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We investigate the collective excitations of a Raman-induced spin-orbit coupled Bose-Einstein
condensate confined in a quasi one-dimension harmonic trap using the Bogoliubov method. By
tuning the Raman coupling strength, three phases of the system can be identified. By calculating
the transition strength, we are able to classify various excitation modes that are experimentally
relevant. We show that the three quantum phases possess distinct features in their collective excita-
tion properties. In particular, the spin dipole and the spin breathing modes can be used to clearly
map out the phase boundaries. We confirm these predictions by direct numerical simulations of the
quench dynamics that excites the relevant collective modes.
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I. INTRODUCTION

In recent years, an important breakthrough in cold
atom physics is the realization of spin-orbit (SO) coupling
[1–5]. The SO coupled Bose gases, which has no analog
in conventional solid materials which deal with fermionic
systems, present rich many-body quantum phases such as
stripe phase [6–10] and skyrmion lattices [11]. However,
despite of the tremendous attention they have attracted,
direct evidences of these exotic phases are still lacking
[12].
The main purpose of the present work is to show that

different phases of an SO coupled Bose-Einstein con-
densate (BEC) features distinctive collective excitations,
which can therefore be used to distinguish various phases.
We will focus on the most commonly achieved system: a
spin-1/2 BEC confined in a harmonic trap and subject
to the Raman-induced equal-weight Rashba Dresselhaus
SO coupling. Some of the nontrivial properties of the
collective excitation of such a system has already been
explored. For example, the softening of roton-like gap as
well as the sound velocity are experimentally measured
[13, 14], and the deviation of the dipole oscillation fre-
quency away from the trapping frequency has also been
observed [15–18]. This deviation is a distinct feature of
the SO coupling. Here we examine the Bogoliubov spec-
trum of the system, develop a technique to classify differ-
ent types of collective excitations across the whole phase
diagram, and show how they can help us identify different
phases.

II. MODEL

We consider an effectively one-dimension system by
assuming that the Raman beams propagate along the x-

∗Electronic address: hpu@rice.edu
†Electronic address: ybzhang@sxu.edu.cn

axis with vanishing two-photon detuning, and the BEC
is tightly confined along the y- and the z-axis. Under
the mean-field framework, the BEC is governed by the
following Gross-Pitaeviskii (GP) equation: (we set ~ =
M = 1 with M being the atomic mass)

i∂Ψ (x, t)/∂t = (H0 + G)Ψ (x, t) , (1)

where we have labeled the two spin components as ↑ and

↓, Ψ = (ψ↑, ψ↓)
T is the spinor wave function which is

normalized such that
∫

dx|Ψ|2 = N with N being the
total atom number,

H0 = k2x/2− kLkxσz +Ωσx/2 + V (x) , (2)

is the single-particle Hamiltonian where kL denotes
the Raman recoil momentum, V = ω2

xx
2/2 repre-

sents the external harmonic potential with ωx be-
ing the trapping frequency, and Ω denotes the
Raman coupling strength. In Eq. (1), G =

diag
(

g↑↑ |ψ↑|2 + g↑↓ |ψ↓|2 , g↓↓ |ψ↓|2 + g↑↓ |ψ↑|2
)

charac-

terizes the two-body interaction. Here we assume that
the interaction is repulsive such that all interaction
strengths gσσ′ > 0. Moreover, for simplicity, we will take
the intra-spin interaction to be equal, i.e., g↑↑ = g↓↓ = g.
For a homogeneous system, the single-particle ground

state is doubly degenerate, occurring at kx = ±k0 =
±
√

k2L − Ω2/4k2L when Ω < 4EL, and for Ω > 4EL, the
two degenerate states merge into a single one with k0 = 0.
Here, EL ≡ k2L/2 is the recoil energy. This leads to three
mean-field BEC phases: For Ω > 4EL, all atoms con-
dense to the zero momentum state and hence this phase is
termed as zero-momentum phase (ZM); for Ω < 4EL, de-
pending on the interaction strength, we may have all the
atoms condense to one of the degenerate single-particle
ground states and we have the plane-wave phase (PW); or
the atoms can condense to an equal-weight superposition
of the two degenerate single-particle ground states and
we have the stripe phase (ST), as both spin components
exhibit density stripes. In the presence of a weak har-
monic trap, even though momentum is no longer a good
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quantum number, the analog of all the three phases can
still be easily identified, and the main effects of the trap
is to provide an overall envelop for the atomic density
and the boundaries between different phases are shifted
[19].
We obtain the condensate ground state wave function

Ψ0 by numerically propagating the GP equation in imag-
inary time [20]. The numerical results are in very good
agreement with the following ansäts [7]

Ψ0 ≈
[

C1

(

cos θ
− sin θ

)

eik0x + C2

(

sin θ
− cos θ

)

e−ik0x

]

G.

(3)

Here, G (x) = e−x2/2w2

is a Gaussian envelop accounting
for the trap confinement with w being the envelop width,
C1 and C2 are amplitudes for the two plane waves with
momentum ±k0, respectively. The three phases can then
be characterized as follows. For the ST phase, we have
C1 = C2 and k0 6= 0; for the PW phase, C1 = 0 or C2 = 0
and k0 6= 0; for the ZM phase, C1 = C2 and k0 = 0.
Different phases can be accessed by tuning the Raman

coupling strength Ω. For strong inter-spin interaction
with g↑↓ ≥ g, the system is in the PW (ZM) phase if

Ω < ΩP−Z
C (Ω > ΩP−Z

C ) and the ST phase is absent. The

critical value ΩP−Z
C = 4EL for a homogeneous system,

and is slightly down shifted by the trap [19]. For weaker
inter-spin interaction with g↑↓ < g, the ST phase is also

present at small Raman coupling strength Ω < ΩS−P
C ,

the PW phase exists when ΩS−P
C < Ω < ΩP−Z

C , and
the ZM phase remains at large Raman coupling strength
when Ω > ΩP−Z

C . Previous studies have shown that the

ST to PW transition at ΩS−P
C is of first-order, whereas

the PW to ZM transition at ΩP−Z
C is of second-order [7].

In our calculation, we will take g↑↓ = 0.7g. As in this
case, all three phases are present. In addition, we will
take the atom number to be N = 2000, and consider a
relatively weak but realistic trap with ωx = 0.02EL. For
this set of parameters, the two critical Raman coupling
strengths are ΩS−P

C ≈ 2EL and ΩP−Z
C ≈ 4EL.

III. BOGOLIUBOV SPECTRA

We study the collective excitation of the system us-
ing the method of Bogoliubov theory [21]. To this end,
we construct the following wave function which includes
small fluctuations above the ground state:

Ψ = e−iµt
[

Ψ0 + un (x) e
−iωnt + vn (x) eiωnt

]

, (4)

where µ is the chemical potential, un = (un↑, un↓)
T

and vn = (vn↑, vn↓)
T
, satisfying the normalization condi-

tion
∫

dx
(

|un|2 − |vn|2
)

≡ 1, are the Bogoliubov quasi-

particle amplitudes. By inserting Ψ into GP Eq. (1)
and keeping the fluctuation terms to linear order, the
Bogoliubov equations are obtained (see Appendix). We

FIG. 1: (Color online) (a) Bogoliubov spectrum as functions
of the Raman coupling strength Ω. Hollow circles and trian-
gles denote the frequency of the dipole (D) and the breathing
(B) mode, respectively; while solid diamonds and disks cor-
respond to the spin dipole (SD) and the spin breathing (SB)
frequencies. Furthermore, black hollow squares label the near
zero-energy mode in the ST phase. (b1), (b2), (c) and (d)
correspond to the normalized transition strength Γn of the
dipole, the breathing, the spin dipole and the spin breath-
ing modes, respectively. (b)-(d) share the same colormap at
the right side of (d). In our calculations, we take g↑↓ = 0.7g
where g is calculated with the 87Rb BEC in a condition that
ωx = 2π×45Hz, a = 101.8aB with aB being the Bohr radius,
and total atom number N = 2000.

solve the Bogoliubov equations numerically to find quasi-
particle excitation frequency ωn, as well as un and vn.

Figure 1(a) shows a typical Bogoliubov spectrum ωn

as a function of the Raman coupling strength Ω, with
all other parameters fixed. First one can see that for
any Ω, there exists a zero mode with ω0 = 0, which
corresponds to the ground state itself. In the thermo-
dynamic limit, this zero mode corresponds to the Gold-
stone mode resulting from the spontaneous breaking of
the U(1) gauge symmetry. At small Ω when the sys-
tem is in the ST phase, there exists an additional low-
lying mode (marked with black hollow squares) whose
frequency is very close to zero. From the examination
of the quasi-particle amplitudes, we find that, for this
mode, −v

∗ ≈ u = Ψ
−
0
where Ψ−

0
is approximately given

by Eq. (3) with C1 = −C2. In the thermodynamic limit,
the frequency of this mode will also vanish [8, 9], and it
corresponds to the second Goldstone mode resulting from
the spontaneous breaking of the translational symmetry
which is unique for the ST phase [22]. These zero modes
also serve as a self-consistency check for the accuracy of
our numerical calculation.

Another rather apparent feature is that the spectrum
exhibits mode softening near the two critical Raman cou-
pling strength where the system changes from one phase
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to another. It is therefore important to classify the exci-
tation modes. This can be achieved by examining the cor-
responding quasi-particle amplitudes un and vn. Specif-
ically, we design the following method for mode identi-
fication. First we identify the operator Ô that excite
a specific mode. We will focus on the following modes:
dipole, breathing, spin dipole, and spin breathing modes,
with the corresponding excitation operators x, x2, σzx,
and σzx

2, respectively [23–27]. We then calculate the
normalized transition strength as follows (for details, see
Appendix):

Γn(Ô) =

∣

∣

∣
〈n| Ô |0〉

∣

∣

∣

max
[∣

∣

∣
〈n| Ô |0〉

∣

∣

∣

∞

n=1

] . (5)

Here |0〉 denotes the ground state, and |n〉 is the nth
quasi-particle mode in ascending order. If a mode has
Γn(Ô) close to 1, then it reflects the main excitation fea-

tures of the perturbation Ô, and we classify this mode ac-
cordingly. Examples of Γn(Ô) are presented in Fig. 1(b)-
(d), which help us to identify those modes labeled in
Fig. 1(a). In the following, we present a more detailed
discussion of these modes.

IV. DIPOLE AND BREATHING MODES

A dominant dipole and a dominant breathing mode
are present in all three phases. Their normalized tran-
sition strengths are plotted in Fig. 1(b1) and (b2), re-
spectively. At Ω = 0, i.e., in the absence of the SO
coupling, their frequencies are given by: ωD = ωx [28]

and ωB =
√
3ωx [24, 25], in full agreement with our nu-

merical results. A common feature of these two modes
is that they become soft with frequency tending to zero
at Ω = ΩP−Z

C , i.e., at the phase boundary between the
PW and the ZM phases. However, at the other phase
boundary between the ST and the PW phase, these two
modes do not exhibit any special features. The soften-
ing of the dipole mode at ΩP−Z

C has been studied by
Li et al. [17]. Using a sum rule approach, they have

shown that near Ω = ΩP−Z
C , the dipole mode frequency

ωD ∝ 1/
√
χ where χ is the spin polarizability which di-

verges at Ω = ΩP−Z
C . Alternatively, as pointed out in the

Refs. [13] and [18], the low-lying collective modes can be
described by a hydrodynamic equation with an effective
trapping frequency

√

m/m∗ωx, and the divergence of the

effective mass m∗ at critical point ΩP−Z
C is also able to

explain the softening behavior in this region. In 2012,
Zhang and coworkers [16] experimentally measured the
dipole oscillation frequency of an SO coupled Rb con-
densate. They indeed found evidence of the mode soft-
ening near the phase boundary. However, the frequency
never reaches zero. In fact, the dipole oscillation became
quite complicated near ΩP−Z

C and could not be fitted by
a single frequency. They attributed these features to the

FIG. 2: (Color online) The spin dipole (SD) and the spin
breathing (SB) mode frequency as functions of the Raman
coupling strength Ω. These two modes are not well defined in
the PW phase. Other parameters are the same as in Fig. 1.

nonlinear effects [16, 17]. From our plot of the normal-
ized transition strength in Fig. 1(b1), we find that, near

ΩP−Z
C , there exist several low-lying modes with signif-

icant dipole transition strengths, which can be excited
simultaneously in the experiment. This can explain the
complicated behavior of the dipole oscillation near ΩP−Z

C
observed in the experiment.
As we have mentioned, the breathing mode exhibits

a very similar behavior as the dipole mode and van-
ishes at Ω = ΩP−Z

C . Furthermore, there also exist sev-
eral low-lying modes with significant breathing transition
strengths, as can be seen in Fig. 1(b2). Hence we expect
similar complicated behavior near the phase boundary,
just as in the case of the dipole mode.

V. SPIN DIPOLE AND SPIN BREATHING

MODES

The spin dipole (SD) mode operator is xσz . In prac-
tice, this mode can be excited by adding a spin-dependent
magnetic gradient. The normalized transition strength
Γ(xσz) is plotted in Fig. 1(c), and the mode frequency
ωSD across the whole phase diagram is plotted in Fig. 2
(diamonds with dotted line), from which we observe the
following: In the ST phase, there is a dominant low-lying
SD mode. Its frequency decreases as Ω increases, but re-
mains finite at the ST/PW phase boundary. At Ω = 0,
our system reduces to a binary condensate without SO
coupling. Based on the sum rule and the local density
approximation, the SD frequency for such a system is
given by [26]:

ωSD =

√

g − g↑↓
g + g↑↓

ωx ,

which leads to ωSD ≈ 0.42ωx when plugging in the pa-
rameters used in our calculation. This is plotted as the
red cross in Fig. 2, and is in good agreement with our nu-
merical result. In the PW phase, there is no single dom-
inant spin dipole mode. This is particularly true away
from the ST/PW phase boundary. In the ZM phase,
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there is a dominant SD mode, but its frequency is much
higher than the one in the ST phase. Further examina-
tion shows that the SD frequency in this regime is very
close to the Raman coupling strength Ω (see discussion
below).

To gain further insights of the spin dipole mode, we
carry out a direct numerical simulation of the condensate
dynamics. We add a small spin-dependent magnetic gra-
dient in the system, which introduces an additional term
−dσzx in the Hamiltonian. The ground state density
profiles without and with the magnetic gradient are plot-
ted in the upper and lower rows in Fig. 3(a), respectively.
In the absence of the gradient, the PW phase possesses a
finite magnetization and the density profiles for the two
spin components are different. By contrast, both the ST
and the ZM phases are unmagnetized with identical den-
sity profiles in the two spin components. The character-
istic density modulations in the ST phase are, however,
difficult to observe in practice, as the spatial period of
these oscillation is on the order of optical wavelength,
which is far below the resolution of a typical imaging
system. This poses as a great challenge for the direct
observation of the ST phase [12]. In the presence of the
gradient, the center-of-mass of the two spin components
are displaced in opposite directions. In the ST phase,
the density oscillations are still present and such oscilla-
tions in the two spin components remain in phase. The
magnetic gradient has the most dramatic effect on the
PW state: the overall magnetization is now zero but the
two spin components are separated in space with a rather
sharp domain wall between them.

To study the spin dipole dynamics, we prepare the sys-
tem in the ground state in the presence of the magnetic
gradient, and then suddenly quench the magnetic gra-
dient to zero at t = 0 and follow the dynamics of the
system by solving the time-dependent GP equation in
real time [29]. We define the displacement between the
two spin components as D(t) = 〈x↑(t)〉 − 〈x↓(t)〉 with
〈xσ〉 =

∫

dx |Ψσ(x)|2x. Typical dynamics of D(t) for the
three phases are plotted in Fig. 2(b)-(d), which we de-
scribe below.

(1) For the ST phase depicted in Fig. 3(b), D(t) oscil-
lates roughly sinusoidally around zero, with an oscillation
frequency matching very well with the one obtained from
the Bogoliubov calculation ωSD. Furthermore, during the
time evolution, the density modulations in the two spin
components remain ‘phase locked’. We found that the
dynamics can be accurately reproduced using the Bogoli-
ubov approach, under which the time-dependent conden-
sate wave function is given by Eq. (4). For the SD mode,
we found that v ≈ 0 and u ≈ ηxΨ−

0
/w where η char-

acterizes a small excitation amplitude. From these, the
density profile for each spin component can be calculated

FIG. 3: (Color online) (a) Upper row: ground state density

profiles in three phases, where ℓ = ω
−1/2
x is the harmonic

oscillator length. Lower row: density profiles in the presence
of a magnetic gradient with d = ω2

xℓ/4. In the calculation,
we take Ω = EL, 3.5EL and 4.5EL to represent the ST, the
PW and the ZM phase, respectively. The evolution of the
spin separation D(t) after the sudden quench of the magnetic
gradient for the three phases are illustrated in (b), (c) and
(d), respectively. (b) Evolution of D(t) in the ST phase. (c)
Evolution of D(t) (black solid line) and polarization P (red
dotted line) in the PW phase. The two insets show the typical
density profiles before and after the jump which occurs around
t = 60 trap periods. (d) Evolution of D(t) in the ZM phase,
with (black solid line) and without (red dotted line) the SO
coupling, respectively. Other parameters are the same as in
Fig. 1.

as

ρσ(t) =
∣

∣Ψ0,σ (x) + uσ (x) e
−iωSDt

∣

∣

2
(6)

∼
[

sin 2θ

(

cos 2k0x+
2ηx

w
sin 2k0x sinωSDt

)

+

(

1± 2ηx

w
cos 2θ cosωSDt

)

+O
(

η2
)

]

G2,

where ± corresponds to σ =↑ and ↓, respectively. Here,
we have ignored a global normalization constant in
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Eq. (6). One can see that the first term in the square
bracket ensures that the spatial density modulations are
in phase for the two spin components.

(2) For the PW phase depicted in Fig. 3(c), the re-
sponse of the system is rather nonlinear. In the beginning
of the evolution, D(t) carries out small-amplitude oscilla-
tions around the initial value, indicating the presence of a
stiff domain wall. At t ≈ 60 trap periods, the domain wall
collapses and the systems jumps to a situation close to
the ground state in the absence of the gradient, accompa-
nied by a jump of the overall magnetization P from zero
to a finite value. Typical density profiles before and after
this jump are shown as the two insets in Fig. 3(c). This
nonlinear behavior is consistent with the Bogoliubov re-
sult we obtained earlier. In particular, Fig. 1(c) shows
that there are a large number of quasi-particle modes
with significant SD transition strength in the PW phase.
The dynamical behavior may be regarded as resulting
from the nonlinear mode coupling among these modes.

(3) Finally, for the ZM phase depicted in Fig. 3(d),
D(t) oscillates sinusoidally with a frequency slightly
above Ω, again in full agreement with the Bogoliubov
result. Furthermore, D(t) never changes sign for the pa-
rameters we used in our simulation (if we use a large
enough Ω, D(t) may change sign, but the oscillation
would remain asymmetric about zero). In comparison,
we also simulated the spin dipole dynamics of a coher-
ently coupled two-component BEC without SO coupling
[27], by taking kL = 0 in Hamiltonian (2), shown as the
red dotted line in Fig. 3(d). The main difference with
and without the SO coupling is that, in the latter case,
D(t) oscillates symmetrically about zero. This difference
can be understood in a simple way. The Raman coupling
term in Hamiltonian (2) may be regarded as an effec-
tive uniform transverse magnetic field along the x-axis.
In the absence of the magnetic gradient, the atoms are
therefore spin polarized along the x-axis. The weak mag-
netic gradient tips the atomic spin slightly away from the
x-axis. After the quench of the magnetic gradient and in
the absence of the SO coupling, the atomic spin precesses
around the effective transverse magnetic field, with the
Larmor frequency given by Ω. In one period, the spin
rotates about the x-axis in a full circle, rendering D(t) to
oscillate about zero symmetrically. By contrast, in the
presence of the SO coupling, the SO coupling term may
be regarded as an effective momentum-dependent longi-
tudinal magnetic field along the z-axis, which tends to
maintain the value of σz . Hence the spin flip becomes
incomplete and D(t) tends to maintain its original sign.

Finally, let us briefly discuss the spin breathing (SB)
mode with the corresponding perturbation operator
σzx

2. This mode can be excited by adding a spin-
dependent trapping potential such that the two spin com-
ponents experience different trapping frequencies. The
normalized SB transition strength Γn(σx

2) is plotted in
Fig. 1(d), and the mode frequency ωSB across the whole
phase diagram is plotted in Fig. 2 as circles with solid
line. The behavior of ωSB as a function of Ω is very simi-

lar to that of ωSD we discussed above. As a result, we do
not present a detailed discussion about this mode here.

VI. CONCLUSION

To summarize, we have presented detailed study of the
collective excitation properties of a quasi-1D SO coupled
BEC. This system possesses three phases which can be
accessed by tuning the Raman coupling strength. We de-
veloped a method to efficiently classify the numerically
obtained Bogoliubov excitation modes. We show that
the dipole and the breathing modes become soft at the
boundary between the PW and the ZM phases, but are
smooth across the boundary between the ST and the PW
phases. By contrast, the spin dipole and the spin breath-
ing modes have distinct features in all three phases. We
hope that our work may stimulate more experimental
study of the collective excitation properties of SO cou-
pled BEC.
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Appendix A: BOGOLIUBOV EQUATIONS AND

NORMALIZED TRANSITION STRENGTH

In this Appendix, we provide more details on how
the Bogoliubov spectrum and the normalized transition
strength are calculated. The Bogoliubov equations are
in the form of

ωu = (H0 +A)u+Bv , (A1)

−ωv = (H∗
0 +A∗)v +B∗

u , (A2)

where

A =

(

2gρ0,↑ + g↑↓ρ0,↓ − µ g↑↓ψ0,↑ψ
∗
0,↓

g↑↓ψ
∗
0,↑ψ0,↓ 2gρ0,↓ + g↑↓ρ0,↑ − µ

)

,

and

B =

(

gψ2

0,↑ g↑↓ψ0,↑ψ0,↓

g↑↓ψ0,↑ψ0,↓ gψ2

0,↓

)

,
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are related to the two-body interaction, ρ0,σ = |ψ0,σ|2
are the ground-state density, and µ denotes the chemical
potential. In our numerical calculation, we first obtain
the ground-state wave function Ψ0 by propagating the
Gross-Pitaevskii equations, Eq. (1) in the main text, in
imaginary time. And then, the Bogoliubov spectrum ωn

as well as the amplitudes un and vn can be worked out
by directly diagonalize the Bogoliubov equations using
the Arnoldi method [30].
In the framework of linear response theory, the total

field operator Ψ̂ can be linearized into the form of

Ψ̂ (x) = Ψ0 +
∑

n=1

unb̂n + v
∗
nb̂

†
n , (A3)

where b̂n is the annihilation operator for the nth quasi-
particle state |n〉. The transition strength Γn(Ô) can be
obtained by calculating the matrix element

〈n|Ô|0〉 ≡
∫

dx 〈n| (Ψ̂†ÔΨ̂) |0〉 .

Specifically, for the spin-independent operators Ô = xn
′

,
we have

〈n|xn′ |0〉 =
∫

dx(ψ0,↑x
n′

u∗n,↑ + ψ∗
0,↑x

n′

v∗n,↑

+ ψ0,↓x
n′

u∗n,↓ + ψ∗
0,↓x

n′

v∗n,↓) , (A4)

while for the spin-dependent operators Ô = σzx
n′

, we
have

〈n|σzxn
′ |0〉 =

∫

dx(ψ0,↑x
n′

u∗n,↑ + ψ∗
0,↑x

n′

v∗n,↑

− ψ0,↓x
n′

u∗n,↓ − ψ∗
0,↓x

n′

v∗n,↓) . (A5)

Again, we keep small amplitudes un (x) and vn (x) into
the linear term in Eqs. (A4) and (A5). Here n′ = 1 and 2
correspond to the (spin) dipole and the (spin) breathing
operators, respectively.
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