterodyne-detected nonlinear spectroscopic
signals by treating them as the lowest-order many-body correction due to photon exchange.

Cascading shares a common origin with other collective effects observed in spectroscopic experiments. For example,
superradiant emission also arises from collective coupling of the constituent molecules of the sample to a photon
mode and scales quadratically in the number of molecules [29]. However, in superradiance the spontaneously emitted
photons (or the associated excited-state population decay) are ordinarily the object of detection while in cascading the
exchanged photons are virtual and the relevant experiment is a heterodyne detection with respect to the externally-
applied signal (laser) field. The Lamb shift and collective analogues are also due to virtual-photon exchange but
these effects are observed as alterations of a material resonance rather than an entirely new signal as in cascading
[30]. Forster transfer (discussed more thoroughly in the conclusion) can also be derived perturbatively as a vacuum-
mediated interaction. When the field-matter interaction is treated in the dipole approximation, all of the above
depend on the dipole-dipole coupling tensor, giving the derivations a similar flavor [25, 31].

We consider a sample made of identical, noninteracting molecules with non-overlapping charge distributions for
which the coupling to the radiation field can be treated in the dipole approximation. The total system dipole
operator then takes the form of a sum over molecular dipoles V̂(r, t) =

∑
a V̂(t)δ(r − ra). The material is subjected

to a set of classical laser modes Ej so that the total electric field is

Ê(r, t) ≡
∑
j

Ej(r, t) + Êv(r, t) (4)

where Êv is an electric field operator representing the infinitely-many vacuum modes. The material system is coupled
to this total electric field via the interaction Hamiltonian

Ĥint = −
∫
drÊ(r, t) · V̂(r, t) = −

∫
dr
∑
j

Ej(r, t) · V̂(r, t)−
∫
drÊv(r, t) · V̂(r, t) = ĤLM + ĤvM (5)

where the laser modes and the quantum vacuum interact with the material via Hamiltonians ĤLM and ĤvM respec-
tively.

Heterodyne-detected nonlinear spectroscopic signals are given by the rate-of-change of photon number in some
signal mode s, taken to be in a coherent state. Commuting the photon number operator with Eq. (5) and integrating
over time to get the total photon number change gives the signal

S(ks,Λ) = =
[ ∫

drdtE∗s(r, t) · 〈V̂(r, t)〉
]

= = [E∗s(ωs) ·P(ks, ωs)] (6)
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where Es is the signal field, which we have assumed to have a precisely-defined propagation direction k̂s, and Λ stands
for the set of parameters defining the classical fields which must be specified to simulate particular signals. The total
polarization is given by the expectation value of the total dipole operator 〈V̂(r, t)〉 = P(r, t), and can be written in
terms of time-ordered exponentials

P(r, t) = Tr
[
V̂(r, t)T e−i

∫ t
−∞ dτĤ−,LM(τ)e−i

∫ t
−∞ dτĤ−,vM(τ)ρeq

]
(7)

where ρeq is the equilibrium field+matter density matrix and “−” subscript stands for the commutator Ĥ−ρ =

Ĥρ− ρĤ. Expanding Eq. (7) order-by-order in ĤLM but to zeroth order in ĤvM, i.e., neglecting the vacuum modes
altogether, yields the standard semiclassical nonlinear optical signals, which we term the direct signal Sd. All field-
matter interactions in the perturbative expansion then occur on a given molecule and the signal is obtained by summing
over molecules. These signals thus scale linearly with the number of molecules in the sample N , are proportional to
the single-molecule signal suitably averaged, and contain no cooperative many-body contributions.

The presence of the quantum vacuum modes of the radiation field creates corrections to this picture. We can
systematically generate such corrections by expanding the second exponent in Eq. (7) (the vacuum-mode terms).
Since Tr[â(†)|0〉〈0|] = 0, the 2nd-order expansion is the lowest non-vanishing correction. This represents successive
emission and re-absorption of a photon by the material. When the same molecule both emits and absorbs this photon,
the result is the lowest-order radiative correction, or one-loop correction, to the energy (Lamb shift with radiative
decay [32]). The terms in which the absorber and emitter are different molecules lead to a transfer of a coherent
excitation between the two molecules which is the origin of cascading. This is depicted diagrammatically in Fig. 1.

A derivation given in Appendix A gives the total system polarization P in terms of the individual molecular
polarizations P as

Pν(ks, ω) = P ν(ka, ω)f(ka − ks) +

∫
dωbP̃

ννv(ka, ωs;−ωb)P ν
′
v(kb, ωb)G

νvν
′
v(ks − ka,−kb, ωb). (8)

where the ν’s denote cartesian coordinates (with summation implicit), P ν(k, ω) is the polarization of a single

molecule and P̃ νν
′
(k, ω;ω′) is the polarization of a molecule resulting from a single perturbative interaction with

the polarization of another molecule in the sample and arbitrarily-many interactions with the classical fields (defined
formally as a dipole correlation function in Eq. (A5)). In Eq. (8), ka and kb stand for any linear combination of the set
of incoming classical field modes and represent the set of laser modes that interact with molecules a and b respectively
in a perturbative expansion. Since we work in the dipole approximation, the k-dependence of the polarizations comes
only as δ-functions, originating in the spatial phase factor, that specify the linear combinations. In practice, one must
sum over the possible subsets that generate different choices of the ka, kb (we have omitted integration over dkadkb
for brevity). Finally, G is the photon Green’s function defined in (r, t)-space in Eq. (B1).

The first term in Eq. (8) is the direct nonlinear signal and comes proportional to the sample’s form factor

f(k) ≡
∑
a

eik·ra . (9)

This factor carries information on the position of the molecules in the sample and, in the continuum limit, goes over to
the delta function f(k)→ (2π)3nδ(k), where n = N

V is the molecular concentration. This corresponds to momentum
conservation and yields the phase matching condition. The second term in Eq. (8) is the cascading signal in which
the polarization of molecule b serves as a source, along with the external fields, for the polarization of molecule a.
Note that when this is expanded to order m in the classical modes, we will have

∑
p+q=m−1 P

(p)P (q). The traditional

nomenclature is to refer to those terms with p, q = 1 as local-field corrections and the remainder as cascading (the
most familiar being p = q = 3 but 3,5 cascading has also been discussed [33]). Even though Eq. (8) represents a more
general class of 2nd-order, vacuum-mediated interactions, we will refer to them collectively as cascading. The key
quantity in Eq. (8) that connects the polarization emitted by molecule b with the effective field “felt” by molecule a
is the (k, ω)-space photon Green’s function

G(k,k′, ω) =
∑
ab

e−i(k·ra+k′·rb)G(ra, rb, ω) =
∑
ab

e−i(k·ra+k′·rb)
(
−∇2δνvν′v +∇νv∇ν′v

) eiωb
c rab

2πrab
(10)

which contains all information about the sample geometry and determines the relative phase of the cascading vs.
direct contributions to the signal. Moreover, Eq. (8) reveals the important point that, in the off-resonant limit where
P (ω) only has the phase imprinted by the external fields, the relative phase of cascading versus direct processes will be



5

FIG. 1. This diagram depicts the material quantities relevant for an arbitrary cascading (or, more generally, 2nd-order vacuum-
mediated interaction) contribution. The vertical lines represent the density matrices of molecule a or b and associated prop-
agators. We use doubled lines to clarify that the propagation is with respect to the full Hamiltonian, including interactions
with externally applied fields, and not simply the field-free material propagation. The straight line intersecting the density
matrices of molecule a represents the heterodyne signal field while the wavy lines represent interactions with vacuum modes. In
contrast to the more familiar double-sided Feynman diagrams, we make no distinction between action on the ket or bra. This
is permissible since we work in Liouville space and convenient since it permits us to work in the +/− representation in which
the Liouvillian H− is more compactly written. This therefore greatly reduces the number of diagrams. Since we work in the
+/− representation and without the rotating wave approximation, dressing the interactions with arrows (to indicate positive
or negative Fourier components) is unneccesary. This diagram corresponds to the quantities relevant for equation (A2).

controlled entirely by G(k,k′, ω). In the limit of a large, homogeneous sample, the spatial dependence of the photon
Green’s function is reduced to the single variable ra − rb, the difference vector, and we have

Gνvν
′
v(ks − ka,−kb, ωb)→ f(ka + kb − ks)G

νvν
′
v(−kb, ωb)→ f(ka + kb − ks)

ω2
b

ω2
b − k2bc2 + iη

−4δνv,ν′v
3

(11)

where G(k, ω) directly controls the phase (i.e., if this quantity is real then the cascading process is in phase with the
direct process and if it is purely imaginary the two processes are out of phase) and the second relation follows on
taking the integral in the continuum limit. In this regime, the total polarization is thus

Pν(ks, ω) = P ν(ka, ωs)f(ka − ks)− i
4πnkbc

3
P̃ ννv(ka, ωs;∓kbc)P νv(kb,±kbc)f(ka + kb − ks). (12)

where we have assumed perfect phase-matching kbc = ωb and both choices of ± must be summed over.
Equation (12) is in the form of the simple macroscopic expression discussed in the introduction that is in common

use to understand the cascading contribution to nonlinear signals. It reveals that the cascading contribution carries
an additional factor of molecular density n compared to the direct signal. Recalling that the form factor also scales
linearly with n in the continuum limit, the direct signal is linear while the cascading is quadratic. The crucial factor
of i responsible for the phase shift that is used to filter out cascades is found to originate in the phase-matching
condition. Finally, it is worthwhile to note the linear dependence on kbc in the cascading contribution, indicating that
it will be stronger at higher, such as x-ray, frequencies.

In making the assumption that kbc = ωb, we have neglected the principal value of the denominator in Eq. (11)
which generates a cascading contribution that is in phase with the direct signal. Additionally, the situation can be
expected to be different in the case of few-molecule samples or oddly-shaped macroscopic systems. In the next section,
we examine these effects in greater detail.

III. SAMPLE GEOMETRY AND THE PHASE OF THE CASCADING SIGNAL

From the previous section, it is clear that, for the off-resonant response, the k-space photon Green’s function (Eq.
(11) determines the phase of the cascading signal. In the semiclassical description, the effective electric field emitted
by molecule b is given by a phase-shift of the polarization E ∝ iP . The extra factor of i, which in this semiclassical
picture comes from the additional emision event inherent in cascading processes, renders the cascading terms out of
phase with the direct nonlinear terms. This effect has been used to discriminate between the two [3, 4, 16, 17]. In
this section, we evaluate the photon Green’s function for different geometries and show under what conditions the
cascaded signal acquires this well-defined phase shift.
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To simplify the analysis, we will separate the summations (integrations) over the positions over the two molecules.
We thus re-write

Gνvν
′
v(ks − ka,−kb, ωb) =

∑
a

ei(ka+kb−ks)·raIνvν
′
v(ra,kb, ωb) (13)

Iνvν
′
v(ra,kb, ωb) =

∑
b

eikb·(ra−rb)Gνvν
′
v(ra, rb, ωb), (14)

where the second summation differs from the discrete Fourier transform of G with respect to rb only by the spatial
phase factor eikb·ra . In the macroscopic homogenous limit, I does not depend on the choice of ra and we have

Iνvν
′
v(ra,kb, ωb)→ Iνvν

′
v(kb, ωb) = Gνvν

′
v(kb, ωb) (15)

in line with Eq. (11). Thus, we will primarily be concerned with the evaluation of Eq. (14).

A. A Simplified Treatment for a Scalar Field

The presence of the dipole coupling tensor
(
−∇2δνν′ +∇ν∇ν′

)
in Eq. (10) complicates matters somewhat. For

clarity, we first treat the problem by replacing the electromagnetic field, which is a vector gauge field, with a scalar
field. This simplified model still maintains all qualitative features of the original model. The effects will be extended
for the original electromagnetic field setting later and we will show that the scalar model describes the relation between
the cascaded and direct signals absolutely adequately.

We assume the following interaction Hamiltonian

Hint = −
∫
drϕ(r)ρ(r), (16)

where ρ(r) is the scalar polarization, and ϕ(r) is the scalar field that replaces the full electromagnetic counterpart, so
that the Maxwell equations are replaced with the Helmholtz equation ((∇2 + k2)φ(r) = 0), whose Green’s function
(that replaces the Green’s function of the Maxwell equations, also known as the Green’s function of the electromagnetic
field) has the form

G(r, r′;ω) =
ei

ω
c |r−r

′|

|r − r′|
. (17)

We will further switch to the uniform continuum limit wherein all properties of the cascaded signal, compared to its
direct counterpart are fully contained in the integral

I(ra,kb, ωb) =

∫
V

drbe
ikb·(rb−ra)G(ra, rb;ωb), (18)

where V denotes the integration region, occupied by the sample. We will focus on three special cases. In cases (i)
and (ii) there is a poor phase matching, whereas in case (iii) phase matching is good.

Case (i): the region V is a convex 3D region with the size large, compared to the wavelength. Introducing an
inhomogeneous spherical coordinate system, associated with the convex region V , centered at r0, with the z-axis
oriented in the direction of k0 (see Appendix E) we recast the integral I in the form

I =

∫ R

0

r2bdrb

∫ π

0

sin θdθ

∫ 2π

0

dϕξ3(θ, ϕ)(ξ(θ, ϕ)rb)
−1eiξ(θ,ϕ)(

ωb
c +kb cos θ)rb , (19)

where R and ξ(θ, ϕ), are determined by the shape and size of the region V , as well as the position ra. Assuming a
natural condition kb < ωb, integration over ra can be performed for any values of θ and ϕ, resulting in

I = −
∫ 2π

0

dϕ

∫ π

0

sin θdθ
1

(ωb

c + kb cos θ)2
+

∫
S2

dn

(
1

(ωb

c + kb · n)2
− iRξ(n)

ωb

c + kb · n

)
eiRξ(n)(

ωb
c +kb·n). (20)

The second integral over the unit sphere represents the integral over the boundary of the sample. If the point ra is not
within the wavelength region from the boundary (which is the typical case), the integrand is a fast oscillating function
and the integration can be performed using the saddle point method. In Appendix F we estimate this contribution
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and demonstrate that the second integral is negligible compared to the first one. Performing the integration in the
first term in the r.h.s. of Eq. (20) explicitly, we arrive at

I = − 4π(
ωb

c

)2 − k2b . (21)

This result is natural and just means that, when ra is not within a wavelength distance from the boundary, the
result is the same as in an infinite medium. Since the contribution of the thin layer in the vicinity of the boundary is
minor, the cascaded signal can be computed using the simple expression for I, given by Eq. (21). Note that we have
implicitly assumed poor phase matching, i.e., Eq. (21) only applies in a principal value sense and neglects the perfect
phase matching point ωb = kbc. In the absense of such phase matching, I is clearly real and the cascading signal is in
phase with the direct signal. We will see later that the singular point gives an imaginary, out-of-phase contribution
which is dominant under good phase matching.

Case (ii): V is a convex 2D region with the size large, compared to the wavelength, such as a molecular monolayer
or thin film with thickness smaller than the wavelength. We can use an inhomogeneous polar coordinate system,
resulting in the following expression for the integral I

I =

∫ R

0

rbdrb

∫ 2π

0

dϕξ2(ϕ)(ξ(ϕ)rb)
−1eiξ(ϕ)(

ωb
c +kb cosϕ)rb , (22)

where in this 2D case kb naturally denotes the projection of the cascading field wave vector onto to the monolayer/film
plane. Performing integration over rb we obtain

I = −i
∫ 2π

0

dϕ
1

ωb

c + kb cosϕ
+ i

∫ 2π

0

dϕ
1

ωb

c + kb cosϕ
ei(

ωb
c +kb cosϕ)aξ(ϕ) = I0 + I1. (23)

Neglecting the second contribution coming from a fast-oscillating integral as in the 3D case, we obtain

I = I0 = −i
∫
C

dz

2πiz

1
ωb

c + kb(z + z−1)/2
= −i

∫
C

dz

2πi

1

kbz2 + ωb

c z + kb
=

−i√(
ωb

c

)2 − k2b . (24)

This means that, in the off-resonant case where the susceptibilities are real, the direct and cascaded signals are in
phase for 3D, whereas in the 2D case there is a π/2 phase shift between the two signals.

Case (iii): the region V is a cylinder of generically irregular shape located on a reflecting plane. Let r = (x, y, z)
describing Cartesian coordinates. We assume the region V to be a cylinder of thickness l, so that 0 ≤ z ≤ l, where
z = 0 identifies a reflecting plane. The shape of the cross section of V at 0 ≤ z ≤ l is generally irregular but convex
and may depend on z. We also assume kb = (0, 0, kb) to be directed along the z-axis, i.e., the cascading wavevector is
normal to the plane. The derivation of this signal follows a similar form to case (ii) but is followed by an integration
over z. It is given in detail in Appendix C and results in

I(ra,kb, ωb) = 2πi
c

ωb
zae

ikbza . (25)

where we have taken the limit of good phase matching so that |ωb − kb|l � 1 and za is not within the wavelength
scale from the borders.

To summarize, we note that the i factor in the r.h.s. of Eq. (C10) appeared due to the 2D-integration over a cross
section (Eq. C3)), exactly along the lines of the Feynman’s argument [19]. The third contribution in Eq. (C8), which
is due to the reflecting surface, vanishes in the good phase matching limit. This tells us that in this limit the effect of
the reflecting boundary is negligible, even if it is not perfectly reflecting. Finally, we note that, for a co-linear beam
geometry, we have kbc = ωb and this phase-matching condition is automatically satisfied. In this case, as long as a
sufficient number of molecules are involved so as to permit the continuous 2D-integration over a cross-section of the
interaction region, we will obtain a cascading signal exactly out-of-phase with respect to the direct signal.

B. The Full Vector Guage Field

The previous section demonstrated how to perform the sorts of integrals needed to evaluate G(ra,kb, ωb) for different
geometries utilizing a simplified scalar field. Restoring the vector nature of the coupling gives for the real space Green’s
function,

Gνν
′
(ra, rb, ωb) =

(
−∇2δνν′ +∇ν∇ν′

) eiωb
c r

2πr
=
−ei

ωb
c r

2πr3

[
(δνν′ − 3r̂ν r̂ν′)(1− i

ωb
c
r)− (δνν′ − r̂ν r̂ν′)

(ωb
c

)2
r2
]
, (26)
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where we have used r = |ra − rb| for brevity. Equation (26) has terms proportional to r−3, r−2, and r−1. The last
of these terms is purely transverse and, aside from the ω2

b factor, matches the Helmholtz Green’s function used as an
example in the previous section. In the limit of an isotropic sample, we have r̂νv r̂ν′v →

1
3δνvν′v and this r−1 term is

the only to survive yielding

G(kb, ωb) =
−4

3

ω2
b

ω2
b − k2bc2 + iη

(27)

where we have omitted the cartesian components since the result is proportional to δνvν′v . This is the equivalent to
Eq. (21) for the vector coupling field and holds under the same geometric assumptions as that equation. In fact, in
the isotropic limit, we may directly obtain the result for the full vector Green’s function by simply multiplying the

corresponding result obtained above for a scalar field by the factor
ω2

b

3πc2 . More generally, the far-field term is dominant
when ωbr

c � 1, corresponding to seperations of greater than 2πλ or roughly 6 times the wavelength of the cascading
light. Thus, for intermolecular seperations much less than this, the static dipole-dipole coupling is dominant while
for much larger distances, the long-range 1

r term is dominant. As demonstrated above, it is this far-field term that

leads to a factor of i in the case of a thin sample under good phase matching |kb − ωb

c |l� 1. Note that the r−2 term
comes with an i factor and hence, when the sample is anisotropic, we may expect that the cascading signal has both
in-phase and out-of-phase contributions relative to the direct nonlinear signal.

The limit of an infinite, homogeneous sample can be obtained in a somewhat simpler fashion by integrating over
space before handling any vacuum mode summations. The result is a δ-function selecting the participating vacuum
mode and we obtain (see Appendix A 1)

Sc(ks,Λ) = −n2=
[
E∗νss (ωs)

∫
dωbP

νsνv (ωs;ωb)P
⊥νv (kb, ωb)δ(ka + kb − ks)

k2bc
2

ω2
b − k2bc2 + iη

]
, (28)

where we omit factors of 2π for brevity. It is thus apparent that the cascading signal consists of a real, principal value
part and an imaginary part with a δ-function selecting ω2

b c
2 = k2b . Note that kb is a linear combination of classical

modes interacting with molecule b and ωb is the corresponding linear combination of frequencies. Both parameters
are therefore externally controlled (up to permutation since which particular classical modes interact with molecule
b versus a must clearly be summed over) and we obtain a π/2 phase shift (factor of i) only under perfect phase
matching ω2

b = k2bc
2. As demonstrated in the previous section, this phase-shifted component is dominant for finite

samples when the phase-matching is such that |ωb − kbc|l� 1 where l is the optical path length.
Equation (28) strongly resembles the commonly invoked marcroscopic relation that the cascading field comes as a

product of two polarizations Ec ∝ PP . Our microscopic derivation reveals the precise sense in which they are related,
i.e., through integration over the (k, ω)-space photon Green’s function.

The case of two-molecules is also easily treated and instructive. Arranging our coordinate system such that the two
molecules both lie on the z-axis, we obtain the simplified form of the integrated Green’s function

Iνν
′
(ra,kb, ωb) =

−δνν′ei(
ωb
c r−kb·r)

2πr3

[
(1− 3δνν′z)(1− i

ωb
c
r)− (1− δνν′z)

(ωb
c

)2
r2
]
. (29)

We immediately notice that the Green’s function is now a diagonal tensor. In this two-molecule case, the phase of
the cascading signal is sensitively dependent on the distance between molecules and the angle between the cascading

beam and the intermolecular axis and comes via the factor ei(
ωb
c r−kb·r). Considering, for example, a co-linear beam

geometry perpendicular to the intermolecular axis, we have kb · r = 0 and the phase ei
ωb
c r is a sensitive probe of the

intermolecular distance. Similarly, with a co-linear beam geometry parallel to the intermolecular axis, we obtain a

phase of ei(
ωb
c r−kbr) = 0 and the long-range cascading signal is in phase with the direct signal. Finally, we note that

the long-range term which usually generates cascading does not contribute to the Gzz component. This means that,
if the dipoles are aligned along the axis connecting the two molecules, no long-range cascading takes place.

IV. CONCLUSIONS

Cascading is a vacuum-mediated exchange of coherent polarization between two molecules in a sample. Being
a coherent process, it generates terms with the same phase-matching and scaling with external field amplitudes as
direct signals that are ordinarily of more interest since they reveal higher nonlinearities. In this paper, we have
provided a microscopic QED derivation of cascading processes to arbitrary order in the classical modes and connected
this to the common macroscopic result obtained via Maxwell’s equations. In particular, we have demonstrated that
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the i factor used to discriminate cascading from direct signals originates in phase-matching and geometric concerns.
In few-molecule samples for example, the cascading signal will generally produce both in-phase and out-of-phase
terms of varying dependence on the intermolecular separation vector r and cascading wavevector kb. The uniform
integration over the interaction volume cross-section was found to be responsible for this phase-shift, along the same
lines as explicated by Feynman for a sheet of dipoles [19]. A phase-matching condition |ωb

c − kb|l� 1, where l is the
thickness of the sample, was identified as necessary for the in-phase component of the cascaded signal to vanish. This
condition can be achieved in thin films or guaranteed by a co-linear beam geometry. Because they scale quadratically
in molecular concentration, the cascading terms often dominate direct nonlinear signals. Additionally, the cascading
signal scales linearly with the frequency ωb of the emitting polarization. This implies that cascading processes will
become even more dominant at higher frequencies, such as in x-ray Raman experiments, necessitating a thorough
understanding of cascading processes for data analysis purposes [34].

We are now in a position to appreciate the difference between cascading and fluorescence resonant energy transfer
(FRET). FRET processes are evaluated by taking the square of the Hilbert space amplitude for molecule b to emit
a photon then aborbed by molecule a [35, 36]. But this square transition amplitude involves 4 orders in the vacuum
mode, and is thus 2 orders higher than cascading. In fact, in a FRET process the emitting molecule populates a
photon mode while in cascading the only intermediate photon state is a coherence between the 0- and 1-photon
states. Despite these differences, the derivations in Appendix A have much the same flavor as QED derivations of
FRET [35–38], with the principal difference being that cascading depends directly on the dipole coupling tensor rather
than its square. The derivation of Appendix A can thus be extended to account for FRET and other higher-order
processes. At fourth-order, the same as FRET, we also encounter a 3-body cascading contribution that comes as

Pν3−body(ks, ωs) =

∫
dωbdωcP̃

ννvµv(ka, ωs;−ωb, ωc)P ν
′
v(kb, ωb)P

µ′v(kc, ωc) (30)

×
∑
abc

ei(ka+kb+kc−ks)·raIνvν
′
v(ra,kb, ωb)I

µvµ
′
v(ra,kc, ωc)

and will, under phase matching, provide terms that scale cubically in the molecular concentration n. Higher-order
corrections generate n-body cascading terms that follow similarly. From the perspective of Feynman diagrams,
cascading is like a vertex insertion (with four free branches corresponding to the two in-states and two out-states of
the participating molecules) while the Lamb shift is the corresponding self-energy insertion. Both come from vacuum
interactions but only the former can be incorporated into a Dyson equation. The n-body cascading terms similarly
behave like vertex insertions with 2n free branches.

An interesting future extension of this work would be to consider manipulating the cascading signal from a system
of molecules embedded in an optical cavity, systems which have drawn recent interest [39–44]. Optical cavities alter
the density of electromagnetic field modes from its free-space value, suppressing cascading in all but the cavity mode.
In particular, we note that the field mode participating in a cascading process is determined only for infinite samples
(when the mode summation collapses to a δ-functino as in Appendix A 1) while, for few-molecule samples, all vacuum
modes participate. By strongly coupling a few-molecule sample to an optical cavity, we can effectively force the
cascading to occur with a particular field mode (the cavity mode). On the other hand, by suppressing the density
of field-modes at the cascading wave-vector for a macroscopic system, the cascading signal can be suppressed for
arbitrary sample-sizes and beam geometries. Moreover, molecular coupling to the cavity mode can be tuned by the
cavity volume and made much larger than the coupling to the vacuum field. This would allow for enhancement and
control of the cavity-mode cascading.
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Appendix A: Microscopic Derivation of Cascading Signals

In this section, we will derive an expression for the cascading signal from a fully microscopic QED perspective while
keeping the perturbative order in the external fields completely arbitrary. This will allow us to make very general
conclusions without considering particulars of the laser fields.
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Expanding equation (6) to 2nd order in the vacuum modes of the electric field

Êv(r, t) = i
∑
kvλ

√
2πωv

V
{ε(λ)(k̂v)ei(kv·r−ωvt)âkv,λ − ε(λ)∗(k̂v)e−i(kv·r−ωvt)â†kv,λ

} (A1)

results in

Sc(Λ) = =
[
(i)2

∑
ab

∫
dt

∫ t

−∞
dτv

∫ τv

−∞
dτ ′vE

∗νs
s (ra, t)〈V̂ νs+ (t)V̂ νv− (τv)〉(ra)〈V̂ ν

′
v

+ (τ ′v)〉(rb)〈Êv+(ra, τv)Êv−(rb, τ
′
v)〉0

]
(A2)

where the factor of i2 comes from the two orders of expansion in the interaction with the vacuum modes. the {ν}
stand for cartesian coordinates coming from the dot products and are implicitly sumed over, and 〈. . . 〉0 ≡ Tr[. . . |0〉〈0|]
stands for an expectation value taken over the vacuum state. The −(+) subscripts stand for the commutator (anti-
commutator) as usual and we have selected the only appropriate contributing terms when performing the initial spatial
integrations. In particular, 3-body terms (in which each of the three dipole operators occur at a different molecule)

and that in which the action on molecule b preceedes that on a all vanish since Tr[Ô−ρ] = 0 for all operators Ô
and density matrices ρ (this argument is explained in more detail in section II of [9]). Note however, that 3-body
cascading does occur when expanding to 4th order in the vacuum modes and cascading 3rd-order processes have been
considered in 7th-order nonlinear techniques [33]. Equation (A2) is represented diagramatically in Fig. 1.

It is important to note that the dipole expectation values in Eq. (A2) includes propagation with respect to the
full Hamiltonian (excepting only the vacuum modes). That is, the externally applied semiclassical modes are still
included in the propagators and the expression incorporates all orders of interaction between the matter and laser
modes. Explicitly, we have

〈V̂ νs+ (t)V̂ νv− (τv)〉 = Tr
[
V̂ νs+ (t)T V̂ νv− (τv)e−i

∫ t
−∞ dτĤ−,LM(τ)ρ(−∞)

]
(A3)

where the time-dependence of the dipole operators is through Ĥ0, the free material Hamiltonian, and the new in-
teraction Hamiltonian ĤLM only includes interactions with the laser fields. The dependence on molecule position
is notated outside the expectation values since all interactions within each expectation value occur on a particular
molecule. Within the dipole approximation, this spatial dependence comes as a simple exponential while the full
multi-polar polarization operator has a more general dependence on position.

Equation (A2) can be simplified by introducing the polarization of a molecule

P ν(r, t) = 〈V̂ ν(t)〉(r), (A4)

as well as the quantity

P̃ νν
′
(r, t; t′) =iθ(t− t′)〈V̂ νs+ (t)V̂ νv− (τv)〉(r), (A5)

which represents the polarization of a molecule in the laser fields due to a perturbative interaction with the polarization
of another molecule. Finally, we identify the photon Green’s function

Gνν
′
(ra, rb, τv − τ ′v) = iθ (τv − τ ′v) 〈Êνv+(ra, τv)Êν

′

v−(rb, τ
′
v)〉0, (A6)

which comes as a time-ordered, vacuum expectation value of electric field operators. In terms of these quantities, we
may write the cascading signal as

Sc(Λ) = =
[∑
ab

∫
dtdτvdτ

′
vE
∗νs
s (ra, t)P̃

νsνv(ra, t; τv)Gνvν
′
v(ra, rb, τv − τ ′v)P ν

′
v(rb, τ

′
v)

]
(A7)

In appendix B, we simplify the photon Green’s function. Remaining in the time domain for now, we substitute Eq.
(B9) to obtain

Sc(Λ) = =
[∑
ab

∫
dtdτvE

∗νs
s (ra, t)P̃

νsνv(ra, t; τv)
(
−∇2δνvν′v +∇νv∇ν′v

) 1

2πrab
P ν
′
v(rb, τv −

rab
c

)

]
(A8)
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where the spatial derivatives (the ∇’s) act on rab, the distance between molecules. This expression is very intuitive;
the polarization of molecule b, evaluated at the retarded time and adjusted by the action of the dipole coupling tensor
and factor of 1

r , is in place of an external field interaction. We may make this identification explicit, writing the
effective electric field that is felt by molecule a and caused by the polarization emitted from molecule b

Eνvv (ra, τv) =
∑
b

(
−∇2δνvν′v +∇νv∇ν′v

) 1

2πrab
P ν
′
v(rb, τv −

rab
c

), (A9)

in terms of which the cascading signal is

Sc(Λ) = =
[∑

a

∫
dtdτvE

∗νs
s (ra, t)E

νv
v (ra, τv)P̃

νsνv(ra, t; τv)
]
. (A10)

Equations (A7)-(A10) have straightforward physical interpretations. In particular, it is clear that the phase of the
cascading signal will depend on the phase of the effective electric field (Eq. (A9)) which in turn depends on the
geometry of the sample via the summation over positions of molecule b. In physical experiments, the material is
subjected to a set of lasers with well-defined propagation vectors kj and, within the dipole approximation, the real-

space dependence of the polarizations will always come as a spatial phase factor ei
∑n

j kj ·r where n is the order to
which the polarization is expanded with respect to the laser-matter interaction. Thus, the k-space polarization will
have a delta function setting k to some linear combination of the incoming wavevectors. In contrast, the spatial
structure of the sample can be quite complicated. We thus transform to k-space and, in the interests of brevity, we
omit the integrations over dka dkb with the understanding that they will collapse to sums over different choices of
ka, kb. To completely put all geometric dependence on a single term, all else that is required is to change to the
frequency domain with respect to the retarded polarization. We obtain

Sc(ks,Λ) = =
[
E∗νss (ωs)

∫
dωbP̃

νsνv(ka, ωs;−ωb)P ν
′
v(kb, ωb)

∑
ab

e−i(ks−ka)·raeikb·rbGνvν
′
v(ra, rb, ωb)

]
(A11)

where we have used the fact that the detected “signal” field is E∗νss (ra, t)→ E∗νss (ωs)e
−i(ks·ra−ωst) representing ideal

frequency resolution. We explicitly highlight the signal’s dependence on this detected mode rather than continuing
to include it implicitly in the set of field parameters Λ. Additionally, we have substituted the spatiotemporal Fourier
transforms of Eqs. (A4)-(A5). In terms of the discrete Fourier transform of the photon Green’s function

Gνvν
′
v(ka,kb, ωb) =

∑
ab

e−ika·rae−ikb·rbGνvν
′
v(ra, rb, ωb) (A12)

we have

Sc(ks,Λ) ==
[
E∗νss (ωs)

∫
dωbP̃

νsνv(ka, ωs;−ωb)P ν
′
v(kb, ωb)G

νvν
′
v(ks − ka,−kb, ωb)

]
(A13)

or

Sc(ks,Λ) ==
[
E∗νss (ωs)

∫
dωbP̃

νsνv(ka, ωs;−ωb)P ν
′
v(kb, ωb)

∑
a

ei(ka+kb−ks)·raIνvν
′
v(ra,kb, ωb)

]
, (A14)

where we have substituted the quantity

Iνvν
′
v(ra,kb, ωb) ≡

∑
rb

e−ikb·rabGνvν
′
v(ra, rb, ωb) =

∑
rb

e−ikb·rab
(
−∇2δνvν′v +∇νv∇ν′v

) eiωb
c rab

rab
(A15)

that forms the basis of our discussion of the geometric differences between cascading and direct signals in section III.
Formally, Eq. (A8) in the time domain and Eqs. (A13) or (A14) in the frequency domain ar our general results. They
give the cascading contribution to a heterodyne-detected signal in terms of the molecular polarization and the photon
Green’s function, which encodes all geometric information that shapes the cascading signal.

As an aside, we note that one may wish to remain in the time-domain with respect to molecule a, while still handling
the geometry more completely than in Eq. (A8). This can be accomplished by writing

Eνvv (ra,kb, τv) =

∫
dωbe

−iωbτv〈V̂ ν
′
v

+ (ωb)〉Iνvν
′
v(ra,kb, ωb), (A16)
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Sc(ks,Λ) = =
[∑

a

∫
dtdτvE

∗νs
s (ωs)e

iωstEνvv (ra,kb, τv)P̃ νsνv(t, τv)ei(ka+kb−ks)·ra
]
. (A17)

where the ra-dependence of Ev goes away in the homogeneous limit.
In summary, we first derived an intuitive formula (Eq. (A8)) for the cascading signal based on the polarization of

molecule b at the retarded time acting as a source to interact with molecule a. We then obtained a convenient, compact
expression (Eq. (A14)) for the cascading terms in the heterodyne signal based on the photon Green’s function. It can
be readily expanded to any order to obtain cascading corrections to particular nonlinear signals and can also be recast
as interaction between an effective electric field and the molecule (Eqs. (A9)-(A10) and (A16)-(A17)). The effect
of the sample geometry is contained in the exponential phase factor, which approaches the molecule number under
good phase matching, and the integral over the photon Green’s function I(ra,kb, ωb). Under off-resonant excitation,
the phase of the cascading signal is determined solely by this Green’s function. Finally, we note that everything is
currently written in terms of discrete summations over molecular positions but we may take the continuum limit by
replacing summation by integration

∑
r →

∫
drn(r) where n denotes molecular concentration.

1. Alternative Derivation of the Macroscopic Homogeneous Limit

In Appendix A, we performed all possible simplifications, such as vacuum mode summations, bundling all geometric
dependence into the photon Green’s function and a phase-matching exponential factor. Such an approach allows full
generality in treating different geometries and provides the necessary ingredients for a simulation of cascading processes
in few-molecule samples. The resulting expressions can then be applied directly to microscopic geometries or, after
converting summations over molecular locations to spatial integrations, various macroscopic geometries and smoothly
taken to the infinite limit by integrating over all space. Some additional insight into this may be obtained by pursuing
an alternative derivation in which this spatial integration is performed first, generating δ-functions that determine
the participating vacuum mode and collapse the mode sum.

We begin with

Sc(Λ) =2=
[
(i)2

∑
ab

∑
{ν}

∫
dt

∫ t

−∞
dτv

∫ τv

−∞
dτ ′vE

∗νs
s (ra, t)〈V̂ νs+ (t)V̂ νv− (τv)〉(ra)〈V̂ ν

′
v

+ (τ ′v)〉(rb) (A18)

×
∑
kvλ

2πωv
V
{ε(λ)∗νv (k̂v)ε

(λ)
ν′v

(k̂v)e
i(kv·(ra−rb)−ωv(τv−τ ′v) − c.c}

]
,

obtained from inserting Eq. (B4) into (A2) which we then use Eqs. (B5) and (9) to rewrite as

Sc(ks,Λ) =2=
[
(i)2

∑
{ν}

∫
dt

∫ t

−∞
dτv

∫ τv

−∞
dτ ′vE

∗νs
s (ωs)e

iωst〈V̂ νs+ (t)V̂ νv− (τv)〉〈V̂
ν′v
+ (τ ′v)〉

∑
kv

2πωv
V

(
δνvν′v − k̂νvv k̂

ν′v
v

)
(A19)

× {f(ka + kv − ks)f(kb − kv)e
−iωv(τv−τ ′v) − f(ka − kv − ks)f(kb + kv)eiωv(τv−τ ′v)}

]
where we have substituted the spatial dependence of the dipole expectation values and the signal field Es as before.
Switching to frequency domain, this can be written as

Sc(ks,Λ) =− 2=[
∑
{ν}

∫
dωbP

νsνv (ωs;ωb)P
ν′v (ωb)

∑
kv

2πωv
V

(
δνvν′v − k̂νvv k̂

ν′v
v

)
(A20)

× {f(ka + kv − ks)f(kb − kv)

ωb − ωv + iη
− f(ka − kv − ks)f(kb + kv)

ωb + ωv + iη
}

where we have used the definitions of the frequency-domain polarizations of the previous section to simplify the
expression.

In the infinite homogeneous limit, we have f(k)→ (2π)3nδ(k)

Sc(ks,Λ) = −2(2π)4n2=[E∗νss (ωs)

∫
dωbP

νsνv (ωs;ωb)P
⊥νv (kb, ωb)δ(ka + kb − ks){

kbc

ωb − kbc+ iη
− kbc

ωb + kbc+ iη
}]

(A21)
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where we have identified the transverse part of the polarization

P⊥νv (kb, ωb) =
∑
ν′v

(
δνvν′v − k̂νvb k̂

ν′v
b

)
P ν
′
v (ωb). (A22)

Finally, we can combine the two terms above to obtain Eq. (28)

Appendix B: Field Vacuum Expectation Value

In this section, we evaluate the releveant photon Green’s function for this problem defined as a time-ordered,
vacuum expectation value of electric field operators

Gνν
′
(ra, rb, τv − τ ′v) = iθ (τv − τ ′v) 〈Êνv+(ra, τv)Êν

′

v−(rb, τ
′
v)〉0. (B1)

Ignoring the prefactors for the moment and expanding first the Ê− operator gives

−i
∑
kvλ

√
2πωv

V
Tr[Êv+(ra, τv){ε∗(λ)(k̂v)e−i(kv·rb−ωvτ

′
v)â†kv,λ

ρv + ε(λ)(k̂v)ei(kv·rb−ωvτ
′
v)ρvâkv,λ]} (B2)

where ρv ≡ |0〉〈0| is the vacuum density matrix and we have kept only non-vanishing terms. Due to the cyclic

invariance of the trace, we may consider only action from the left with respect to the Ê+ operator that remains. This
results in

2
∑
kvλ

∑
k′vλ
′

√
2πωv

V

√
2πω′v
V

[
ε∗(λ)(k̂v)ε(λ

′)(k̂′v)ei(k
′
v·ra−ω

′
vτv)e−i(kv·rb−ωvτ

′
v)Tr[âk′v,λ′ â

†
kv,λ

ρv] (B3)

− ε(λ)(k̂v)ε∗(λ
′)(k̂′v)ei(kv·rb−ωvτ

′
v)ei(k

′
v·ra−ω

′
vτv)Tr[â†k′v,λ′

ρvâkv,λ]

]
.

The basic commutation relation then gives Tr[âk′v,λ′ â
†
kv,λ

ρv] = Tr[â†k′v,λ′
ρvâkv,λ] = δk′vkv

δλ′λ and we obtain the

expression

〈Êv+(ra, τv)Êv−(rb, τ
′
v)〉0 = 2

∑
kvλ

2πωv
V

ε∗(λ)(k̂v)ε
(λ)(k̂v){ei(kv·(ra−rb)−ωv(τv−τ ′v)) − e−i(kv·(ra−rb)−ωv(τv−τ ′v))} (B4)

To simplify, we perform the polarization sum and change the vacuum mode summation to an integration (see [35, 36])∑
λ

ε(λ)∗νv (k̂v)ε
(λ)
ν′v

(k̂v) = δνvν′v − k̂νvv k̂
ν′v
v (B5)

1

V
∑
kv

→
∫
dωvdΩvω

2
v

(2πc)3
(B6)

after which the integration over solid angle can be carried out∫
dΩv

(
δνvν′v − k̂νvv k̂

ν′v
v

)
e±ikv·r =

(
−∇2δνvν′v +∇νv∇ν′v

) sin kvr

k3vr
(B7)

which then allows us to easily perform the ωv integration∫
dωv sin

(
ωv
rab
c

)[
e−iωv(τv−τ ′v) − eiωv(τv−τ ′v)

]
= iπ

[
δ(τ ′v − τv −

rab
c

)− δ(τ ′v − τv +
rab
c

)
]
. (B8)

Combining this with Eq. (B1) yields

Gνν
′
(ra, rb, τv − τ ′v) =

(
−∇2δνν′ +∇ν∇ν′

) δ(τ ′v − τv + rab

c )

2πrab
. (B9)

with temporal Fourier transform

Gνν
′
(ra, rb, ω) =

∫
d(τv − τ ′v)eiω(τv−τ

′
v)Gνν

′
(ra, rb, τv − τ ′v) =

(
−∇2δνν′ +∇ν∇ν′

) eiω rab
c

2πrab
(B10)

where acting the differential operators results in Eq. (26).
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Appendix C: Cylindrical Geometry

In this section, we describe the derivation of I for the case of a cylindrical geometry as discussed in Section III,
case (iii). The field Green function in this case has a form

G(ra, rb;ωb) =
1√

(xa − xb)2 + (ya − yb)2 + (za − zb)2
ei

ωb
c

√
(xa−xb)2+(ya−yb)2+(za−zb)2

− 1√
(xa − xb)2 + (ya − yb)2 + (za + zb)2

ei
ωb
c

√
(xa−xb)2+(ya−yb)2+(za+zb)2

= GM (ra, rb;ωb) +GS(ra, rb;ωb), (C1)

where GM is the field Green function in the complete space R3, and GS is the correction associated with the surface
S, determined by the condition z = 0, so that G is the complete Green function in the half-space z ≥ 0, with the
reflecting boundary conditions. The representation of Eq. (C1) represents the integral I of Eq. (18)

I(ra,kb, ωb) = IM (ra,kb, ωb) + IS(ra,kb, ωb) (C2)

We start with computing IM ; the second integral IS is computed in a similar fashion. Fixing z we compute the
integral over the corresponding cross section

I(zb; ra,kb, ωb) = eikb(zb−za)
∫
Sz

dxdyGM (ra, xb, yb, zb;ωb), Sz = {(x, y) | (x, y, z) ∈ V } (C3)

by using inhomogeneous polar coordinates with the center in (xa, ya) followed by integration over the inhomogeneous
radius, resulting in

IM (zb; ra,kb, ωb) = 2πi
c

ωb
eikb(zb−za)+i

ωb
c |zb−za| − i c

ωb
eikb(zb−za)

∫ 2π

0

dϕei
ωb
c

√
(Rξ(ϕ))2+(z0−z)2 . (C4)

The integration is performed in a similar way to how it has been carried out for the 2D case, using the identity

ξ2rbdrb√
(ξrb)2 + (za − zb)2

= d
√

(ξrb)2 + (za − zb)2, (C5)

and the fact that the projection of kb onto the plane is 0. For the surface contribution we obtain in a similar way

IS(zb; ra,kb, ωb) = 2πi
c

ωb
eikb(zb+za)+i

ωb
c |za+zb| − i c

ωb
eikb(zb+za)

∫ 2π

0

dϕei
ωb
c

√
(Rξ(ϕ))2+(za+zb)2 . (C6)

By a similar to case (ii) argument, which involves saddle-point approximation for computing a fast oscillating integral,
the second contribution in the r.h.s. of Eq. (C4) and (C6) can be neglected resulting in

IM (zb; ra,kb, ωb) = 2πi
c

ωb
eikb(zb−za)+i

ωb
c |zb−za|

IS(zb; ra;ωb, V ) = 2πi
c

ωb
eikb(zb+za)+i

ωb
c |zb+za|. (C7)

Finally performing integration over z we obtain

I(ra,kb, ωb) = 2πi
c

ωb

[
ei

ωb
c zae

i(kb−
ωb
c

)za

2 zasinc

(
(ωb

c − kb)za
2

)
+ e−i

ωb
c zae

i(kb+
ωb
c

)(l+za)

2 (l − za)sinc

(
(ωb

c + k0)(l − z0)

2

)
+ ei

ωb
c zae

i(kb−
ωb
c

)za

2 zasinc

(
(ωb

c − kb)za
2

)]
, (C8)

where we have expressed the answer in terms of the sinc function

sinc(x) =
sinx

x
, (C9)

with the properties sinc(x) ≈ 1, for |x| � 1, and |sinc(x)| ≤ |x|−1. In the case |ωb − kb|l � 1 of a good phase
matching and if za is not within the wavelength scale from the borders, the first contribution is dominating, so that
we reproduce a well-known result

I(ra,kb, ωb) = 2πi
c

ωb
zae

ikbza . (C10)
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Appendix D: Integration Measure for Inhomogeneous Polar Coordinates

In this section we compute the integration measure for inhomogeneous polar coordinates. Inhomogeneous in this
context mans that the radius depends on the angle. Formally, let ξ(ϕ) be a positively-defined function of angle that
has a property that the region {r ∈ R2 | r(r) ≤ ξ(ϕr)} is convex, where r(r) and ϕ(r) are the standard polar
coordinates of r. The inhomogeneous polar coordinates are defined by

rx = rξ(ϕ) cosϕ, ry = rξ(ϕ) sinϕ. (D1)

It is easy to demonstrate that the inhomogeneous polar coordinates is a well-defined coordinate system for the region
defined by the condition r < r0 for any r0, provided the convexity condition is satisfied. A reverse statement is also
true, i.e., for any connected convex region and any reference point in it one can (and very easily) identify r0 and ξ(ϕ)
so that the region is defined by the condition r < r0 in the inhomogeneous polar coordinate system, centered in the
reference point.

To compute the integration measure we first differentiate

drx = ξ cosϕdr + r

(
∂ξ

∂ϕ
cosϕ− ξ sinϕ

)
dϕ

dry = ξ sinϕdr + r

(
∂ξ

∂ϕ
sinϕ+ ξ cosϕ

)
dϕ (D2)

and then apply the concept of the wedge (i.e., antisymmetric) product to obtain

drx ∧ dry = rξ cosϕdr ∧ r
(
∂ξ

∂ϕ
sinϕ+ ξ cosϕ

)
dϕ

+ r

(
∂ξ

∂ϕ
cosϕ− ξ sinϕ

)
dϕ ∧ ξ sinϕdr = rξ2(ϕ)dr ∧ dϕ (D3)

where in the derivation we have used the antisymmetric properties of the wedge product, namely dr∧dr = dϕ∧dϕ = 0
and dϕ ∧ dr = −dr ∧ dϕ. This provides a very simple result for the integration measure

drxdry = ξ2(ϕ)rdrdϕ, (D4)

in particular the integration measure does not contain derivative of the function ξ(ϕ) that describes the inhomogeneity
of the coordinate system. We will refer to the above property as the homogeneous property of the inhomogeneous
coordinate system.

Appendix E: Integration Measure for Inhomogeneous Spherical Coordinates

An inhomogeneous spherical coordinate system is introduced in a similar way:

rx = rξ(θ, ϕ) sin θ cosϕ, ry = rξ(θ, ϕ) sin θsinϕ, rz = rξ(θ, ϕ) cos θ. (E1)

Obviously, the inhomogeneous spherical system satisfies the same convexity properties as the inhomogeneous polar
system. A much more tedious computation, similar to the one for the polar system, presented in Eq. (D3), provides
a very simple result

drxdryrz = ξ3(θ, ϕ)r2 sin θdrdθdϕ = ξ3(n)r2drdn, (E2)

which shows that the measure is also homogeneous. This means that the homogeneity of an inhomogeneous measure
takes place in all dimensions, and there is a general geometrical argument that derives Eq. (E2) for all dimensions
that bypasses tedious computations.

Appendix F: Estimates for the Boundary Contributions Using the Saddle-Point Approximation

We start with the 2D case Denoting in Eq. (23)

S(ϕ) = (ω0 + k0 cosϕ)aξ(ϕ) (F1)
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we obtain in the saddle-point approximation

I1 =
1√

2πλ0

1

ω0 + k0 cosϕ0
ei(ω0+k0 cosϕ0)aξ(ϕ0),

(
dS(ϕ)

dϕ

)
ϕ=ϕ0

= 0, λ0 =

(
d2S(ϕ)

dϕ2

)
ϕ=ϕ0

. (F2)

Estimating λ0 ∼ aω0 � 1 we see that I1 is small compared to I0 by a factor ∼ (
√
aω0)−1.
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