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High-order sideband generation in an optomechanical system coupled to a charged object is discussed, and
the features of Coulomb-interaction dependent effect are identified. We show that the Coulomb-interaction
dependent effect of high-order sideband generation exhibits essential difference between the case of weak control
field and strong control field. In the weak control field case, the output spectra are in the perturbative regime and
there is hardly any Coulomb-interaction dependent effect in an optomechanical system coupling to an object
with a small amount of charge. In the strong control field case, the output spectra are in the nonperturbative
regime and robust Coulomb-interaction dependent effect arises even if there are few charges. The amplitudes
of specific sidebands are also discussed, and it is shown that Coulomb interaction plays an important role
in achieving optomechanical control. Due to the extremely sensitive to charge number, Coulomb-interaction
dependent effect of high-order sideband generation is remarkable in many aspects and may be used to precision
measurement of electrical charges beyond the linearized optomechanical interaction.

PACS numbers: 03.65.Ta, 42.50.Wk

I. INTRODUCTION

Cavity optomechanics [1, 2], which treats resonantly en-
hanced feedback-backaction arising from radiation pressure,
has become a rapidly developing research field recently and
find applications in achieving high precision measurement [3]
and on-chip manipulation of asymmetric light propagation
[4, 5]. In general, an optomechanical system consists of a
Fabry-Perot cavity in which one mirror of the cavity is mov-
able as a mechanical resonator with angular frequency ωm and
mass m, and the optomechanical system is usually driven by a
strong control field with frequency ω1 and a weak probe field
with frequency ωp, especially in the setup of observing the
signals of optomechanically induced transparency [6–8].

Optomechanically induced transparency, which enabled by
radiation-pressure coupling of optical modes and mechanical
oscillations [9, 10], is an interesting analog of electromagneti-
cally induced transparency that originally discovered in atoms
and molecules, and can be well understood through the lin-
earization of the optomechanical interactions [11, 12]. In the
parameter configuration of optomechanically induced trans-
parency, ω1 is detuned by about −ωm from the cavity reso-
nance frequency and the frequency difference between probe
and control fields is chosen to be over the optical resonance of
the cavity. Based on the linearized dynamics of the optome-
chanical interactions, a transmission window for the propa-
gation of probe field is induced by the control field when
the resonance condition is met. It has been shown that op-
tomechanically induced transparency can be used to precisely
measure the charge number of small charged objects due to
the Coulomb-interaction dependent effect of the transmission
window [13].

Recently, signals arising from the nonlinear optomechani-
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cal interactions have been revealed in both perturbative and
non-perturbative regime and emerged as a new frontier in
cavity optomechanics [2]. In the semiclassical mechanism,
novel spectral components at the second- and higher-order
sideband have been found based on the perturbative analy-
sis [14] in the parameter configuration of optomechanically
induced transparency. Full quantum calculations predict that
the signal at the second order sideband exhibits a prominent
feature of nonlinear optomechanically induced transparency
[15]. These perturbative analysis provides a viable tool for
inferring signals arising from the nonlinear optomechanical
interactions with simple calculations. Based on the method,
features of nonlinear optomechanical dynamics with multiple
probe field driven have been discussed and sum and differ-
ence sideband generation [16] have been revealed, and typi-
cal spectral structure in the nonperturbative regime have been
identified [17]. Recently, optomechanically induced sideband
generation and chaos dynamics have been studied in various
contents, including optomechanical system with second-order
coupling [18], delaying or advancing higher-order sideband
signals [19], hybrid electro-optomechanical systems [20, 21],
photonic molecule optomechanical system [22], coherent-
mechanical pumped optomechanical systems [23], and PT-
symmetry optomechanics [24]. Analytical description of the
intrinsic nonlinearity arising from quadratic optomechanical
interactions [25] has also been discussed.

In the present work, we investigate the Coulomb-interaction
dependent effect of high-order sideband generation in an op-
tomechanical system coupled to a charged object and identify
the features of Coulomb-interaction dependent effect. We find
that the Coulomb-interaction dependent effect of high-order
sideband generation exhibits essential difference between the
case of weak control field and strong control field. In the weak
control field case, the output spectra are in the perturbative
regime and there is hardly any Coulomb-interaction depen-
dent effect in an optomechanical system coupling to an object
with a small amount of charge. In the strong control field case,
the output spectra are in the nonperturbative regime and ro-
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bust Coulomb-interaction dependent effect arises even if there
are few charges. The Coulomb-interaction dependent effect
of high-order sideband generation may be important in under-
standing the nonlinear optomechanical interactions and play
an important role in achieving optomechanical control. From
the precision measurement perspective, Coulomb-interaction
dependent effect of high-order sideband generation may pro-
vide an potential method for precision measurement of elec-
trical charge.

The paper is organized as follows. In Sec. II, we
will present the theoretical model and give the derivation of
Heisenberg-Langevin equation of motion. Linearized dynam-
ics around the steady-state solution are introduced in brief in
Sec. III. In Section IV, we show the features of Coulomb
interaction-dependent effect in the perturbative regime, where
typical spectral structure are discussed. In Section V, the fea-
tures of Coulomb interaction-dependent effect of high-order
sideband generation in the nonperturbative regime are shown.
Finally, a conclusion of the results is summarized in Section
VI.

II. THE THEORETICAL MODEL AND THE
HEISENBERG-LANGEVIN EQUATION OF MOTION

As schematically shown in Fig.1, Coulomb interaction can
be introduced to a conventional optomechanical system where
a Fabry-Perot cavity consists of a fixed mirror and a movable
one which treats as a mechanical resonator (MR). The Hamil-
tonian formulation of such a optomechanical system reads
[13, 26]:

Ĥ0 = ~ωcâ†â + (
p̂2

2m
+

mω2
m x̂2

2
) + ~Gx̂â†â +

kQ1Q2

r − x̂
, (1)

where the first term ~ωcâ†â is the free Hamiltonian of the cav-
ity, in which â† (â) is bosonic creation (annihilation) operator
of the single-mode cavity with eigenfrequency ωc. The sec-
ond term p̂ and x̂ are the momentum and position operators
of the movable mirror with effective mass m and angular fre-
quency ωm. The third term denotes the coupling between the
cavity field and the movable mirror via radiation pressure with
the coupling strength G. The last term presents the interac-
tion of the charged MR with the charged body by a Coulomb
force, where k is the electrostatic force constant, r is the dis-
tance between the MR and the charged body, and Q1 and Q2
are the charge of MR and the charged body, respectively. For
simplicity, in the present work we only focus on the case that
the direction of the Coulomb force on the MR is the same as
the radiation pressure, and a possible choice is Q1 > 0 while
Q2 = ne < 0 with n the charge number.

Let us now assume that a strong driving field and a weak-
probe field, with frequencies ω1 and ωp, respectively, are ap-
plied to the cavity. Then the Hamiltonian of the optomechan-
ical system can be written as:

Ĥ = Ĥ0 + i~
[(
ε1e−iω1t + εpe−iωpt

)
â† − H.c.

]
. (2)

The amplitudes of the pump field and the probe field are de-
fined as ε1 =

√
P1/~ω1 with the pumping field’s power P1

and εp =
√

Pp/~ωp with the probe field’s power Pp, where
the amplitudes of the pump field and the probe field are nor-
malized to a photon flux at the input of the cavity.

Considering about 〈x̂〉 � r, we make use of series expan-
sion, so kQ1Q2/(r − x̂) can be written as kQ1Q2 x̂/r2, where
higher order terms of x̂ is omitted. Therefore the total Hamil-
tonian can be described as follows [13]:

Ĥ =~ωcâ†â +
p̂2

2m
+

mω2
m x̂2

2
+ ~Gx̂â†â +

kQ1Q2 x̂
r2

+ i~
[(
ε1e−iω1t + εpe−iωpt

)
â† − H.c.

]
. (3)
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FIG. 1: Schematic diagram of an optomechanical system where the
MR is charge coupling to an adjoining charged body. The optome-
chanical system is driven by a strong pump field with frequency ω1

and the weak probe field with frequency ωp. The output field is rep-
resented by εout. Through the control of the strength of the driving
field and the charge, we can get different features of the output high-
order sidebands spectrum.

Transforming the Hamiltonian Eq.(3) into the rotating
frame at the frequency ω1 of the input laser based on Ĥ1 =

~ω1â†â, Ut = e−iĤ1t/~ = e−iω1â†ât, and Ĥrot = U†(Ĥ − Ĥ1)U,
the resulting effective Hamiltonian can be derived as:

Ĥeff =~∆câ†â +
p̂2

2m
+

mω2
m x̂2

2
+ ~Gx̂â†â +

kQ1nex̂
r2

+ i~
[(
ε1 + εpe−iδt

)
â† − H.c.

]
, (4)

where ∆c = ωc − ω1 is the detuning of the input control field
from the cavity resonance frequency and δ = ωp − ω1 is the
detuning between the frequency of the probe field and the con-
trol field. Based on the effective Hamiltonian and introduc-
ing the dissipation and fluctuation terms by using the Markov
approximation, the Heisenberg-Langevin equation of motion
can be written as:

˙̂x =
p̂
m
,

˙̂p = − mω2
m x̂ −

kQ1ne
r2 + ~Gâ†â − γm p̂ + F̂th,

˙̂a = − [κ + i (∆c + Gx̂)] â +
(
ε1 + εpe−iδt

)
+ âin, (5)

where κ is the loss rate of the cavity and γm is the mechanical
decay rate introduced classically. F̂th and âin denote environ-
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mental noises corresponding to the operators p̂ and â, respec-
tively. In this work, we are interested in the mean response of
the system, so the operators can be reduced to their expecta-
tion values. Thus the evolution of the optomechanical system
can be described by the following equations:

ẋ =
p
m
,

ṗ = − mω2
mx −

kQ1ne
r2 + ~Ga∗a − γm p,

ȧ = − [κ + i (∆c + Gx)] a + ε1 + εpe−iδt, (6)

where the quantum noise terms are safely ignored in the weak-
optomechanical coupling regime [1].

III. DYNAMICS AROUND THE STEADY-STATE
SOLUTION

Equations (6) are nonlinear and coupled equations due to
the parametric coupling between the optical and mechanical
modes. The steady-state solution of Eqs. (6) can be obtained
as

as =
ε1

κ + i∆
, xs =

~Ga2
s − kQ1ne/r2

mω2
m

, (7)

with ∆ = ∆c −Gx. Equations (7) give functions mapping the
intracavity photon number |ā|2 to the displacement x̄ under
different Coulomb interactions. This system has bistability if
the control field is strong enough. Coupled equations with
multiple steady states have also been found in nonlinear op-
tics [27] and economic evolution [28], and lead to complex
dynamics. Figure 2 shows the displacement xs varies with the
power of the control field and charge number by solving Eqs.
(7) numerically. All the parametric values are adopted from
the experiment [13]: λc ≡ 2πc/ωc =1046 nm, G/2π = −11
MHz/nm, m = 145 ng, κ = 2π × 215 kHz, ωm = 2π × 947
kHz, γm = 2π × 141 Hz, r = 67µm, ε1 =

√
2P1κ/~ωc and

Q1 = CU, C = 27.5 nF, with U = 1 V. From Fig. 2, It is obvi-
ous to find that both the power of the control field and charge
number have an influence on the displacement xs of the MR
and the effect is positive. This phenomenon can be easily ex-
plained by the fact that the MR is subjected to the radiation
pressure and Coulomb force with the same direction, and the
displacement xs enlarges with the enhancement of both the
power of the control field and charge number.

If the probe field is much weaker than the control field,
dynamics around the steady-state solution can be analyzed
perturbatively. The control field provides the system with a
steady-state, the dynamics of intracavity field driven by the
probe field can be served as the perturbation or noise of the
steady state. The solution of Eqs. (6) can be written as

x = xs + δx, a = as + δa, (8)

where δa and δx are the fluctuations of cavity field and the
displacement of the MR around the steady-state solution, re-
spectively. Substituting solution (8) into Eqs. (6), we can ob-
tain a group of differential equations with the nonlinear terms

Charge number

P 
(m

W
)

(pm)sx

FIG. 2: The displacement xs as function of the power of the control
field and charge number. The parameters are ∆c = ωm = δ, λc ≡

2πc/ωc = 1064 nm, G/2π = −11 MHz/nm, m = 145 ng, κ/2π = 215
kHz, ωm/2π = 947 kHz, γm/2π = 141 Hz, r = 67µm, and Q1 = CU
with C = 27.5 nF and U = 1 V [13].

−iGδxδa and ~Gδa∗δa/m. Ignoring these nonlinear terms
leads to the linearization of dynamic equations, which can be
solved by using the following ansatz:

δx = A−e−iδt + A+eiδt, δa = C−e−iδt + C+eiδt, (9)

where (A−)∗ = A+ due to the real nature of the displacement of
the MR. By making use of the input-output relation, the out-
put field S out of the optomechanical system can be obtained.
This linearized evolution can be described as the Stokes pro-
cesses with frequencies ω1−δ = 2ω1−ωp and the anti-Stokes
processes with frequencies ω1 + δ = ωp. When the resonance
frequency of the movable mirror is equal to the resonance con-
dition of the cavity, the Stoke field is strongly suppressed and
the anti-Stoke field is resonantly enhanced, so the probe field
is coherent with the anti-Stokes sideband, leading to an ad-
justable transparency window, which is the phenomenon of
optomechanical induced transparency (OMIT). The lineariza-
tion of equations (6), which corresponding to linearized dy-
namics of the optomechanical system with a mechanical driv-
ing, are studied in Ref. [10, 11], where optomechanically in-
duced transparency and slow light have been discussed.

IV. COULOMB INTERACTION-DEPENDENT EFFECT OF
TYPICAL SPECTRAL STRUCTURE IN THE

PERTURBATIVE REGIME

The linearization of dynamic equations is usually used
to describe optomechanically induced transparency. To dis-
cuss nonlinear optomechanical interactions, the nonlinearity
of these equations must be taken account. It has been pre-
dicted that, if taking into account the nonlinear terms −iGδxδa
and ~Gδa∗δa/m, there are output fields at frequencies ω1 ± jδ
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generation, with j an integer that express the order of the side-
bands [14]. There are two kinds of feature of the high-order
sideband generation spectra: one is perturbative signs in the
spectral structure, where only several order sidebands can be
seen and the amplitude of the higher-order sidebands scale
perturbatively with the strength of the drive laser; The other
appear more robust and reveals the nonperturbative regime of
the optomechanical interaction. For high-order sideband gen-
eration in the perturbative regime, the amplitude of higher or-
der sideband is smaller and each order of sidebands reduces
the amplitude sharply. For high-order sideband generation in
the nonperturbative regime, it decreases rapidly for the first
few order sidebands, followed by a plateau where all the side-
bands have the same strength, and ends up with a sharp cut-
off [17]. Different from the optomechanically induced trans-
parency in the linearized dynamics, the amplitudes of high-
order sideband generation are quite difficult to obtain analyti-
cally.

In the present work, the evolution equations (6) are
solved numerically without taking into account the weak
probe field approximation. The output spectrum S (ω) ∝
|
∫ ∞
−∞

sout(t)e−iωtdt| can be obtained by performing fast Fourier
transform of sout(t), and high-order sideband generation with
typical spectral structure is demonstrated numerically. We ob-
serve a Coulomb-interaction dependent effect of high-order
sideband generation in the optomechanical system where dif-
ferent features of high-order sidebands spectrum generated
with various charge numbers. We show that such Coulomb-
interaction dependent effect reflects in two aspects: typical
spectral structure and the amplitudes of specific sidebands.
Coulomb-interaction dependent effect for the typical spec-
tral structure becomes evident in the perturbative regime only
when the charge number is big enough, while Coulomb-
interaction dependent effect for the amplitudes of specific
sidebands become obvious in the nonperturbative regime even
if the charge number is quite small.

Figure 3 shows frequency spectra output from the optome-
chanical system with different charge number when the power
of the control field is relatively weak (here we choose 10 mW
for example). In Fig. 3(a), the value of charge number n is 0
and just a few order sidebands can be created, the maximum
order is about 3. We can see clearly that the output spectra
is in the perturbative regime, although there are second and
higher order sideband components. The higher order of side-
band is, the weaker the intensity of the high-order sideband is,
which is presented by a linear decreasing perturbation trend.
In Fig. 3(b), the charge number n increase to 10. It seems that
Fig. 3(a) and Fig. 3(b) are almost the same, regardless of the
order of the sideband or the strength of the sideband. Based
on the comparison of the above two figures, we may safely
draw the conclusion that under the condition of weak control
field, there is hardly any Coulomb-interaction dependent ef-
fect of high-order sideband generation in an optomechanical
system coupling to an object with a small amount of charge.

In order to observe Coulomb-interaction dependent effect
of high-order sideband generation in the optomechanical sys-
tem, we continue to increase the charge number of charged ob-
jects to 33, and the frequency spectra output from the optome-
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FIG. 3: Frequency spectra output from the optomechanical system
is shown with various charge number. The frequency spectra output
shift a frequency ω1 due to the evolution of the cavity field in a frame
rotating at the frequency ω1. We use εp = ε1/2. The power of the
control field is P1 = 10 mW and the charge number vary from 0, 10,
33 to 80 in (a),(b),(c),(d) respectively.

chanical system is shown in Fig. 3(c), from which we find
that some non-perturbative signs arise in the spectral struc-
ture. For example, the amplitude of the second-order sideband
is nearly equal to the amplitude of the first-order sideband,
which breaks the characteristic of perturbation. We also note
that both the order and the intensity of high-order sidebands
are increased relative to the Fig. 3(b). However, on the whole,
the intensity of the sidebands decays along with the increase
of sideband order, particularly for the third and higher order
sidebands.

To get a much clear non-perturbative sign, we increase the
amount of charge number to 80, and the frequency spectra out-
put from the optomechanical system are shown in Fig. 3(d).
The intensity of the high-order sidebands decreases rapidly
for the first few order sidebands, followed by a plateau where
all the sidebands have almost the same strength, and ends up
with a sharp cutoff at the order of about 8, which distinctly
shows that the high-order sideband spectrum is in the non-
perturbative regime.

From the above discussion, we can summarize that only the
charge number is big enough, can the Coulomb-interaction
dependent effect of high-order sideband generation in an op-
tomechanical system achieve when the power of the control
field is weak. As a matter of fact, this phenomenon can be
well explained by the nonlinear optomechanical interaction,
in which the magnitude of the Coulomb force directly deter-
mines the magnitude of the mechanical displacement. Com-
pared to traditional enhancement of high-order sideband gen-
eration by increasing the power of the driving field, Coulomb-
interaction dependent effect in an optomechanical system cou-
pling to charge object provides another way for the control of
high-order sideband generation.
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It is worthy of note that the results shown in Fig. 3 have
not any contradiction to the typical feature of optomechani-
cally induced transparency, which has a wide Lorentzian dip
(describing the optical cavity mode) with a sharp transparency
window at detuningωm from the control field frequencyω1. In
a typical spectrum of optomechanically induced transparency,
the x-axis is δ which describes the detuning between the fre-
quency of the probe field and the control field. For a fixed
δ, only a transmissivity of the probe field can be obtained,
which also are related to the amplitude of the first-order side-
band. We must vary δ (usually, the probe field with wide spec-
trum may be used) to observe the effect of optomechanically
induced transparency: a wide Lorentzian dip with a sharp
transparency window. In the present work, both probe and
control fields are monochromatic, and δ is fixed to be ωm,
thus such feature can not be observed in any of the spectra.
To observe and analyze the typical optomechanically induced
transparency feature in higher-order sideband generation, We
should vary δ and discuss the amplitudes of the specific side-
bands. In fact, some previous works have been done on this
topic, and an inverted optomechanically induced transparency
feature is found for the amplitude of the second order sideband
[14].

V. COULOMB INTERACTION-DEPENDENT EFFECT OF
HIGH-ORDER SIDEBAND GENERATION IN THE

NONPERTURBATIVE REGIME

In this Section, we discuss Coulomb interaction-dependent
effect of high-order sideband generation in the nonperturba-
tive regime. Spectral structure of output fields from the op-
tomechanical system is shown in Fig. 4(a), where the value of
charge number n is 0 and the power of the control field is 20
mW. Unlike the perturbative spectral structure of output fields
shown in Fig. 3(a), the amplitude of the second-order side-
band is larger than the amplitude of the first-order sideband,
which confirms the characteristic of non-perturbative signs.
From Fig. 4(a) we observe that the cutoff order is about 4,
thus we focus on the amplitudes of these specific sidebands.
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FIG. 4: (a) Frequency spectra output from the optomechanical sys-
tem without Coulomb force. (b) The amplitudes of high-order side-
band generation with different charge number from 0 to 9. The power
of the control field is 20 mW and we use εp = ε1/2.

Figure 4(b) shows the amplitudes of four different side-
bands vary with charge number (from 0 to 9) when the power

of the control field is 20 mW. All sidebands exhibit certain
Coulomb interaction-dependent effect which, however, are not
monotone increasing. The modification of the amplitudes of
these four sidebands can achieve as large as 3 dB, which im-
plies that the charge number have a notable impact on the
sideband intensity. In particular, we observe that a single
charge is enough to produce numerical difference about 1.5
dB, which can be easily detected by the current level of tech-
nology [29, 30] and makes possible a measurement of the
charge number in high precision.

From the above discussion in the nonperturbative regime,
we show that there are Coulomb-interaction dependent effects
of high-order sideband generation in an optomechanical sys-
tem even if the charge number is quite small. Due to the ex-
treme sensitivity to charge number, Coulomb-interaction de-
pendent effect of high-order sideband generation should work
well even for detecting single charge in very small objects,
and our scheme, which take advantage of nonlinear optome-
chanical interaction, may play an important role in achieving
optomechanical control beyond the scheme based on the lin-
earized optomechanical interaction.

We note that the sideband intensities do not show a mono-
tonic trend for different charge numbers in Fig. 4(b), which
brings difficulty for the determination of the charge number
based on the intensity of a single sideband. There are two
methods to overcome this difficulty: one method is to find a
monotonic trend of sideband intensities on the charge number
via adjusting the parameters of the system; the another is us-
ing the intensities of multiple sidebands. Although one can
find a monotonic trend of sideband intensities on the charge
number via adjusting the parameters of the system, the first
method may be restricted by the real experiment condition and
thus is not convenient to practical application. For the second
method, we can determine the charge number via comparing
the intensities of multiple sidebands, which is quite similar to
the determination of carrier-envelope phase in an optical pulse
with few cycles. Fortunately, the charge number is not large
and the method is effective. For the case that the charge num-
ber is larger than 20, the present method is ineffective and in
this case one may refer to the perturbative regime where mod-
ification of typical spectral structure is shown in Fig. 3 when
the charge number is large.

VI. CONCLUSIONS

In summary, we investigate the Coulomb-interaction de-
pendent effect of high-order sideband generation in an op-
tomechanical system coupled to a charged object, and find that
the Coulomb-interaction dependent effect of high-order side-
band generation exhibits essential difference between the case
of weak control field and strong control field. In the weak
control field case, the output spectra are in the perturbative
regime and there is hardly any Coulomb-interaction depen-
dent effect in an optomechanical system coupling to an object
with a small amount of charge. In the strong control field case,
the output spectra are in the nonperturbative regime and robust
Coulomb-interaction dependent effect arises even if there are
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few charges. The amplitudes of specific sidebands are also
discussed, and it is shown that Coulomb interaction plays an
important role in achieving optomechanical control. From the
precision measurement perspective, Coulomb-interaction de-
pendent effect of high-order sideband generation may provide
an potential method for precision measurement of electrical
charge.
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