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We present a theory of cooperative light scattering valid in any dimension: connecting theories for
an open line, open plane, and open space in the non-relativistic regime. This theory includes near-
field and dipole-orientation effects, highlighting how field mode confinement controls the phenomena.
We present a novel experimental implementation for planar collective effects.
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Interatomic dipole-dipole coupling yields remarkable
collective effects such as super- and sub-radiant emis-
sion [1–4], Anderson localization [5, 6], and collective
Lamb shifts [7], which test fundamentals of quantum
electrodynamics (QED) and have applications to su-
perradiant lasers [8], quantum simulation [9], and pro-
tecting quantum information [10]. Waveguide quantum
electrodynamics enables improved spatial mode match-
ing compared to three-dimensional (3D) systems [11],
thereby increasing photon-mediated coupling between
distant atoms in one-dimensional (1D) [12–17] and two-
dimensional (2D) systems [6, 9]. We present an elegant
unified model for cooperative light scattering by N two-
level atoms in an open spatial region of arbitrary dimen-
sion d, providing a single expression for the collective ef-
fects in terms of “cardinal” Bessel functions. We propose
a scheme to observe the phenomena in 2D using vacancy
centers in diamond.

We develop a theory of multi-atom superradiance for
electromagnetic fields confined to dD (d ∈ [1, 2, 3]). We
solve the collective Lamb shifts and spontaneous emission
rates as a function of dimension d ∈ [1, 2, 3], dipole ori-
entation, and dipole-dipole separation. We find that ori-
entation effects are especially prominent at small atom-
atom separations as dimension increases. Our theory
provides intuition into how superradiance can be con-
trolled via field confinement, orientation, and placement
of dipoles in realistic structures such as our proposed di-
amond vacancy center scheme.

In our theory we find that 2D has the most complex
orientation dependence between dipoles with subwave-
length separations. This complex dependence is due to
the lack of cylindrical symmetry with respect to the sep-
aration between dipoles, different from both 3D and 1D.
Vacancy centers in diamond allow for subwavelength po-
sitioning of centers [17–20] where the orientation-effects
are especially prominent.

Our physical system comprises identical two-level sys-
tems (here called “atoms”) coupled to electromagnetic
fields propagating in vacuum. For a dD system, the
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FIG. 1: (a) Schematic showing a pair of emitters embedded
in a 2D slab extending in the x1x2 plane. The emitters are
separated a distance rı apart in the x̂2 direction. Emission
is detected by a detector D. (b) Energy diagram for 2-atom
superradiance, with |0〉 = |g〉1|g〉2, |E〉 = |e〉1|e〉2, and the su-
perradiant and subradiant states |±〉 = 1

2
(|e〉1|g〉2± |g〉1|e〉2).

|±〉 have transition energies ω0 ∓ ω12 and rates γ ± γ12, as
labeled in diagram.

fields are described by a plane-wave decomposition with
wavevector k ∈ Rd and dispersion ωk = c|k|. In this work

a vector a =
∑3
l=1 xlx̂l ∈ Rd if a · 1d = a =

∑d
l=1 xlx̂l,

where 1d is the dD unit dyad
∑d
l=1 x̂lx̂l, which projects

vectors into dD for {x̂l} the orthogonal Cartesian unit
vectors.

We solve a master equation describing the evolution of
atom states in our system, so following Lehmberg [7] we
quantize the electromagnetic field. We consider the field
quantized in a volume V , with photon creation opera-

tor â†kl producing a photon with wavevector k, frequency

ωk, and polarization êl, k̂ · êl = 0. We can write the
fields as{

Ê(r)

B̂(r)

}
=
∑
k

2∑
l=1

√
2πωk

V

{
êl

k̂ × êl

}(
eik·râkl + hc

)
(1)

at point r with hc denoting the hermitian conjugate andˆ
denoting operator or unit vector (which case pertains is
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discernible from the context).
Identical atoms are placed at positions r ∈ Rd. We

label atoms with indices ı and  so that for atom ı en-
ergy ~ω0 separates its excited state |e〉ı from ground
state |g〉ı, and the atomic dipole moment µı can be ori-
ented in any direction in R3. Henceforth ~ ≡ 1. De-
exciting and exciting the atom is achieved by operators
σ̂ı = |g〉ı〈e| and σ̂†ı , respectively.

Proposition 1. The vacuum expectation of any self-
adjoint N -atom operator Q̂ for times ω0t� 1 is

˙̂
Q =

N∑
ı

iωı

[
σ̂†ı σ̂, Q̂

]
+
γı
2

(
2σ̂†ı Q̂σ̂ − σ̂†ı σ̂Q̂− Q̂σ̂†ı σ̂

)
(2)

for ωıı := ω0, and

ωı =− 2π

cd

∫
/d
d−1

Ωk̂µı ·
[
13 − k̂k̂

]
· µ

×
∑
±
P
∫ ∞
0

/dω
ωd

ω ± ω0
eiωk̂·rı/c, (3)

γı =
2πωd0
cd

∫
/d
d−1

Ωk̂µı ·
[
13 − k̂k̂

]
· µeiω0k̂·rı/c, (4)

with P denoting principle value, rı := rı − r, /d
d

:=

dd/(2π)d, dd−1Ωk̂ the dD solid angle integrating over di-

rections k̂.

Proof. The Hamiltonian for N identical atoms (with in-
dividual frequency ω0) coupled to the field is

Ĥ =

N∑
ı=1

ω0σ̂
†
ı σ̂ı +

∑
kl

ωkâ
†
klâkl −

N∑
ı=1

∑
kl

(
2πωk

V

)1/2

× êl · µı
(
eik·rı âkl + hc

) (
σ̂ı + σ̂†ı

)
. (5)

The quantum master equation for Q̂ any N -atom opera-
tor was originally solved for 3D fields by treating atoms
as point dipoles and neglecting strong fields and non-local
effects [7], and recently the master equation was solved
for 1D fields [15]. Here we employ the Markovian ap-
proximation and solve for it in dD with d ∈ [1, 2, 3] when
the time of flight across the sample is faster than any
spontaneous emission rate so that non-local effects may
be neglected.

We first eliminate the photon operators âkl(0) which
represents the field amplitude of the excitation source.
We rewrite it in terms of atomic operators using

âkl(t) =âkl(0)e−iωkt + i
∑
ı

(
2πωk

V

)1/2

êl · µıe−ik·rı

×
∫ t

0

dt′
[
σ̂ı(t

′) + σ̂†ı (t
′)
]

e−iωkl(t−t′). (6)

We then take vacuum expectation values of the master-
equation solution to obtain

˙̂
Q =iω0

∑
ı

[
σ̂†ı σ̂ı, Q̂

]
+

1

V

∑
ı

[
σı + σ̂†ı , Q̂

]
×

{∑
kl

2πωk(êl · µı) (êl · µ) eik·rı

×
[
f−σ̂ + f+σ̂

†


]
+ hc

}
(7)

with f± = −iP(ω ± ω0)−1 + πδ(ω ± ω0).
We then express the master equation in terms of collec-

tive frequency shifts and corresponding linewidths, which
involves converting the sum over k into integration over
ω(k) using the dispersion relation ω = c |k| and obtain

1

V

∑
k

→
∫
/d
d
k→ 1

cd

∫
/dωωd−1

∫
/d
d−1

Ωk̂, (8)

dd−1Ωk̂ =

d−1∏
l=1

sind−l−1 θldθl. (9)

Here dd−1Ωk̂ is the dD solid angle over directions k̂ with
azimuthal angles θ1, . . . , θd−2 ∈ [0, π] and polar angle
θd−1 ∈ [0, 2π). Substituting

2∑
l=1

(êl · µı) (êl · µ) = µı · (13 − k̂k̂) · µ, (10)

and Eq. (8) into Eq. (7) completes the proof.

For N = 1 atom and a dD field, with k0 := ω0/c =
2π/λ0 and µı := µıµ̂ı, Eq. (4) yields spontaneous emis-
sion rate

γıı =
23−dπ2−d/2µ2

ı k
d
0

Γ(d/2)

(
1− µ̂ı · 1d · µ̂ı

d

)
(11)

for Γ the Gamma function. In 3D, γıı = 4µ2
ı k

3
0/3 is in-

dependent of dipole orientation. In 1D and 2D, γıı is
maximized for the dipole perpendicular to the Rd sub-
space (µ̂ı · 1d · µ̂ı = 0) and thus falls by half for in-plane
dipoles in 2D (µ̂ı · 12 · µ̂ı = 1) compared to out-of-plane
dipoles [6] and is zero for in-line dipoles in 1D.

For rı � λ, Eq. (3) is divergent and cannot be used
to calculate the single-atom Lamb shift. The breakdown
of this theory to describe the single-atom Lamb shift is
a consequence of approximating a physical dipole with a
point dipole. We thus treat the single-atom Lamb shift
as being incorporated into a renormalized frequency ω0.

For N ≥ 2 atoms, signatures of collective-effects, such
as enhanced spontaneous decay and Lamb shifts, are
quantified by γı and ωı (ı 6= ), respectively, as illus-
trated in Fig. 1(b) for N = 2 atoms. We now express γı
and ωı in terms of the dD dyadic Green’s function.
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Definition 1. The dyadic Green’s function in dD is←→
G d := DGd for D := 13 + 1

k20
∇d∇d a dyadic op-

erator, Gd the solution of the dD Helmholtz equation[
∇2
d + k20

]
Gd (rı, ω0) = −δ (rı).

Definition 2. Analogous to the relation between sinx
and sincx (“cardinal sine”), we introduce “cardinal” ver-
sions of the Bessel functions (first and second kind) and
Hankel function of the first kind as, respectively,

J̌α(x) :=
Jα(x)

xα
, Y̌α(x) :=

Yα(x)

xα
, Ȟ(1)

α (x) :=
H

(1)
α (x)

xα
.

Proposition 2. The complex collective frequency shift is

Γı := −ωı + iγı/2 = 4πk20µı ·
←→
G d(rı, ω0) · µ. (12)

Proof. Solutions of the dD Helmholtz equation are [21]

AJ̌d/2−1 (r̃ı) + BY̌d/2−1 (r̃ı) for r̃ı := k0rı = r̃ı ˆ̃rı
and A and B arbitrary complex constants. Imposing the
Sommerfeld radiation condition

lim
r̃ı→∞

|rı|(d−1)/2
(

∂

∂r̃ı
− i

)
Gd (rı, ω0) = 0. (13)

on an outgoing spherical wave satisfying energy conser-
vation yields the purely radial expression

Gd (rı, ω0) =
i

4

[
k20
2π

]d/2−1
Ȟ

(1)
d/2−1 (r̃ı) . (14)

For G′d := dGd

dr̃ı
and G′′d := d2Gd

dr̃2ı
, applying D to Gd (14)

yields

1

k20
∇d∇dGd = r̂ır̂ıG

′′
d +
∇dr̂ı
k0

G′d. (15)

We apply the identity

∇dr̂ı
k0

=
1

r̃ı
(1d − r̂ır̂ı) (16)

to obtain

1

k20
∇d∇dGd =

1

r̃ı
G′d1d +

(
G′′d −

1

r̃ı
G′d

)
r̂ır̂ı. (17)

Hankel function recurrence relations then yield

←→
G d (r̃ı, ω0) =

i

4

[
k20
2π

]d/2−1(
Ȟ

(1)
d/2−1 (r̃ı) [13 − r̂ır̂ı]

− Ȟ(1)
d/2 (r̃ı) [1d − dr̂ır̂ı]

)
. (18)

We now obtain Γı directly from Eqs. (3) and (4). Sub-
stituting

−k20k̂k̂eiωk̂·rı/c = ∇d∇deik̂·rıω0/c, rı 6= 0, (19)

into Eq. (4), and using∫
dd−1Ωk̂eik̂·rıω0/c = (2π)

d/2
J̌d/2−1 (r̃ı) , (20)

yields

γı =
kd0

(2π)d−2
µı · D

[
(2π)d/2J̌d/2−1 (r̃ı)

]
· µ. (21)

Similarly,

ωı =
1

2

kd0
(2π)d−2

µı · D
[
(2π)d/2Y̌d/2−1 (r̃ı)

]
· µ. (22)

Comparing Eqs. (21) and (22) with (18) proves the result.

Equation (12) is a unified solution of collective atom-
atom couplings for dD, and includes the previous results
for 1D [15], 2D [6], and 3D [7]. Now we separate the terms
governing the separation and orientation dependence of
the collective atom-atom coupling by rewriting Eq. (12)
as

Γı =
i

2

µıµk
d
0

(2π)d/2−2

(
Ȟ

(1)
d/2−1 (r̃ı) Θı − Ȟ(1)

d/2 (r̃ı) Θ′ı

)
(23)

for

Θı =µ̂ı · µ̂ − (µ̂ı · r̂ı)(µ̂ · r̂ı), (24)

Θ′ı =µ̂ı · 1d · µ̂ − d(µ̂ı · r̂ı)(µ̂ · r̂ı). (25)

Here the cardinal Hankel functions express the separa-
tion dependence of the collective effects, whereas (24)
and (25) summarize the orientation dependence of these
effects. Asymptotically r̃ı � 1,

Ȟ
(1)
d/2−1 (r̃ı)→

exp
{

i
[
r̃ı − π

4 (d− 1)
]}

r̃
d−1
2

ı

, (26)

leading to Ȟ
(1)
d/2−1 (r̃ı) /Ȟ

(1)
d/2 (r̃ı) → ir̃ı, which shows

that the first term in Eq. (23) dominates for r̃ı � 1
(defined here as far field) and the second term in Eq. (23)
which typically dominates for near field, defined as r̃ı �
1. We see that the near- and far-field terms are π/2 out
of phase, so it is possible to use orientation control to
suppress either γı or ωı by a factor of r̃ı for distant
atoms.

Now we examine angular dependence of Γı (23) by
studying the properties of Θı (24) and Θ′ı (25). We
restrict to parallel dipoles (µ̂ı = µ̂) separated along
the x1 axis (r̂ı = x̂1) to visualize the angular depen-
dence. In the far-field, the angular dependence is gov-
erned by the d-independent term Θı = 1 − (µ̂ı · x̂1)

2
.

Setting µ̂ı = sin θ1 cos θ2x̂1 + sin θ1 sin θ2x̂2 + cos θ1x̂3

yields Θı = 1 − sin2 θ1 cos2 θ2, which is a torus. In the
near field, Γ becomes d-dependent with

Θ′ı =


0, d = 1,

− sin2 θ1 cos 2θ2, d = 2,

1− 3 sin2 θ1 cos2 θ2, d = 3.

(27)



4
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(d) (e) (f)

d=1 d=2 d=3

FIG. 2: Spherical polar plots of dimensionless ω̃12 = ω12/γ11
(a)-(c) and γ̃12 = γ12/γ11 (d)-(f) up to a multiplicative con-
stant for parallel dipoles µ1 = µ2 =

∑3
l=1 xlx̂l, r12 � λ, and

r̂12 = x̂1.

We plot real and imaginary parts of Γı in Fig. 2 for
parallel dipoles as functions of dipole orientation µ̂ı given
by x1,x2,x3. The interatomic separation is fixed to be
very small (r̃ı � 1) in order to correspond to the Dicke
limit. The cylindrical symmetry of ωı for the 1D and
3D cases, as seen in Fig. 2(a,c), is replaced the four-
leaf structure in 2D shown in Fig. 2(b), and the simple
plot of γı in Fig. 2(f) transforms to more complicated
surfaces in Fig. 2(d,e) due to enhanced emission for atoms
oriented perpendicular to its confinement.

Collective effects (23) are strongly dependent on di-
mensional confinement, as evidenced by the contrast be-
tween inverse-distance dependence in 3D vs constant in
1D for large separation r̃ı � 1 [7, 15]. The d-dependence
of Γı is captured by the asymptotic expression for the
cardinal Hankel function (26) whose denominator shows
d-dependent fall-off and whose oscillatory exponential
numerator shows that γı and ωı are π/2 out of phase.

Furthermore Ȟ
(1)
d/2−1 experiences a π/4 phase shift for

each integer leap in dimension d, corresponding to a λ0/8
shift in relative positions of the atoms in different dimen-
sions for maximizing atom-field coupling.

Whereas ωı and γı display similar features for well
separated parallel dipoles, the closely spaced parallel-
dipole case is quite different due to γı being sensitive
to both near- and far-field terms in (23) while ωı is only
sensitive to near field terms. Specifically, the asymp-
totic expressions for the cardinal Bessel functions yield
γı 7→ γıı

[
1−O(r̃2ı)

]
, which is independent of d, whereas

ωı ∼


r̃−dı , Θ′ı 6= 0,

r̃−d+2
ı , Θ′ı = 0, d 6= 2,

log r̃ı, Θ′ı = 0, d = 2.

(28)

We now have asymptotic expressions of γı and ωı in the
asymptotic small and large r̃ı regimes and now explore
the dependence on the full range of r̃ı.

We plot each of ωı and γı as a function of both r̃ı

1D
2D
3D

0 2 π 4 π 6 π

- 0.4
- 0.2
0.0
0.2
0.4

1D
2D
3D

0 2 π 4 π 6 π
- 1.0

- 0.5

0.0

0.5

1.0

(a) (b)

(c) (d)

FIG. 3: (Color online) Dimensional and separation depen-
dence of dimensionless ω̃ı := ωı/γıı ((a)-(b)) and γ̃ı :=
γı/γıı ((c)-(d)) vs dimensionless separation r̃ı = 2π

rı
λ

for
identical parallel dipoles µ̂ı = µ̂ = x̂3. (a) and (c) show
results interpolated for real valued dimensions 1 ≤ d ≤ 3. (b)
and (d) compare d = 1 (dotted blue line), d = 2 (solid red
line), d = 3 (dot-dashed green line).

and d as surface plots in Fig. 3(a,c) and present slices of
those plots in Fig. 3(b,d). We have interpolated between
integer dimensions by inserting the modified identity

1d =

dde∑
l=1

x̂lx̂l + (d− dde) x̂ddex̂dde (29)

into Eq. (25), where d e is the ceiling function. The small
and large r̃ı features have been explained already, and
the plot shows that these small and large limits apply ev-
erywhere except a small region near r̃ı ∼ 1. Interestingly
our d-dependent functions are smooth for real-valued d,
thus giving us clear predictions of collective behavior for
non-integer dimension. Exploration of non-integer d col-
lective effects would be quite interesting and could relate
to electromagnetic field anisotropy [22].

As 1D and 3D collective effects have been explored ex-
perimentally, we propose a 2D experiment with vacancy
centers in diamond as our “atoms”. In addition to requir-
ing a structure that confines the electromagnetic field to
2D, we have three requirements for the emitters for real-
izing 2D superradiance: sub-wavelength relative position
control, lifetime-limited linewidths, and spectrally over-
lapping energies. The 2D structure and emitter-position
control ensure the ability to control superradiance phe-
nomena, while the spectral requirements are necessary
for their observation.

There are two promising approaches towards a 2D dia-
mond structure: ultra-high aspect ratio diamond thinned
via plasma etching [23] and membrane structures of sub-
wavelength thicknesses [24]. As the diamond medium is
not the vacuum described thus far, we extend our result
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to dielectric media using [25, 26]

Γı,ε(ω)(rı) = Re
[
ε(ω0)1/2

]
|l|2Γı

(
Re
[
ε(ω0)1/2

]
rı

)
,

(30)

where ε(ω) is the dielectric coefficient, and l is a local
electric field factor.

To satisfy the requirements on the emitters, ion im-
plantation techniques allow either nitrogen or silicon va-
cancies to be positioned with impressive rı ∼ λ0/20 ac-
curacy [17–20]. We propose working with a single pair
of vacancies as shown in Fig. 1(a) to minimize inho-
mogeneity inherent in an ensemble. Nitrogen vacancy
centers are appealing due to their narrow homogeneous
linewidths [27] but suffer from strain-induced inhomo-
geneous broadening that can be ameliorated by Stark
shifting from an external field [28].In contrast, silicon
vacancies have inversion symmetry that protects them
from external fields, thereby reducing inhomogeneity but
makes spectral control via Stark shifts challenging [20].
However each silicon vacancy can be addressed with a
tunable off-resonant laser to obtain spectrally overlap-
ping Raman transitions, as has been used to demonstrate
1D superradiance [17].

For either nitrogen- or silicon- vacancy centers, the
pair can be excited symmetrically by a resonant pulse
with bandwidth much less than γıı and propagating per-
pendicular to rı. Superradiant effects can be quanti-
fied by ωı(r̃ı,µı,µ) and γı(r̃ı,µı,µ) through time-
resolved photoluminescence measurements as outlined in
Fig. 1(b).

In conclusion, we present a unified solution for collec-
tive spontaneous emission, for electromagnetic field con-
fined to dimension d ∈ [1, 2, 3], with arbitrary dipole ori-
entation and separation. We explain the scaling behavior
of cooperative effects for systems much larger or smaller
than the resonance wavelength. Furthermore we suggest
a potential implementation scheme using vacancy centers
in diamond to explore the effects in 2D.
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