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We study the decay of superflow via thermally activated phase slips in one-dimensional Bose gases
in a shallow optical lattice. By using the Kramers formula, we numerically calculate the nucleation
rate of a thermally activated phase slip for various values of the filling factor and flow velocity in
the absence of a harmonic trapping potential. Within the local density approximation, we derive a
formula connecting the phase-slip nucleation rate with the damping rate of a dipole oscillation of
the Bose gas in the presence of a harmonic trap. We use the derived formula to directly compare
our theory with the recent experiment done by the LENS group [L. Tanzi, et al., Sci. Rep. 6, 25965
(2016)]. From the comparison, the observed damping of dipole oscillations in a weakly-correlated
and small velocity regime is attributed dominantly to thermally activated phase slips rather than
quantum phase slips.

PACS numbers: 67.85.De, 03.75.Kk, 03.75.Lm

I. INTRODUCTION

Decay of superflow has been regarded as an impor-
tant phenomenon in the study of superfluidity since the
seminal work done by Landau [1]. As long as the flow
velocity is sufficiently small, a state carrying superflow
is metastable due to the existence of an energy barrier,
i.e., the superflow persists. However, when the flow ve-
locity exceeds a certain critical value, the energy barrier
vanishes and the superflow decays. The critical velocity
has been observed in various experiments with ultracold
atomic gases [2–14].
The critical-velocity scenario of the decay of superflow

has to be modified in low-dimensional systems, especially
in one dimension (1D), where the effect of quantum and
thermal fluctuations is significant. With such strong fluc-
tuations, a superflow can decay even below the critical
velocity due to phase slips (PS), which unwind the phase
of the superfluid order parameter to nucleate topological
defects, such as solitons or quantum vortices [15]. There
are three kinds of PS, either of which emerges depend-
ing on the temperature. Near zero temperature, a PS
occurs through purely quantum tunneling and is called
quantum PS (QPS). When the temperature is rather high
but sufficiently low compared to the energy barrier, ther-
mal fluctuations dominate over quantum ones and allow
the state to go over the energy barrier. This type of PS
is called thermally activated PS (TAPS). In an interme-
diate temperature, thermal fluctuations are too weak to
overcome the energy barrier but so strong that the ini-
tial state is mixed with several different states localized
at the metastable minimum. This thermal mixing en-
hances the rate of quantum tunneling and such a PS is
called thermally assisted quantum PS (TAQPS). Previ-
ous works [16–21] showed that the nucleation rates of
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the three kinds of PS exhibit different parameter de-
pendence, such as ΓQPS ∼ vα, ΓTAQPS ∼ vTα−1, and

ΓTAPS ∼ ve−EB/(kBT ) for small v, where α is a certain
constant, v the flow velocity, T the temperature, kB the
Boltzmann constant, and EB the energy barrier.

The superfluid transport of trapped ultracold gases has
been often studied through measuring the damping of
dipole oscillations (DO) induced by a sudden displace-
ment of the harmonic trapping potential [22–31]. In the
absence of scatterers, such as impurities and optical lat-
tices, the DO is undamped for many periods [22, 23].
Even in the presence of an optical lattice, a Bose-Einstein
condensate in a 3D (nearly isotropic) trap exhibits un-
damped DO below the critical velocity [22]. In contrast,
strong damping has been observed in a 1D superfluid,
which is confined by a strong 2D optical lattice in the
transverse direction, in the presence of the scatterers [24–
31]. It has been suggested that the observed damping
may be interpreted as a manifestation of PS [19, 32].

Specifically, in the recent experiment by the LENS
group, they have measured the velocity dependence of
the damping rate in 1D Bose gases in a shallow op-
tical lattice [31]. They have argued the observation
of the crossover from TAQPS to QPS, which is pre-
dicted to occur when the velocity increases at sufficiently
low temperatures [33]. However, since the experiment
has been performed at finite temperatures (specifically,
20 nK . T . 50 nK), it is possible that not only quan-
tum fluctuations but also thermal ones may contribute
to some of their experimental results. Hence, in order to
clarify whether the observed damping is rooted in quan-
tum or thermal nature, one needs to quantitatively eval-
uate the rate of TAPS.

In this paper, we analyze the effect of TAPS on the
damping of DO in 1D Bose gases in a shallow optical
lattice. We first consider a system with no harmonic
trapping potential to calculate the nucleation rate of
TAPS for wide parameter ranges of the filling factor ν
and the velocity v by using the Kramers formula [34, 35].
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Within the local density approximation (LDA), we next
relate the nucleation rate of PS to the damping rate of
DO and compare the latter with the LENS experiment.
Our results agree quantitatively with the experiment in
a weakly-correlated and small velocity region. This in-
dicates that TAPS gives a dominant contribution to the
damping in that region over QPS or TAQPS.
The paper is organized as follows: In Sec. II, we ex-

plain the system considered in this paper. In Sec. III, we
describe the method to calculate the nucleation rate. We
also derive the relation between the damping rate of DO
and the nucleation rate of PS within the LDA. In Sec. IV,
we show our results; the nucleation rates in ring-shaped
systems with a shallow optical lattice and the velocity
dependence of the damping rates in systems with a trap-
ping potential. In Sec. V, we summarize our study. In the
appendix, we discuss the difference between our results
with and without use of the tight-binding approximation.

II. SETUP

In the experiment, the LENS group used 39K atoms
and confined them in 1D tubes [31]. The 1D systems
were created by using a 2D deep optical lattice in the
transverse directions to split a 3D Bose-Einstein conden-
sate. The lattice depth for the transverse confinement is
about 20ER, where ER ≡ π2

~
2/(2md2) ≃ h × 4.53 kHz

is the recoil energy of the system, m the atomic mass,
and d = 532 nm the lattice spacing. The corresponding
transverse trap frequency is given by ω⊥ = 2π × 40 kHz.
An optical lattice with period d and depth s = 1 is added
in the longitudinal direction, where s is the lattice depth
measured by the recoil energy. It is worth emphasizing
that s = 1 is too shallow for the tight-binding approx-
imation to be quantitative (see Appendix for details).
The frequency of the harmonic trap in the longitudinal
direction is given by ωL = 2π × 150 Hz.
We treat this system as a quasi 1D system. The 1D

external potential is written as U(x) = (1/2)mω2
Lx

2 +
sER cos2(πx/d). We use s = 1 in the main part of the
paper. The 1D two-body interaction can be written as

V (x− x′) ≡ g1Dδ(x− x′), (1)

where δ(·) is the Dirac’s delta function, g1D ≡ ~
2/(ma1D)

is a 1D coupling constant, and a1D is a 1D scattering
length. The relation between a1D and the 3D scattering
length a3D is given by [36, 37]

a1D =
a2⊥
2a3D

(

1− C
a3D
a⊥

)

, (2)

where a⊥ ≡
√

~/(mω⊥) ≃ 80.6 nm is a transverse har-
monic oscillator length and and C = 1.03 · · · is a con-
stant. Notice that the quasi 1D treatment is well justified
under the condition that ~ω⊥ ≫ max(kBT, g1Dn1D) [38].
This condition is, indeed, safely satisfied in 1D Bose gases

of the LENS experiment, where kBT/h . 1.0 kHz and
g1Dn1D/h . 5.4 kHz.
The strength of the interaction is characterized by the

Lieb-Linger parameter γLL ≡ 1/(n1Da1D), where n1D is
a 1D particle density of the system. This dimension-
less parameter represents the ratio between the healing
length and the mean-particle distance. The mean-field
approximation employed in this paper is valid for small
γLL region [38, 39].

III. METHODS

In this section, we describe the methods for calculat-
ing the damping rate. Before showing the details, we
summarize our methods.
Our calculations presented below are based on a mean-

field approximation. In the mean-field approximation,
the system is described by a complex order parameter
Ψ(x, t), which obeys the Gross-Pitaevskii (GP) equation.
First, we neglect the harmonic potential term

(1/2)mω2
Lx

2 and consider a ring-shaped system with an
optical-lattice potential. In the ring system, we calculate
stable and unstable solutions of the stationary GP equa-
tion to evaluate the energy barrier. We also calculate
the frequency of the unstable mode and the curvature
of the energy landscape around the stationary solutions
(Sec. III A).
Second, from these results, we can calculate the nu-

cleation rates of the TAPS Γ as a function of the filling
factor ν ≡ n1Dd and the velocity v by the Kramers for-
mula (Sec. III B).
Finally, we extend the relation between the nucleation

rate of PS and the damping rate of DO G, which is given
by G ∝ Γ/v [33], by using the LDA in order to include
the effects of the inhomogeneity of the harmonic trap
(Sec. III C).
Let us compare our methods to those employed in pre-

vious works that have studied TAPS of ultracold Bose
gases. Polkovnikov et al. obtained the analytical expres-
sion of the TAPS for 1D lattice systems on the basis of
the Kramers formula [32]. Their expression is derived by
using the tight-binding approximation and the quantum-
rotor model, which correspond to the high-filling region
(ν ≫ 1) of the Bose-Hubbard model. Mathey et al. used
the truncatedWigner approximation to explain the decay
of superflow in a ring trap system [40]. They showed that
the life time of the superflow depends on the temperature.
Although the life time is expected to have the exponential
dependence about the temperature in the case of TAPS,
their calculations could not distinguish the exponential
and the power law behavior. Compared to these works,
our work has the following two advantages. One is that
our methods are applicable to the shallow-lattice regime
because our calculations are performed for systems in
continuum. Thanks to this advantage, our work can be
compared with the LENS experiment without use of any
fitting parameters. The other advantage over the trun-
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FIG. 1. (Color online) Density profiles of the Bloch state
(red solid line) and the soliton state (blue dotted line) for
γLL = 0.19, ν = 3, and W = 0.

cated Wigner approximation is that the exponential de-
pendence of the TAPS rate on the temperature is explicit
in our methods because they are based on the Kramers
formula.

A. Mean-field Approximation

In this subsection, we formulate a ring-shaped system
with an optical lattice potential on the basis of the GP
mean-field approximation. The ring system satisfies the
periodic boundary condition

Ψ(x+ L, t) = Ψ(x, t), (3)

where L ≡ NLatd is the system size and NLat is the num-
ber of lattice sites. We used NLat = 150 in this paper.
The energy functional of the system is given by

E ≡
∫ +L/2

−L/2

dx

[

~
2

2m

∣

∣

∣

∣

∂Ψ(x, t)

∂x

∣

∣

∣

∣

2

+ U(x)|Ψ(x, t)|2

+
g1D
2

|Ψ(x, t)|4
]

.

(4)

The order parameter Ψ(x, t) is normalized by the particle
number N :

N =

∫ +L/2

−L/2

dx|Ψ(x, t)|2. (5)

The equation of motion of the system is the GP equa-
tion:

i~
∂

∂t
Ψ(x, t) =

δE

δΨ∗(x, t)

=

[

− ~
2

2m

∂2

∂x2
+ U(x) + g1D|Ψ(x, t)|2

]

Ψ(x, t).

(6)

 200

 400

 600

 800

 1000

 1200

 0  1  2  3  4  5  6  7

DI

LI

E
 [k

H
z]

v [mm/s]

Bloch state
Soliton state

300

310

320

0 0.5 1.0

FIG. 2. (Color online) Velocity dependence of the total energy
of the Bloch state (red solid line) and the soliton state (blue
dotted line) for γLL = 0.19 and ν = 3. The arrows indicate the
points at which the Landau instability (LI) and the dynamics
instability (DI) set in. The inset shows a magnified view
around a small velocity region.

The stationary solution of the GP equation is given by
Ψ(x, t) = e−iµt/~Φ(x), where µ is the chemical potential.
The periodic boundary condition (3) can be rewritten as
Φ(x + L) = eipL/~Φ(x), where p ≡ mv ≡ 2π~W/L is a
crystal momentum and W ∈ Z is a winding number. We
note that this model has been well investigated in the
previous works [41–49].

In the numerical calculations of the GP equation, we
use the discrete variable representation method [50] for
the space discretization. We used 2049 numerical meshes.
The ground state solution is obtained by the imagi-
nary time propagation method. Unstable solutions (sin-
gle soliton solutions, which will be shown below) are
obtained by the pseudo-arclength continuation method
[51, 52] and the Newton method.

We show typical density profiles of the stable and un-
stable solutions in Fig. 1. The stable solution is a Bloch
state, that is, the condition Φ(x+ d) = eipd/~Φ(x) is sat-
isfied. On the other hand, the unstable solution is the
single soliton solution (blue dotted line in Fig. 1), which
has a density dip at a maximum of the optical-lattice
potential. This solution is NLat-fold degenerate because
the center of the density dip may be located on any one
of the NLat maxima of the potential.

A typical velocity dependence of the total energy is
shown in Fig. 2. The energy barrier vanishes at the
point where Landau instability sets in. When the velocity
increases further, the dynamical instability sets in [46].
Figure 3 shows that typical velocity dependence of the en-
ergy barrier. The energy barrier is defined by the energy
difference between the soliton state and the Bloch state.
In uniform systems, the energy of the soliton can be ana-
lytically obtained [38]. The energy of the soliton at rest is

given by Esoliton = (4/3)~n1D

√

g1Dn1D/m ∝ √
γLLn

2
1D.

We expect that the same scaling law with respect to the
interaction strength and the particle density holds even
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in the presence of the periodic potential as long as the
healing length is sufficiently large compared to the lattice
spacing.
To obtain excitation spectra, we linearize the GP equa-

tion around the stationary solution. This leads to the
Bogoliubov equation,

HB

[

u(x)
v(x)

]

= ǫ

[

u(x)
v(x)

]

, (7)

HB ≡
[

K g1DΦ(x)
2

−g1D[Φ∗(x)]2 −K∗

]

, (8)

K ≡ − ~
2

2m

d2

dx2
+ U(x) − µ+ 2g1D|Φ(x)|2, (9)

where ǫ is an excitation energy and u(x) and v(x) are
eigenfunctions. A complex ǫ means that the system is
dynamically unstable. For later use, we plot the typical
velocity dependence of frequency of the dynamically un-
stable mode of the soliton state in Fig. 4. We note that
the soliton state has the only one unstable mode.
In order to calculate the nucleation rate by the

Kramers formula, we must diagonalize the energy ma-
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Γ
−
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FIG. 5. (Color online) Schematic picture of TAPS. The red
curve represents the energy landscape. Γ± and E±

B
are the

decay rate and the energy barrier of the decay and the accel-
eration process, respectively.

trix that is defined by [46]

HE ≡ σzHB, (10)

σz ≡
[

+1 0
0 −1

]

. (11)

Because the energy matrix is a hermitian matrix, all of its
eigenvalues {λn} are real on the contrary to the Bogoli-
ubov matrix HB. The origin of the energy matrix comes
from the 2nd-order expansion of the energy functional
with respect to the order parameter around the station-
ary solution. This means that the eigenvalue λ can be
interpreted as a curvature of the energy landscape around
the stationary point.

B. Nucleation Rate of Phase Slips

In order to describe effects of thermal fluctuations, we
add a noise term and a dissipation term to the GP equa-
tion. The dynamics of the system is described by the
following Langevin equation:

(i − γdis)~
∂

∂t
Ψ(x, t) =

δE

δΨ∗(x, t)
+ L(x, t), (12)

where γdis is a dimensionless dissipation constant [53],
which is expected to be small in cold atomic gases, and
L(x, t) is a white-Gaussian noise term [21].
Once the Langevin equation is given, we can derive

the equivalent Fokker-Planck equation, which is a partial
differential equation for the probability density function.
According to the Langer’s paper [34], we can derive the
expression of a decay rate of the metastable state from
the Fokker-Planck equation, which is called the Kramers
formula [35].
Here, we consider two transition processes as shown

in Fig. 5; one changes the winding number from W to
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W − 1 (decay process) and the other does from W to
W + 1 (acceleration process), where we assume W > 0.
Nucleation rates for each process Γ± are given by the
Kramers formula:

Γ± = NLat
|κ±|
2π

A±e
−E±

B
/(kBT ), (13)

A± =
∏

n

′

√

√

√

√

λ
(m)
n

|λ(u±)
n |

, (14)

where the symbol ± represents the quantity of the decay
(−) and acceleration (+) processes, respectively, κ± is

the frequency of the unstable mode, λ
(m)
n and λ

(u±)
n are

eigenvalues of the energy matrix, the prime on the prod-
uct means that we omit the zero modes (λn = 0) in the
product, and E±

B is the energy barrier. The factor NLat is
a consequence of the NLat-fold degeneracy of the soliton
solution [35]. The frequency κ± is obtained by solving
the linearized equation of Eq. (12) around the unstable
stationary solution Ψ(x):

(i − γdis)~
∂

∂t
δΨ(x, t) = KδΨ(x, t) + g1DΦ(x)

2δΨ∗(x, t),

(15)

where we set L(x, t) = 0 and δΨ(x, t) is a deviation from
the unstable stationary solution. The unstable mode can

be written as δΨ(x, t) = eκ
±tδΦ(x). Here, we approxi-

mate γdis ≃ 0 [54]. Under this approximation, κ± reduces
to Im(ǫDI±)/~ that is the frequency of the unstable mode
for the soliton state as shown in Fig. 4. In Fig. 6, we show
typical profiles of the coefficient A−, which is obtained
by diagonalizing the energy matrix (10). We note that
the Kramers formula is valid for EB ≫ kBT . We define
the nucleation rate of the state labeled by the winding
number W as Γ ≡ Γ− − Γ+.
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FIG. 7. (Color online) Schematic picture of the damped os-
cillation of the center of mass position xcm.

C. Local Density Approximation for Damping Rate

In the previous subsection, we described how to cal-
culate the nucleation rates in the ring system with an
optical lattice potential and no trapping potential. In
this subsection, we derive the relation between the nu-
cleation rate and the damping rate of the DO within the
local-density approximation (LDA).
We first review the relation between the nucleation rate

of the PS Γ and the damping rate of the DO G [33] for
reader’s convenience before extending it on the basis of
the LDA. To derive the relation between Γ and G, we
calculate the energy loss through the damping of the first
half period by the following two ways. The energy loss
due to the lost potential energy is given by

ELoss = N
1

2
mω2

L(A
2
0 −A2

1), (16)

where A0 and A1 are the amplitude of the oscillation at
the initial time and the half period t1 ≡ π/ωL, respec-
tively (see Fig. 7). Assuming the underdamped oscilla-
tion (1−A1/A0 ≪ 1 or equivalently G≪ ωL), we obtain

ELoss ≃ Nmv2maxGt1, (17)

where vmax is the maximum velocity of the DO and we
used vmax ≃ ωLA0 and A1 ≃ A0e

−Gt1 ≃ A0(1−Gt1).
The other expression of the energy loss is obtained by

considering the Joule heat. Let P be a power of the
system. The energy loss due to the Joule heat is given
by

ELoss = P × t1. (18)

The power can be written as P = RI2, where R is the
resistance of the system and I is the particle current. If
we assume that the source of the resistance is phase slips,
we can write R = 2π~Γ/I [20]. The particle current is
written as I ∼ n1Dvmax. Therefore, the expression of the
energy (18) can be represented as the nucleation rate:

ELoss ∼ 2π~n1DvmaxΓt1. (19)



6

Comparing Eqs. (17) and (19), we obtain the relation
between Γ and G:

G ∼ 2π~n1D

Nm

Γ

vmax
. (20)

The above relation includes neither the inhomogeneity
of the density profile due to the trap potential nor the
temporal change of the velocity. To include these effects,
we replace P with the power per unit length P̃ at time t:

P → P̃ [n(x, t), v(t;G)]

= 2π~Γ̃[n(x, t), v(t;G)]n(x, t)v(t;G), (21)

where Γ̃ ≡ Γ/L is the nucleation rate per unit length.
We assume that the spatial and temporal dependences
of the power and the nucleation rate stem from the local
particle density and the velocity. We also assume that
the density and velocity are given by

n(x, t) ≡ nTF(x− xcm(t)), (22)

nTF(x) ≡
1

g1D

(

µ− 1

2
mω2

Lx
2

)

θ(µ−mω2
Lx

2/2), (23)

xcm(t) ≡
∫ t

0

dt′v(t′;G), (24)

v(t;G) ≡ e−Gtvmax sin(ωLt), (25)

where nTF(x) is the 1D-Thomas-Fermi density profile
[57], θ(·) is the Heaviside’s step function, xcm(t) is the
position of the center of mass during the damped DO,
and v(t) is the velocity of the damped DO. The energy
loss can be written as the integration of the power:

ELoss =

∫ t1

0

dt

∫

dx P̃ [n(x, t), v(t;G)]. (26)

From Eq. (16) and the relation A1 ≃ A0e
−Gt1 , we can

express the energy loss as

ELoss =
N

2
mv2max(1− e−2Gt1). (27)

Equating Eq. (26) and Eq. (27), we obtain the equation
that relates the nucleation rate Γ to the damping rate G:

N

2
mv2max(1− e−2Gt1) =

∫ t1

0

dt

∫

dx P̃ [nTF(x), v(t;G)].

(28)

Once the dependence of Γ on v and ν is given, the damp-
ing rate G can by determined by solving Eq. (28).
We remark on the region for the spatial integral of

Eq. (28). The nucleation rates become negative un-
physically in large v or small ν regions (see subsection
IVA). We remove the negative Γ regions in the integral
in Eq. (28). Since these regions correspond to the outer
parts of the gas in the harmonic trap, this procedure
correspond to evaluating the integral around the central
part of the gas, which contains much larger population
and gives the main contribution to the damping rate.
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FIG. 8. (Color online) Nucleation rate per lattice site as a
function of the filling factor and the velocity for γLL = 0.19
and T = 39 nK.
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IV. RESULTS

A. Nucleation Rate in a Bulk

We show the results of the nucleation rates of the ring
systems. Figure 8 shows the nucleation rate per lattice
site as a function of the velocity and the filling factor.
Moreover, Fig. 9 shows the nucleation rate versus the
velocity for the three values of the temperature, where
the thin lines indicate the region that EB ≤ 2kBT . As we
described in the previous section, the Kramers formula is
not reliable in this region. When v is so large or the filling
is so low that the system is deep in the invalid regions of
the Kramers formula, we find that the nucleation rates
become negative, which are not shown in Figs. 8 and 9.
We emphasize that such an unphysical behavior does not
appear when the energy barrier is sufficiently high, i.e.,
EB > 2kBT .
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FIG. 10. (Color online) Damping rates for (a) (γLL, T ) = (0.13, 37nK), (b) (γLL, T ) = (0.19, 39nK), (c) (γLL, T ) = (0.37, 30nK),
(d) (γLL, T ) = (0.64, 34nK), (e) (γLL, T ) = (0.70, 43nK), and (f) (γLL, T ) = (1.22, 22nK). The black points represent the
experimental data in Ref. [31]. The thick lines represent the region in which the system at the trap center satisfies EB > 2kBT .
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FIG. 11. (Color online) Damping rates for (a) (γLL, N) = (0.13, 42), (b) (γLL, N) = (0.19, 51), (c) (γLL, N) = (0.37, 44), (d)
(γLL, N) = (0.64, 52), (e) (γLL, N) = (0.70, 45), and (f) (γLL, N) = (1.22, 42). The black points represent the experimental data
in Ref. [31]. The thick lines represent the region in which the system at the trap center satisfies EB > 2kBT .

B. Damping Rate of a Dipole Oscillation

In this subsection, we show the results of the damp-
ing rates obtained by Eq. (28). In order to evaluate the
integral inEq. (28) numerically, we used the spline inter-
polation for the nucleation rates. Although the experi-
mental results are averaged over all tubes, we calculate

the damping rate for the central tube. It is expected that
the damping rate estimated at the central tube gives us
the lower bound of the damping rate for the entire sys-
tem because the damping rate decreases with increasing
the particle number per tube as shown in Fig. 10.

In Figs. 10 and 11, we plot the damping rates as
functions of the velocity for several values of (γLL, N)
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and (γLL, T ) together with the experimental data from
Ref. [31, 58], respectively, where N is the number of
atoms in the central tube. There the critical velocity for
the dynamical instability vc, which is evaluated for the
ring system with the density corresponding to the trap
center, sets the unit of the velocity. Since the uncertainty
in the number of atoms and the temperature calibrated
in the experiment is rather large, we depict the damp-
ing rates for three values of the number of atoms or the
temperature in each plot. The middle curve corresponds
to the median number of atoms or the median temper-
ature while the upper and lower curves do to the upper
and lower bounds of the number of atoms or the tem-
perature. If the experimental data fall within the region
between the upper and lower curves, it is fair to state
that our theoretical results agree with the experimental
ones to the extent that the accuracy of the measurement
allows. In the following, we will use the term agreement

in this sense.

Let us briefly review the experimental results of
Ref. [31]. In the experimental data shown in Figs. 10 and
11, one sees that the damping rate is almost independent
of the velocity for small v while it grows algebraically
with increasing the velocity for relatively large v. It was
argued in Ref. [31] that this behavior of the damping rate
corresponds to the crossover from TAQPS to pure QPS,
which had been predicted in Ref. [33]. We examine this
argument by evaluating the contribution of TAPS to the
damping rate and comparing it with the experimental
data.

Our results in Figs. 10(a), (b), (d), and (e) and
Figs. 11(a), (b), (d), and (e) are in good agreement with
the experimental data as long as the velocity is suffi-
ciently small so that the use of the Kramers formula is
safely justified. Because our calculations include only the
effects of TAPS, this agreement indicates that the dom-
inant contribution to the damping of DO for small v is
given by TAPS rather than TAQPS. When the velocity
is relatively large, the energy barrier is so small that the
Kramers formula is invalid. Hence, we cannot make a
direct comparison between our theory and the experi-
ment. However, the energy barrier lower than tempera-
ture means that the effect of thermal fluctuations is not
negligible and that the damping of DO cannot be purely
due to QPS.

In Figs. 10(c) and (f) and Figs. 11(c) and (f), we see
that the experimental data lie outside the region between
the upper and lower curves. In the case of Fig. 10(f) and
Fig. 11(f), it seems that γLL = 1.22 is too large to justify
the validity of the GP mean-field theory. In contrast,
the disagreements seen in Fig. 10(c) and Fig. 11(c) are
unexpected and we do not have a clear explanation for
them.

We next show the temperature dependence of the
damping rates in Fig. 12 together with the experimen-
tal data. In the experimental data set, N and γLL are
fixed while v/vc varies within the small-velocity region
for different values of temperature. The error bars in

 30
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 15  20  25  30  35  40  45  50
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z]

T [nK]

Theory
Experiment

FIG. 12. (Color online) Damping rate as a function of tem-
perature for (γLL, N) = (0.67, 49). The experimental data are
taken from the inset of Fig. 5 in Ref. [31]. The error bars in
the theoretical data points are estimated by the value of G at
the lower and upper bound of the experimental temperature.

the theoretical data points reflect the uncertainty in the
experimental temperature. We see that the theoretical
results agree with the experimental ones especially at
low temperatures. This result also supports our inter-
pretation that the damping of DO observed in the LENS
experiment is attributed dominantly to TAPS when γLL
and v/vc are small.

V. SUMMARY AND DISCUSSIONS

We investigated the effect of thermal fluctuations on
the damping of dipole oscillation of one-dimensional Bose
gases in a combined potential of the harmonic trap and
optical lattice. Specifically, we aimed to make a di-
rect comparison with the recent experiment done by the
LENS group [31] and to examine their argument that the
observed damping is due to quantum fluctuations, i.e.,
purely quantum phase slips (QPS) or thermally assisted
quantum phase slips (TAQPS). To this end, we calculated
the nucleation rate of a thermally activated phase slip
(TAPS) for a ring-shaped system with a shallow optical
lattice by means of the Kramers formula derived on the
basis of the Gross-Pitaevskii mean-field approximation.
Moreover, we extended the relation between the nucle-
ation rate and the damping rate, which had been derived
in Ref. [33], to a form that includes the spatial inhomo-
geneity of the density and the temporal dependence of
the velocity. Calculating the damping rate through the
extended relation, we showed that our theoretical results
agree well with the experimental ones when the velocity
and the Lieb-Liniger parameter quantifying the strength
of quantum fluctuations are small. From this agreement,
we argue that the dominant mechanism causing the ob-
served damping is TAPS rather than QPS or TAQPS in
the weakly-correlated and small velocity regime.
It is worth emphasizing that from another viewpoint

the LENS experiment serves as the first observation
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of superflow decay via TAPS corroborated by quanti-
tative theoretical comparison with no fitting parame-
ter. While the superflow decay via TAPS has been
extensively studied both theoretically and experimen-
tally [10, 26, 32, 40, 59, 60], none of the previous works
has succeeded in making as quantitative a comparison as
the present work.
Toward observing the damping due to QPS or TAQPS,

one needs lower temperature to suppress the contribu-
tions of the TAPS. Figure 13 shows the damping rates
versus the velocity for several values of temperature in-
cluding the ones that is lower than achieved in the LENS
experiment (T < 20 nK). This result suggests that the
contribution of the TAPS is well suppressed below 10 nK.
If one observes larger damping rates than our estima-
tions at sufficiently low temperature, it will be very likely
that the dominant contribution to the damping is QPS
or TAQPS.
We need further theoretical study in order to exclude

or confirm the presence of the QPS in large velocity re-
gions, where the Kramers formula is invalid. If we re-
strict ourselves to zero temperature, one can use the
time-dependent density matrix renormalization method
to compute the damping rate even in a system with a
shallow optical lattice. If the computed damping rate
at zero temperature agrees with the experimental re-
sult, it will indicate that QPS is dominant in the ob-
served damping. As an alternative route, let us sug-
gest a possible qualitative way to judge in experiment
whether the observed damping is due to QPS or TAPS at
a given temperature; namely, measuring the dependence
of the damping rate on the central density. According to
Ref. [33] [specifically, Figure 4(a)], the damping rate of
the QPS is significantly reduced when the central den-
sity is below unity. This happens because the umklapp
process, which is the main origin of QPS, is strongly sup-
pressed below the unit filling. On the other hand, the
results in the present paper clearly show that the damp-
ing rate of the TAPS increases as the particle number
decreases. This qualitative difference between QPS and
TAPS may be useful for distinguishing the QPS from the
TAPS.
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Appendix A: Tight-binding Approximation

The lattice depth in the experiment is s = 1 [31], at
which the tight-binding approximation does not give cor-
rect quantitative results [61, 62]. In this appendix, we
compare the nucleation rates in both continuum and lat-
tice systems to show the difference between them. We
also check that both results agree at large s.
A 1D Bose gas in an optical lattice in the tight-binding

regime is approximated by the Bose-Hubbard Hamilto-
nian,

Ĥ = −J
NLat
∑

j=1

(â†j âj+1 + h.c.) +
U

2

NLat
∑

j=1

n̂j(n̂j − 1), (A1)

where âj(â
†
j) the annihilation (creation) operator of the

boson at the lattice site j, NLat the total number of the

lattice site, n̂j ≡ â†j âj the number operator, J the hop-
ping parameter, and the U the onsite interaction. The
parameters J and U are numerically calculated by the
Wannier function that is obtained by diagonalizing one-
particle Schrödinger equation with the sinusoidal poten-
tial.
We use the mean-field approximation for the lattice

system [63]. We replace the annihilation operator âj with
the c-number ψj(t). The GP equation for the lattice
system is given by

i~
d

dt
ψj(t) =

∂E

∂ψ∗
j (t)

= −J [ψj+1(t) + ψj−1(t)] + U |ψj(t)|2ψj(t),
(A2)

where the energy functional for the lattice system is de-
fined by

E ≡
NL
∑

j=1

{

−J
[

ψ∗
j (t)ψj+1(t) + c.c.

]

+
U

2
|ψj(t)|4

}

.

(A3)



10

Because we consider the ring lattice system, ψj(t) must
satisfy the periodic boundary condition ψj+NLat

(t) =
ψj(t). The normalization condition for ψj(t) is given by

ν =
1

NLat

NLat
∑

j=1

|ψj(t)|2. (A4)

The Bloch state solution can be obtained analytically.
The solution is given by

ψj(t) = e−iµt/~
√
νeipdj/~, (A5)

µ = −2J cos(pd/~) + Uν, (A6)

where p ≡ mv ≡ 2π~W/(NLatd) is the crystal momen-
tum of the system and W ∈ Z is the winding number.
The energy of the Bloch states per particle is given by

E

νNLat
= −2J cos(pd/~) +

1

2
Uν. (A7)

To calculate the nucleation rate, we diagonalize the en-
ergy matrix. In the lattice system, it is given by

HE =

[

ǫ+k,p − µ+ 2Uν Uν

Uν ǫ−k,p − µ+ 2Uν

]

, (A8)

ǫ±k,p ≡ −2J cos(kd± pd/~), (A9)

where k ≡ 2πn/(NLatd) (n ∈ Z) is the wave number.
The eigenvalues of the energy matrix are given by

λ±k = ǫ0k cos(pd/~) + Uν

±
√

4J2 sin2(kd) sin2(pd/~) + (Uν)2, (A10)

ǫ0k ≡ 4J sin2(kd/2), (A11)

where ǫ0k is the single-particle dispersion of the system.
In contrast to the Bloch states, the soliton states can

not be obtained analytically. Therefore, we obtain the
soliton solutions by the numerical calculation in the same
way as in the case of the continuum system.
Here, we show the results for the nucleation rates of

the continuum systems and the lattice systems in Figs. 14

and 15. We used NLat = 150. As shown in Fig. 14, both
results clearly deviate. In contrast, as shown in Fig. 15
both results are in good agreement when the lattice is
sufficiently deep (s = 8). The deviations in the large-
velocity region are due to the contributions of higher
band structures.
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FIG. 14. (Color online) Nucleation rates per lattice site of
the continuum system (red solid line) and the lattice system
(blue dotted line) for s = 1, γLL = 0.19, and ν = 2. This
parameter corresponds to U/J ≃ 0.42
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dotted line) for s = 8, γLL = 0.19, and ν = 2. This parameter
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