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We show that temporal reflections off a moving refractive index barrier play a major role in the
spectral broadening of a dual-wavelength input inside a highly nonlinear, dispersion decreasing fiber.
We also find that a recently developed linear theory of temporal reflections works well in predicting
the reflected frequencies. Successive temporal reflections from multiple closely spaced solitons create
a blue-shifted spectral band, while continuous narrowing of solitons inside the dispersion decreasing
fiber enhances Raman-induced red shifts, leading to supercontinuum generation at relatively low
pump powers. We also show how dispersive wave emission can be considered a special case of the
more general process of temporal reflections. Hence our findings have implications on all systems
able to support solitons.

INTRODUCTION

The mathematical equations governing light propaga-
tion in optical fibers have established connections be-
tween nonlinear fiber optics and seemingly unrelated
fields such as Bose-Einstein condensates [1], plasma
physics [2], and water waves [3]. Fiber optics offers a con-
venient laboratory-scale platform for studying systems
covered by the nonlinear Schrödinger equation. One of
the extreme nonlinear phenomena occurring in optical
fibers is supercontinuum (SC) generation [4], which is
of great interest to the broader physics and engineering
community because of its applications in optical coher-
ence tomography [5], high-precision metrology [6], com-
munication systems [7], and optical pulse-shaping [8].
SC generation in photonic crystal fibers (PCFs) has

been studied extensively over the past decade [4, 9]. The
dispersion of a PCF can be made to change along its
length either during the manufacturing process or by ta-
pering it afterwards. SC generation has been studied
in both kinds of dispersion-varying fibers [10]. Typi-
cally the fiber is pumped in the anomalous-dispersion
regime, and the magnitude of the dispersion parameter
β2, defined as β2 = d2β/dω2 where β(ω) is the modal
propagation constant at frequency ω, is made to de-
crease along fiber’s length. Such fibers are referred to as
dispersion-decreasing fibers (DDFs). The beneficial ef-
fect of decreasing |β2| on the spectral width of an optical
pulse is evident in the context of solitons, as decreasing
|β2| causes them to compress temporally, which broadens
their spectrum and also causes them to red-shift faster
through the Raman effect [11, 12]. In practice, tapering a
fiber will also decrease its core size leading to broader SC
spectra simply due to enhanced nonlinearities [10, 13].
When the input to a nonlinear fiber is a continu-

ous wave (CW) or a long pulse at a wavelength in the
anomalous-dispersion regime of the fiber, spontaneous
modulation instability (MI) breaks it into a train of much
shorter pulses [12]. Spontaneous noise-seeded MI leads to
incoherent supercontinua [14]. However, MI can also be

induced by modulating the input at an appropriate fre-
quency, resulting in better coherence properties [15]. In
this case, MI causes the modulation sidebands to grow,
and the cascaded effect can yield frequency combs. An-
other way to induce MI is to pump the fiber with two
(or more) pumps of different wavelengths. SC and fre-
quency comb generation using dual-wavelength pumping
has been explored in numerous studies [16–21]. The dual-
pump configuration can have significant advantages over
single-CW pumping. Demircan et al. [22] considered two
pulses on opposite sides of the zero-dispersion wavelength
(ZDW). The solitonic input pulse created a moving tem-
poral refractive-index barrier for the other pulse propa-
gating in the normal dispersion regime. The other pulse
then scattered off this barrier and created new spectral
components in a quasi-continuous manner, leading to a
very broad and relatively flat SC spectrum.

Using the dual-pumping case as an example, in this
Letter we reveal the origin of the blue components during
SC generation in DDFs. This explains previous experi-
mental results on enhanced blue side spectral broadening
[10] as well as our recent observations about longitudi-
nally varying dispersion being beneficial for dual-pump
SC generation but detrimental for a single CW pump
[23]. The origin of the blue components then brings us
to an important result: a connection between dispersive
wave (DW) emission and the more general phenomenon
of temporal reflection [24]. Dual pumping creates an
amplitude-modulated input signal, which evolves nonlin-
early into a train of fundamental solitons that are then
compressed temporally by decreasing |β2|. While adia-
batic soliton compression due to varying dispersion ex-
tends the spectrum to the red side, here we show that
the blue side of the spectrum is also significantly affected
through multiple reflections of the pump remnants at the
soliton-induced index barriers. In previous work, scatter-
ing of DW’s off solitons led to spectral broadening only
under carefully crafted input conditions [22, 25]. In con-
trast, our approach allows temporal reflection to occur
spontaneously, with little sensitivity to the input condi-
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tions. Furthermore, the periodic nature of the emerging
soliton train effectively creates temporal waveguides for
the blue frequency components, and the waves can keep
reflecting and remain partially trapped between two adja-
cent solitons. This wave-trapping phenomenon continues
to be a topic of contemporary research [26].

NUMERICAL MODEL

We use the generalized nonlinear Schrödinger equation
that has been shown to accurately model nonlinear prop-
agation down to the few-cycle regime [9]. This equation
can be written as [12]
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where A is the complex amplitude of the electric field,
T = t−z/vg is the retarded time in a frame moving with
the group velocity vg at a chosen central frequency ω0, α
accounts for fiber losses, and γ is the nonlinear parame-
ter. Further, the sum is over dispersive terms with the
parameters βn, defined as βn = (dnβ/dωn) and evaluated
at ω0. For a DDF, in general, all dispersion parameters
βn are functions of z. In this work, however, only β2

changes linearly with z, and the higher-order terms as
well as the nonlinearity are kept constant. Equation (1)
is solved numerically using the split-step Fourier method
[12].

The input consists of two CW’s of equal power and
different frequencies centered around ν0 = ω0/(2π) =
c0/λ0, where c0 is the vacuum speed of light and λ0 =
1.06 µm. Quantum shot-noise is also included by adding
one photon with random phase per mode [9]. The fre-
quency separation ∆ν between the two pumps is var-
ied from 25 GHz to 1 THz. The nonlinear parameter is
γ = 91.6 (Wkm)−1 at the center frequency ω0. β2 at
ω0 increases linearly from −8.56 to 5 ps2/km over the
150 m length of the fiber. The dispersion curve at the
fiber’s input end is shown in Fig. 1.

The nonlinear response function, R(t) = 0.82δ(t) +
0.18hR(t), includes both the delayed Raman response hR

and the instantaneous [12] Kerr-type electronic response.
The convolution integral on the right-hand side of Eq. (1)
is done in the frequency domain where the Raman contri-
bution is modeled through the full experimental Raman
spectrum of silica [27]. Self-steepening is governed by the
shock time scale τs = 0.563 fs. The fiber lengths consid-
ered were 150 meters or less, and since losses for PCF’s
of such lengths can be less than 0.15 dB [28], they were
ignored for simplicity by setting α = 0.
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FIG. 1. Dispersion parameter β2 at the input end of the fiber.
The circle denotes ν0. The zero-dispersion wavelength of the
PCF is 985 nm.

ROLE OF TEMPORAL REFLECTIONS

Figure 2 shows the temporal and spectral evolution
of a dual-pump input inside a DDF (frequency separa-
tion ∆ν = 400 GHz). The total input power of 1 W
corresponds to a peak power of only 2 W at the loca-
tion of each temporal peak. The input acts as a train of
cosine-shaped pulses with a full width at half-maximum
of 1.25 ps. During the first 20 meters, the pulses com-
press temporally as they undergo self-phase modulation
(SPM). The central peak of each individual pulse then
starts adjusting to become a fundamental soliton. Dur-
ing these stages the spectrum is still comb-like.

Once solitons are formed, the soliton self-frequency
shift (SSFS) starts red-shifting them. Moreover, the red-
shift is accelerated compared to a fiber with constant dis-
persion due to a decrease in |β2| along the fiber length.
This is because of soliton compression making the soli-
tons more intense and shorter in time. The rate of SSFS
scales inversely with the fourth power of soliton duration
[12] and thus the red-shift becomes greatly enhanced.
Since the input power is too low for modulation insta-
bility to amplify the shot noise to observable levels, the
first stages of signal evolution are governed solely by the
SPM phenomenon.

Until each soliton has decelerated enough to tempo-
rally overlap with the remnants of the neighboring pulse,
each pulse follows single-pulse evolution dynamics. After
65 meters of propagation, the pump remnants of the ad-
jacent pulse see a moving refractive-index barrier caused
by solitons, resulting in temporal reflections that create
new frequency components between 970 and 980 nm [24].
Most of the pump remnants pass through this index
barrier and undergo further temporal reflections creat-
ing new spectral components first between 990 nm and
1.02 µm, then 1.02 µm and 1.025 µm, and finally between
1.03 µm and 1.04 µm (after 130 m of propagation).

In a recent study by Plansinis et al. [24] temporal re-
flections, occurring because of an abrupt temporal change
in the refractive index, were studied and the spectral shift
of the reflected light was predicted analytically using the
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FIG. 2. Temporal (a) and spectral (b) evolutions of a dual-
pump input inside a DDF. (a) shows the square root of the

intensity on a linear scale in
√

W, and (b) shows the normal-
ized spectral intensity in decibels. The two pumps are sepa-
rated in frequency by 400 GHz and their total power is 1 W.
The dashed black line shows the distance at which β2 = 0 at
the pumps’ center wavelength. Double arrows mark locations
of temporal reflections in (a) together with the correspond-
ing wavelengths in (b). The solid black line in (b) shows the
theoretical prediction of the temporal reflection model dis-
cussed in the text. The dashed line shows the zero-dispersion
wavelength.

conservation of photon momentum during the reflection
process. In their theory, the frequency ω of reflected light
is obtained from

∆β1(ω − ω0) +
∑

n≥2

βn

n!
(ω − ω0)

n = 0, (2)

where the Taylor expansion has been done around the
incident frequency ω0 and ∆β1 = β1(ω0) − 1/VB, VB

being the velocity of the moving refractive index barrier.
The trivial solution ω = ω0 corresponds to the incident
wave, and the other solution, if it exists, provides the
frequency of the reflected wave.
In the case studied in this Letter, the intense nar-

row solitons act as the moving refractive-index barriers.
Therefore, the barrier velocity VB is the inverse of the
first-order dispersion coefficient β1(ωs), where ωs is the
soliton’s center frequency. By virtue of the retarded time
coordinate used, β1(ω0) = 0, and the difference ∆β1 in
Eq. (2) reduces to ∆β1 = −β1(ωs). To determine the
value of β1(ωs), we traced the curved trajectory of a soli-
ton in Fig. 2(a) and fitted a polynomial spline to it, ex-
pressing the location Tp of the soliton peak as a function
of z. The derivative dTp/dz then yields β1(ωs). Know-
ing β1(ωs), we calculated ωs and checked that it agreed
with the spectral peak of the solitons. The calculated
β1(ωs) was then used to determine the wavelength of the
reflected wave when the pump remnants centered around
1.06 µm reflect off the solitonic index barrier. The solid
black line in Fig. 2(b) shows the predictions for the re-
flected wavelength based on Eq. (2). As seen in this fig-
ure, the theoretical predictions agree quite well with the
numerical results.
By looking at Fig. 2(b) we note that the input spec-

FIG. 3. Temporal (a) and spectral (b) evolutions of a dual-
pump input under conditions identical to those in Fig. 2
except that the dispersion is kept constant along the PCF
length.

trum has broadened considerably at a distance of 65 m
(just before the first reflection), forming a frequency
comb spanning from 1.02 µm to 1.12 µm through dual-
pump enhanced SPM [20]. Since there is a band of (dis-
crete) frequencies that can reflect off the solitonic index
barriers, the reflected frequencies also form bands around
the theoretically predicted curve (solid black line). The
width and position of these bands depend on the width of
the incident band, the dispersion, and the central wave-
length of the solitons [through β1(ωs)], as evident from
Eq. (2). Furthermore, the theory of Ref. [24] does not
account for nonlinearities, which affect the propagation
constants of both the incident and reflected waves (owing
to the Kerr effect). In addition, the nonlinear effects are
expected to be different in magnitude for the incident
and reflected waves, as the latter is much weaker than
the former one.

To clarify the drastic effects of temporal reflections on
the blue side of the output spectra, we also performed
simulations in constant dispersion fibers with the same
dispersion curve shown in Fig. 1 for all z. Figure 3 shows
the temporal and spectral evolutions of the same input
signal in this case and should be compared with Fig. 2
where dispersion varies along the fiber length. It is re-
markable how narrow the output spectrum is in Fig. 3(b)
when compared to that in Fig. 2(b). The additional
spectral broadening in Fig. 2(b) has two sources: On
the red side, it is due to soliton compression and en-
hanced SSFS of the narrower solitons. In contrast, on
the blue side, spectral broadening is due to the forma-
tion of blue-shifted spectral bands resulting from tempo-
ral reflections. Note that there is no visible DW emission
in either case, and all the blue-shifted components that
are present in Fig. 2(b) but not in Fig. 3(b) are solely
due to temporal reflections of the pump remnants off the
solitons.
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FIG. 4. Temporal (a) and spectral (b) evolutions under condi-
tions identical to those in Fig. 3 except that the value of β2 at
the pump-center wavelength was changed to −2.684 ps2/km.

DISPERSIVE WAVES AND TEMPORAL

REFLECTIONS

The absence of a DW in Fig. 3 is, at first, somewhat
puzzling since such waves are often generated when soli-
tons form. On further investigation, we find that the rea-
son behind the lack of temporal reflections in Fig. 3(b) is
related to the shape of the dispersion curve, which causes
Eq. (2) to have only one solution ω = ω0 such that no
solution exists for a reflected wave. Since no temporal
reflections can occur, all pump remnants incident on a
solitonic index barrier simply pass through it (temporal
refraction), without a significant change in their frequen-
cies [24]. We stress that this behavior is due to the pres-
ence of dispersion terms beyond the third order in our
simulations.
To clarify this issue further, we carried out addi-

tional numerical simulations. Figure 4 shows the tem-
poral and spectral evolutions under conditions identi-
cal to those in Fig. 3, except that the value of β2 at
the pump’s center wavelength was −2.684 ps2/km rather
than −8.56 ps2/km like in Fig. 3. This value of β2 corre-
sponds to its value in Fig. 2 at a distance of 65 m, which is
the location of the first temporal reflection. As in Fig. 3,
the input beating signal reshapes to form a periodic train
of solitons, but unlike in Fig. 3, now each soliton emits
a DW soon after its formation at a distance of 30 m.
The wavelength of a DW can be calculated from the

phase-matching condition [12]:

∑

n≥2

βn

n!
(ω − ω0)

n − (ω − ω0)/vg − γP0 = 0, (3)

where P0 is the soliton’s peak power and vg its group
velocity. In practice, the nonlinear term is often small
compared to the others and can be neglected to yield
the linear phase-matching condition. When γP0 = 0,
equation (3) is exactly identical to the temporal reflec-
tion equation (2) when VB = vg because ∆β1 = −1/vg in
that situation. When the moving refractive-index bound-
ary is caused by solitons of group velocity vg, the con-
dition VB = vg is automatically satisfied, and Eq. (2)

becomes Eq. (3) with γP0 = 0. This indicates that DW
emission is a special case of a temporal reflection pro-
cess. Thus, DW emission in Fig. 4 and the formation
of blue-shifted components in Fig. 2 through a temporal
reflection are the same phenomenon. The difference can
be understood as follows. In Fig. 2 the pump remnants
meet and interact with the solitons after they have left
the original pulse and slowed down considerably through
the SSFS. In contrast, in Fig. 4 the pump remnants on
the trailing side of each soliton reflect off that soliton it-
self as it slows down. In other words, DW generation is
a kind of “temporal self-reflection,” where the temporal
refractive-index boundary is caused by the formation of
a soliton in a pulse’s central region, and the trailing parts
of the same input pulse reflect off this soliton, changing
their frequency as required by the process of temporal re-
flection. Small differences in the wavelengths of the blue
components in Figures 2(b) and 4(b) can be attributed
to slight differences in the soliton group velocities and
peak powers in the two cases.

Interpreting DW emission as a special case of temporal
reflection also explains the lack of DW’s in Fig. 3. As
mentioned earlier, the shape of the dispersion curve in the
case of Fig. 3 is such that Eq. (2) admits only one solution
(ω = ω0), and hence no temporal reflections can occur.
As the same equation in the form of Eq. (3) governs DW
emission, no such waves are generated either. All pump
remnants initially present during soliton formation at a
distance of 20 m simply pass through the solitons without
reflecting off them.

CONCLUSIONS

Using numerical simulations, we showed how tem-
poral reflections are a key spectral broadening process
when two or more closely spaced pulses are transmitted
through an optical fiber. To be specific, we focused on
a periodically modulated input signal created by launch-
ing two CW laser beams at slightly different wavelengths.
We compared the output spectra for PCFs with both con-
stant dispersion and longitudinally varying dispersion (a
DDF). We found that spectral broadening was enhanced
considerably in the case of a DDF and attributed the
broadening on the blue side to temporal reflections from
a moving refractive-index boundary created by the soli-
tons. We used the recently developed theory of Ref. [24]
to predict the reflected frequency bands and found it in
agreement with our numerical simulations. Importantly,
we interpret DW generation as a special case of temporal
reflection, in which the spectral components that reflect
off the temporal index boundary have the same or nearly
the same frequency as the soliton that produces the tem-
poral boundary, hence connecting temporal reflections to
a wider range of physical systems.
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