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Motivated by advances in the manipulation and detection of ultracold atoms with multiple internal
degrees of freedom, we present a finite-temperature lattice Monte Carlo calculation of the density
and pressure equations of state, as well as Tan’s contact, of attractively interacting SU(4)- and
SU(6)-symmetric fermion systems in one spatial dimension. We also furnish a non-perturbative
proof of a universal relation whereby quantities computable in the SU(2) case completely determine
the virial coefficients of the SU(Nf ) case. These one-dimensional systems are appealing because they
can be experimentally realized in highly constrained traps and because of the dominant role played
by correlations. The latter are typically non-perturbative and are crucial for understanding ground
states and quantum phase transitions. While quantum fluctuations are typically overpowered by
thermal ones in 1D and 2D at any finite temperature, we find that quantum effects do leave their
imprint in thermodynamic quantities. Our calculations show that the additional degrees of freedom,
relative to the SU(2) case, provide a dramatic enhancement of the density and pressure (in units
of their non-interacting counterparts) in a wide region around vanishing βµ, where β is the inverse
temperature and µ the chemical potential. As shown recently in experiments, the thermodynamics
we explore here can be measured in a controlled and precise fashion in highly constrained traps and
optical lattices. Our results are a prediction for such experiments in 1D with atoms of high nuclear
spin.

PACS numbers: 67.85.Lm, 05.30.Fk, 74.20.Fg

I. INTRODUCTION

The manipulation and detection of ultracold atoms
have recently increased in accuracy and complexity to
an extraordinary degree [1–3]. Along with the realiza-
tion of atomic microscopes and the trove of possibilities
that that entails [4], several groups are exploring the na-
ture of clouds of high-spin atomic species with very sta-
ble excited states [5], such as alkali-earth atoms (e.g. Sr)
and alkali-earth-like atoms (e.g. 173Yb) [6]. While mag-
netic Feshbach resonances are absent in those systems
(as the total electronic spin is zero), orbital resonances
are available and have recently been shown to be highly
controllable with external fields [7]. Those systems were
achieved experimentally in 3D, but optical lattices can
be tuned to explore their 1D and 2D counterparts (see
e.g. Ref. [8]). Indeed, the 1D case was first explored
relatively recently in Ref. [9] in the presence of repulsive
interactions, where deviations from Luttinger-Liquid the-
ory were observed (see also Ref. [10]).

Such experimental availability has opened a rather vast
set of new possibilities in the form of SU(Nf )-symmetric
systems. Of those, much is known about the Nf = 2
case, as revealed by theory and experiment in the last
decade; however, much less is known about Nf > 2. In-
deed, motivated by the universality of regimes around
broad Feshbach resonances, a large amount of work was
dedicated to spin-1/2 fermions in 1D, 2D, and 3D across
the BCS-BEC crossover (see e.g. [2, 11]). In contrast,
theoretical research exploring the behavior of higher-spin
systems has been less common (see however Refs. [12–15]
for references on the 1D case).

In this work, we take a step towards quantitatively
clarifying the effects of attractive short-range interactions
in 1D fermions with Nf = 4, 6 internal degrees of free-
dom (“flavors”). We focus on the thermodynamics and
short-range correlations of unpolarized systems (i.e. ev-
ery flavor is tuned to the same chemical potential µ). The
motivation for 1D systems goes beyond the potential ex-
perimental realization mentioned above. On the theory
side, 1D is interesting because interaction effects are en-
hanced and lead to a plethora of collective effects in the
form of quasi-long-range order in the ground state, with
the accompanying quantum phase transitions [21, 22].
On the other hand, finite temperature wipes out such
transitions leaving only traces of interaction effects. The
latter, however, can be quantitatively large and theoret-
ically interesting, as we show here. Furthermore, 1D is
appealing from a methodological perspective for two rea-
sons: first, calculations in 1D are computationally much
less expensive than in 2D or 3D and thus provide a “step-
ping stone” to higher dimensions that is also physically
meaningful; and second, a number of approaches can ad-
dress 1D systems with contact interactions exactly in the
ground state [23], but that number is much reduced at
finite temperature [24].

Our work focuses on a low-energy effective Hamilto-
nian of the Gaudin-Yang form [25]

Ĥ=

∫
dx

[∑
s

ψ̂†s(x)

(
− ~2

2m

d2

dx2

)
ψ̂s(x)− g

∑
s>s′

n̂s(x)n̂s′(x)

]
,

(1)

where ψ̂†s, ψ̂s are the creation and annihilation opera-
tors in coordinate space for particles of flavor s, and
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n̂s = ψ̂†sψ̂s are the corresponding density operators. The
sums over s, s′ are in the range 1 toNf , and g is an attrac-
tive coupling constant. We examine the cases Nf = 4, 6,
which represents a continuation of our previous work for
Nf = 2 (see Ref. [26]). Below, we use units such that
~ = m = kB = 1, where m is the fermion mass.

For the above dynamics, we explore weakly to strongly
coupled regimes, as well as a wide range of temperatures.
We accomplish this by putting the system on a lattice in
the grand canonical ensemble, and by writing the corre-
sponding partition function in a field-integral represen-
tation, as further explained below. Expectation values of
observables are then estimated using Monte Carlo meth-
ods, and we present those results for the particle number
density n, pressure P , compressibility κ, and Tan’s con-
tact C [27].

II. MANY-BODY METHOD, SCALES AND
DIMENSIONLESS PARAMETERS

We employed the auxiliary-field path integral Monte
Carlo technique, which is now standard in many areas
of physics (see e.g. [28]). The fermions were placed in
a Euclidean space-time lattice of extent Nx × Nτ with
boundary conditions that are periodic in space and anti-
periodic in time. The physical spatial extent of the lattice
is given by L = Nx`, where we take ` = 1 and thus set
the length and momentum scales. The temporal lattice
is determined by the inverse temperature β = 1/T =
τNτ , where the time step τ = 0.05 (in lattice units) was
chosen to balance discretization effects (see below) and
computational efficiency.

A Hubbard-Stratonovich transformation was used to
introduce the auxiliary field and thus write the grand-
canonical partition function as a field integral. The lat-
ter was evaluated using Metropolis-based Monte Carlo
methods, with the sampling of the auxiliary field carried
out using the hybrid Monte Carlo algorithm [29, 30]. As
is well known, unpolarized systems do not suffer from the
sign problem as long as the interaction is purely attrac-
tive, as is the case here.

The auxiliary-field formalism used here introduces
higher-body forces beyond the pairwise interaction that
we want to study. If the bare lattice coupling is g, and
the temporal lattice spacing is τ , pairwise interactions
enter in the path integral at order A2 ∼ (eτg − 1); on
the other hand, four-body forces enter at order A4. Our
calculations use τ = 0.05 and g < 1.0 (see below for an
explanation of the physical dimensionless coupling con-
stant λ), such that A2 < 0.05, and therefore A4 < 0.0025
in the worst-case scenario. In this fashion, non-universal
lattice artifacts due to four- and six-body forces were re-
duced. No odd-body forces are induced in this formalism.

The physical input parameters are the inverse tempera-
ture β, the chemical potential µ (the same for all flavors),
and the (attractive) coupling strength g > 0. From these,
we form two dimensionless quantities: the fugacity and

the dimensionless coupling, given by

z = exp(βµ) and λ2 = βg2, (2)

respectively. The bare coupling g is simply related to
the scattering length a0: g = 2/a0 (see e.g. Ref. [31]).
Note that γ = g/n is often employed in 1D ground-state
studies (see e.g. Refs. [32–34]) as a dimensionless cou-
pling; the form λ2 = βg2, however, is more useful at
finite temperature because it encodes the interplay be-
tween temperature and interaction effects (i.e. de Broglie
wavelength vs. size of two-body molecule).

Lattice Monte Carlo calculations are exact up to sys-
tematic (the lattice part) and statistical (the Monte Carlo
part) uncertainties. To address the latter, we took 1000
de-correlated samples for each data point (see plots be-
low), which yields a statistical uncertainty of order 3−4%.
Controlling the systematic effects amounts to approach-
ing the continuum, infinite-volume limit while keeping
the physics constant (as encoded in the dimensionless
parameters λ and z). One-dimensional problems enable
calculations on large lattices (up to Nx = 141 in this
work). For such lattices, the continuum limit is ap-
proached by lowering µ and increasing β, which simul-
taneously ensures that the lattice system is in the many-
particle regime and the thermal wavelength λT =

√
2πβ

is in the regime

1 = `� λT � L = `Nx. (3)

Our calculations feature λT ' 8.0, which corresponds
to β = 10; finite-β effects are described in more detail
below (see Appendix A). As in our previous study, we
verified the approach to the continuum by checking that
our results collapse to a universal curve when β and g
are varied while λ2 = βg2 is held fixed. Despite the large
lattice sizes we used, the systematic finite β effects are
apparent for six flavors at the largest values of λ = 3.0,
as further explained below.

III. RESULTS

In this section we present our numerical results on the
thermodynamics of Nf -flavor fermions with attractive in-
teractions for Nf = 4, 6, along with a universal relation
whereby the dynamics of the 2-flavor problem determines
the virial coefficients of the Nf -flavor case. Our results
are shown in dimensionless form as a ratio of a physical
quantity and its non-interacting counterpart, both eval-
uated at identical input parameters. In some instances,
this was accomplished by scaling the appropriate power
of the thermal wavelength λT =

√
2πβ.

As advertised above, our main result, as a direct out-
put of our lattice calculations, is the density equation
of state n(λ, βµ,Nf ). From that function we obtain the

pressure P (λ, βµ,Nf ) by integration with respect to βµ
and the isothermal compressibility by differentiation with
respect to the same parameter. In addition, we present



3

-6 -4 -2 0 2 4

0.001

0.010

0.100

1

βμ

n0

λ2 = β g2

3 5 7 9

-6 -4 -2 0 2 4
0

20

40

60

80

βμ

n
n0

Nf = 4

-8 -6 -4 -2 0
10-4
0.001
0.010
0.100

1

βμ

n0

λ2 = β g2

3 5 7 9

-8 -6 -4 -2 0
0

50

100

150

200

250

300

βμ

n
n0

Nf = 6

Figure 1. (Color online) Density n for Nf = 4 (top) and
Nf = 6 (bottom), in units of the density of the non-interacting
system n0 (inset), as a function of the dimensionless parame-
ters βµ=ln z and λ2 =βg2. From bottom to top, the coupling
is λ=1.75, 2.0, 2.25, 2.5, 2.75, 3.0. The data points come from
the QMC calculations and the solid lines are from the fits (see
Eq. 32).

Monte Carlo results for Tan’s contact C which we ob-
tained by relating it to the interaction energy.

A. Density

In Fig. 1 we present the density n for Nf = 4, 6 re-
spectively, in units of the non-interacting density n0, as
a function of the dimensionless parameters z and λ, de-
fined above. The non-interacting result is

n0λT =
Nf√
π
I1(z), (4)

where I1(z) = z dI0(z)/dz, and

I0(z) =

∫ ∞
−∞

dx ln
(

1 + ze−x
2
)
. (5)

As is well known, one may write these integrals in terms
of polylogarithms: I0(z) = −

√
πLi3/2(−z) and I1(z) =

−
√
πLi1/2(−z), where Lis is the polylogarithm function

of order s.
The solid curves in Fig. 1 correspond to an empirical

fit determined from the original Monte Carlo data, as
given by Eq. (32) below. The error bars are given by the
standard deviation of the density operator in the Monte
Carlo data. For each λ > 0 there exists a strongly cou-
pled regime around a negative value of βµ = ln z, where
the deviation from the non-interacting answer is maxi-
mal. The maxima can be shown to satisfy n0κ0 = nκ,
where κ is the isothermal compressibility of the system
at finite λ, and κ0 is the non-interacting result. This
relation can be easily seen by setting

∂(n/n0)

∂µ
= 0, (6)

and using the definition of κ of Eq. (9).
These results are qualitatively very similar to those of

our previous work of Ref. [26] for the two-flavor system.
The effects of interactions are clearly enhanced by in-
creasing the number of flavors. In general, the regions
with the largest departure from non-interacting results is
larger and shifts lower in βµ with increasing λ or increas-
ing Nf .

B. Pressure and compressibility

We estimate the pressure by integrating nλT over
log z = βµ. We use the z = 0 limit (i.e., βµ→ −∞) as a
reference point; therefore, we verify that the data tends
(within statistical uncertainties) to the virial expansion
at low z and use that result at second order to complete
the integration to z = 0. The second order virial coef-
ficient can be obtained from its value for Nf = 2 (see
below). In this limit the pressure vanishes, so that

Pλ3T = 2π

∫ βµ

−∞
nλT d(βµ)′. (7)

The results for P , in units of the non-interacting pressure
P0, are shown in Fig. 2. The free gas pressure given by

P0λ
3
T = 2Nf

√
πI0(z), (8)

where I0(z) is given above. The derivative of the density
n yields the isothermal compressibility,

κ =
β

n2
∂n

∂(βµ)

∣∣∣∣
β

= λ3T

√
2π

(nλT )2
∂(nλT )

∂(βµ)

∣∣∣∣
β

. (9)

We show this quantity in Fig. 3, in units of the respective
non-interacting counterpart κ0, where (in dimensionless
form)

κ0λ
−3
T = Nfπ

−3/2(n0λT )−2I2(z), (10)

and I2(z) = z dI1(z)/dz. These plots where generated by
taking a derivative of the fits to the density data.
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Figure 2. (Color online) Pressure for Nf = 4 (top) and Nf =
6 (bottom) in units of its non-interacting counterpart, as a
function of the dimensionless parameters βµ = ln z and λ2 =
βg2, obtained by βµ-integration of the density (see Eq. 7).
The values of λ shown in this plot are the same as in Fig. 1.

As expected, in the limits of large βµ (both positive
and negative) κ → κ0. The attractive interaction, com-
bined with Pauli exclusion, gives rise to hard-core bosonic
molecules at strong coupling, which makes the system
much less compressible in that region, which in turn
yields κ� κ0 there. Indeed, weaker couplings are much
less affected by such hard-core binding.

C. Tan’s contact

To determine Tan’s contact, we rely on the expectation
value of the interaction energy 〈V̂ 〉. By definition,

C =
2

βλT

∂(βΩ)

∂(a0/λT )

∣∣∣∣
µ,T

, (11)

where Ω is the grand thermodynamic potential. Using
the Feynman-Hellman theorem on the grand-canonical
partition function, we obtain

C = −g〈V̂ 〉. (12)

λ2 = β g2
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Figure 3. (Color online) Isothermal compressibility for Nf =
4 (top) and Nf = 6 (bottom) in units of its non-interacting
counterpart, as a function of the dimensionless parameters
βµ = ln z and λ2 = βg2. The values of λ range from 0 to 3.0
in steps of 0.125.

Note that C can be made dimensionless and intensive by
multiplying it by λ4T /L.

In Fig. 4 we show our results for the contact. The size
of the statistical error bars, and the smoothness of the
central values, show that statistical effects are generally
well controlled across βµ. The systematic effects, on the
other hand, are likely larger for strong coupling than for
weak coupling (see discussion of systematics below). As
in our previous paper, we note that both the Nf = 4
and Nf = 6 data for the contact become approximately
linear in βµ for βµ ≥ 1.5. In that regime, the contact
satisfies

Cπβ2/(2Lλ2) = 〈n̂↓n̂↑〉πβ/2→ ζ1βµ+ ζ2, (13)

where we find ζ1 = 0.21(1) for Nf = 4 and ζ1 = 0.48(1)
for Nf = 6. As in the Nf = 2 case, density-density
correlations in the non-interacting gas leave an imprint at
all couplings. As is evident from the plot, ζ2(λ) ' a+ bλ
is approximately linear in λ at large βµ. In the Nf = 4
case a = 1.0(1) and b = 0.5(4) the values for Nf = 6 are
a = 2.9(1) and b = 2.2(4) when extrapolated to βµ = 10.
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Figure 4. (Color online) Tan’s contact C for Nf = 4
(top) and Nf = 6 (bottom), scaled by βλT /(2Q1λ

2) =
πβ2/(2BNfLλ

2), as in Ref. [26], as a function of βµ, for
λ = 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, which appear from bottom to
top. The value BNF is the binomial coefficient Nf choose 2;
this scale factor was chosen to facilitate comparison between
flavors.

D. The virial expansion and a universal relation
for virial coefficients across different Nf

In high-temperature dilute regimes where z � 1, the
virial expansion can be a very useful approximation. Re-
cent years have, in fact, seen a resurgence of interest in
the calculation of progressively higher-order virial coeffi-
cients bn either by exact diagonalization of the few-body
problem (see e.g. [35]) or by designing ad hoc Monte
Carlo methods [36].

Here we show that the bn for the Nf -flavor system are
determined by the Nf = 2 problem. This property may
be intuitively anticipated, as the physics is set entirely
by pairwise interactions. However, the proof itself is en-
lightening and we therefore show it here in some detail.

We begin by stating more explicitly the form of the
field-integral representation of the grand-canonical par-
tition function, which is given by

Z ≡ Tr
[
e−β(Ĥ−µN̂)

]
=

∫
Dσ detNf (1 + z U [σ]), (14)

where, as before, β is the inverse temperature and z
is the fugacity. The field σ is an auxiliary Hubbard-
Stratonovich scalar and the matrix U [σ] encodes the dy-
namics of the system. The precise form of U [σ] is not
important for the derivations that follow, in the sense
that it applies to completely general two-body interac-
tions (not just point-like), which reflects the universality
of the result (see Appendix B for a schematic derivation
of the form of Z for Nf flavors; further details can be
found in the literature, see e.g. Ref. [28]).

The virial coefficients are defined by

bm =
1

Q1

1

m!

∂m lnZ
∂zm

∣∣∣∣
z=0

, (15)

where Q1 = NfL/λT is the single-particle partition func-
tion. We next consider the cumulant expansion of lnZ,
which reads

lnZ =
∞∑
n=1

κn[Y,Nf ]

n!
, (16)

where κn[Y,Nf ] are the cumulants of

Y (σ; z) = ln detNf (1+z U [σ]) = Nf ln det(1+z U [σ]).
(17)

For Nf even, Y (σ; z) is real by definition, and we can
make that explicit by writing, instead of the above,

Y (σ; z) =
Nf
2

ln(|det(1+z U [σ])|2). (18)

For Nf odd, on the other hand, we must account for the
fact that Nf does not eliminate the sign of the determi-
nant, which results in an imaginary part for Y (σ; z):

Y (σ; z) =
Nf
2

{
ln(|det(1+z U [σ])|2) + 2iθ[σ]

}
, (19)

where θ can take on the values 0 or π if the determi-
nant is purely real, as in the cases considered here. Note
that these assumptions may be relaxed to some extent:
As long as the system is balanced (in mass and spin),
such that different flavors that are otherwise identical,
the determinant in Z will appear raised to the power of
Nf , such that the above derivations are essentially un-
changed. However, it should be born in mind that such
generalizations make the determinant complex for repul-
sive interactions, such that the phase angle θ plays a
crucial role in those cases.

The cumulants obey the usual definition, namely

κ1 = 〈Y 〉, (20)

κ2 = 〈Y 2〉 − 〈Y 〉2, (21)

...

and so on, where 〈·〉 denotes the path-integral expec-
tation value over σ with unit measure. Clearly, the
κn[Y,Nf ] contain all the information about the dynamics
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of the system, although it is a priori unknown whether
the expansion even converges. As long as the thermody-
namics of the system [i.e. the left-hand side of Eq. (16)]
is well defined, however, the sum makes sense at least
formally.

The role of the phase fluctuations for odd Nf can be
seen more explicitly by separating Y into its real and
imaginary parts, Y = YR + iYI , and writing the cumu-
lants in terms of those:

κ1 = 〈YR〉+ i〈YI〉,
κ2 = 〈Y 2

R〉 − 〈YR〉2 − (〈Y 2
I 〉 − 〈YI〉2)

+ 2i(〈YRYI〉 − 〈YR〉〈YI〉),
....

The imaginary part of the cumulants should add up to
zero in the full sum of Eq. (16), because we know lnZ is a
real quantity. Therefore, the imaginary part of the cumu-
lants plays no role and can be safely ignored. However,
we see from the above that YI itself does enter in the real
part of κn for n > 2, and it does so in a well-defined way
through the properties of the distribution of the phase
angle θ. Such distributions have been the source of much
discussion in the context of lattice QCD at finite chemi-
cal potential (see e.g. Refs. [37, 38]) and have also been
recently explored in non-relativistic systems [39].

In both the even- and odd-Nf cases, the above cumu-
lants κn satisfy a homogeneity property whereby

κn[Y,Nf ] =

(
Nf
2

)n
κn[Y, 2]. (22)

Putting together Eqs. (15) and (16), along with the ho-
mogeneity property, shows that the thermodynamics of
SU(Nf ) systems is governed by quantities that can be
computed entirely within the SU(2) theory. (Note that
if Nf is odd, one must account for the sign of the de-
terminant, even if the SU(2) theory has no information
about it.) In particular, homogeneity allows us to an-
alyze the relationship between virial expansions across
different values of Nf . Indeed, it is easy to see that the
leading order is

∂κ1[Y,Nf ]

∂z

∣∣∣∣
z=0

= Nf 〈tr U [σ]〉 = Q1 (23)

and

∂κn[Y,Nf ]

∂z

∣∣∣∣
z=0

= 0 (24)

for all n > 1. This is, of course, consistent with the fact
that b1 = 1 by definition. Moreover, all m-th derivatives
for m < n vanish upon evaluation at z = 0, such that the
expressions for the bm in terms of the κn contain a finite

and small number of terms:

b2 =
1

Q1

1

2!

[
∂2κ1
∂z2

+
1

2!

∂2κ2
∂z2

]∣∣∣∣
z=0

, (25)

b3 =
1

Q1

1

3!

[
∂3κ1
∂z3

+
1

2!

∂3κ2
∂z3

+
1

3!

∂3κ3
∂z3

]∣∣∣∣
z=0

,

... (26)

and so on. The above is valid for any Nf and can be
summarized as

bm(Nf ) =
1

Q1

1

m!

m∑
n=1

1

n!

∂mκn[Y,Nf ]

∂zm

∣∣∣∣
z=0

. (27)

Thus, using the cumulant property mentioned above,

bm(Nf ) =
1

Q1

1

m!

m∑
n=1

Nn
f

2nn!

∂mκn[Y, 2]

∂zm

∣∣∣∣
z=0

. (28)

Equation (28) shows the anticipated result, namely
that the virial coefficients of the Nf -flavor system are
fully determined quantities that can be computed in the
2-flavor case; the crucial quantities are the derivatives of
the κn cumulants. The latter can of course be written
in terms of canonical partition functions, which leads to
the well-known expressions for the virial coefficients.

We stress that the above connection between the gen-
eral Nf and Nf = 2 field theories does not imply a sim-
ple relationship between virial coefficients across theories.
This is immediately apparent in the Nf = 3 case (see
our comment on odd Nf below), which displays the Efi-
mov effect and is thus fundamentally different from the
Nf = 2 case. Our proof simply states that the under-
lying quantities determining the bn (i.e. the cumulants
and their derivatives) are the same for all theories and
can be computed at Nf = 2. The relationship cannot be
inverted to yield an equation for bn at arbitrary Nf as
a function of the bn of the Nf = 2 case: the number of
cumulants (and derivatives) involved in each bn grows as
n is increased. This is particularly obvious for odd Nf ,
where the sign of the determinant is involved, which is a
variable that the Nf = 2 case knows nothing about.

Still, it is easy to see that a general relationship does
exist for b2:

b2(Nf ) = (Nf − 1)b2 − (Nf − 2)b
(0)
2 , (29)

where b2 is the coefficient for Nf = 2 and b
(0)
2 the coef-

ficient for the non-interacting case. We note the follow-
ing limits are reproduced correctly by the above formula:

b2(Nf = 1) = b
(0)
2 ; b2(Nf = 2) = b2; and b2(Nf ) = b

(0)
2

for all Nf in the non-interacting limit. A more concise
way to write this result is using the non-interacting an-
swer as a reference:

∆b2(Nf ) = (Nf − 1)∆b2, (30)

where ∆b2(Nf ) = b2(Nf )− b(0)2 and ∆b2 = b2 − b(0)2 .
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The relations among the virial coefficients derived in
this section result from a double expansion: the cumulant
expansion of Z followed by the virial expansion, which
is a Taylor expansion on the fugacity z. If the latter is
replaced by an expansion with respect to a different pa-
rameter (i.e. a different kind of source), then it may be
possible to generalize those relations to other quantities.
Because z enters in a special way, it is not a priori obvi-
ous that such a procedure applies to arbitrary quantities,
however. We defer further studies of such cases to future
work.

E. Empirical Fitting

As seen in the plots shown above, increasing the num-
ber of flavors has a dramatic effect on the thermodynam-
ics of the system, which can be intuitively understood in
terms of an enhanced interaction strength. The behavior
of this 1D system is clearly beyond the realm of pertur-
bation theory and mean-field approaches. To encode our
results in a useful form suitable for future analyses, we
develop empirical fits. These fits can be used to gen-
erate estimates outside the interaction strengths exam-
ined here and for generating smooth curves underlying
the data. The parameterizations were also performed for
the data at Nf = 2 in our previous work Ref. [26] for
comparison. The model was generated according to the
following formula

n/n0(z) =
n0(z̄)

n0(z)
, (31)

where z = exp(βµ) is the usual fugacity parameter and
z̄ is an effective fugacity whose form is set by taking

βµ→ βµ+A (erf(bβµ− ξ) + 1), (32)

where, A, b, and ξ are fit parameters, and erf(x) is the
error function, the shift by +1 was chosen to implement
a smooth interpolation between the non-interacting-type
behavior at large negative βµ and the interacting form
elsewhere. With this fit, the behavior of the interacting
gas at low fugacity heals to that of the non-interacting gas
(i.e. n/n0 → 1 as z → 0), while at large fugacity it repro-
duces the Pauli-blocked shape of the density distribution
but with a higher overall density due to the attractive in-
teraction. The fit parameters as functions of the coupling
λ are shown in Fig. 5. The amplitude parameter A must
vanish as λ → 0, which is consistent with Fig. 5 (top),
as that ensures the the rescaled fugacity will reproduce
the non-interacting result in that limit. The amplitude
A varies linearly as a function of interaction strength,
A(λ) = aAλ, and coefficient aA itself varies linearly with
Nf : aA(Nf ) ' α(Nf − 1), where α = 0.73(3). The
shift parameter ξ varies linearly with λ, ξ(λ) = aξλ+ bξ,
as shown in Fig. 5 (middle). The coefficients aξ and
bξ vary with Nf as aξ(Nf ) ' 0.23(5)Nf − 0.2(2) and

bξ(Nf ) ' 0.66(3). The parameter b does not vary sig-
nificantly with interaction strength, as shown in Fig. 5
(bottom).

Using these fits it is possible to interpolate between
the curves generated using the Monte Carlo data. In
addition, by integrating or taking derivatives it is pos-
sible to generate functional estimates for the thermody-
namic quantities presented in the paper. The particular
choice of rescaling the fugacity inside the Fermi-Dirac
function for a non-interacting fermion gas seems robust
and can be used to fit the density and pressure data for
two-dimensional fermion gas presented in Ref. [45]. Nat-
urally, the physics underlying the specific shape of the
density varies dramatically with the spatial dimension.
The proposed ansatz of Eqs. (31), and (32) is based on the
simple observation that density distributions for fermions
at finite temperature are typically smooth, monotonic in-
terpolations between 0 (at βµ→ −∞) and 1 (per flavor,
at βµ→∞).

IV. SUMMARY AND CONCLUSIONS

We have performed a controlled, fully non-perturbative
study of the thermodynamics of SU(4)- and SU(6)-
symmetric fermions with an attractive contact interac-
tion. We report several quantities: density, pressure,
compressibility and Tan’s contact. We covered weakly
and strongly coupled regimes as given by 3.0 ≤ λ2 ≤ 9.0,
as well as low to high fugacities as given by −5.0 ≤
βµ ≤ 8.0. The latter covers the semi-classical regime
βµ < −1.0 as well as the deep quantum regime βµ > 1.0.
We employed lattice Monte Carlo methods that have
been successfully utilized before for similar studies, and
discussed statistical and systematic uncertainties.

Our numerical results for the density equation of state
show a behavior that is qualitatively similar to that of
the SU(2) case but with dramatic quantitative enhance-
ment. The deviations from the non-interacting case are
maximal for a λ-dependent value of βµ. As z is increased
from the semiclassical regime z � 1, the strongly coupled
regime is (roughly) accompanied by the onset of quantum
fluctuations as βµ = ln z ' 0 is approached.

One-dimensional Fermi systems with contact interac-
tions are exactly solvable via the Bethe ansatz [23, 42].
This method however is restricted to uniform systems
in the ground state (or close to it [43, 44]). Finite-
temperature analyses require the thermodynamic Bethe
ansatz, which involves solving an infinite tower of cou-
pled non-linear integral equations [43, 44], which leads
to potentially uncontrolled approximations. The Monte
Carlo techniques used here, on the other hand, have well-
controlled systematic and statistical uncertainties.

In addition to our numerical answers, we used the
auxiliary-field formulation of the quantum many-body
problem to show, in a general, non-perturbative fashion,
that the virial coefficients of the SU(Nf ) case are fully
determined by the dynamics of the SU(2) problem.
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Figure 5. (Color online) Fit parameter A (top), ξ (middle),
and b (bottom) of Eq. (32) as a functions of the interaction
strength λ for Nf = 2, 4, 6. The data points are the results
obtained by fitting the Monte Carlo data; the solid lines are
the fits to this data.

Large-Nf systems of the kind explored here were re-
alized experimentally for the first time only two years
ago [9]. However, our results for the density and pressure
equations of state, as well as the contact, are predictions
for high-Nf atomic gases with attractive interactions.
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Appendix A: Systematics of the approach to the
continuum limit

In this section we report briefly on the systematic ef-
fects resulting from performing calculations at finite β.
As mentioned in the main text, the continuum limit is
approached in our method when β → ∞, and different
quantities approach their limit at different rates, which
also depend on the values of other input parameters (e.g.
βµ). As we show in Figs. 6 and 7, the convergence to the
large-β limit is not uniform: where the interaction and
quantum effects dominate, the convergence properties are
poorer. This is clearer at strong coupling (Fig. 6, bot-
tom) than at weak coupling (Fig. 6, top); indeed, the lat-
ter is essentially converged already at β = 4, whereas the
former still shows finite-β effects even at β = 8 in some
regions. From these graphs, we infer that the largest sys-
tematic uncertainties due to finite β are on the order of
10% in the worst case scenario. We stress that that is an
upper bound for these systematic effects. Those effects
are most prominent around the maximum in n/n0; they
are apparent for the strongest couplings we have studied
(λ = 3) and are small for weak coupling (λ = 1).

Appendix B: Derivation of partition function
formula for Nf flavors

In this section we provide a schematic derivation of the
form of the Nf -flavor partition function in terms of a field
integral. The starting point is the definition

Z = Tr
[
e−β(Ĥ−µN̂)

]
(B1)

where we assume for this derivation that µ is the same
for all fermion species (as befits the SU(Nf )-symmetric
case) and that the interaction is pairwise among all flavor

pairs, such that, writing Ĥ = T̂ + V̂ , the interaction is

V̂ = −g
∫
dx n̂1n̂2 − g

∫
dx n̂2n̂3 + . . . , (B2)

where we have labeled the flavors as 1, 2, 3, . . . , Nf and
the dots include all possible flavor pairs. Upon a Trotter-
Suzuki factorization (see e.g. Ref. [28]), we are left with
the task of considering, at each point in space,

exp (τg n̂1n̂2 + τg n̂2n̂3 + . . . ) = (B3)

1 +A2(n̂1n̂2 + n̂2n̂3 + . . . ) +O(A4), (B4)
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Figure 6. (Color online) Density n for Nf = 4, in units of
the non-interacting density n0, as a function of βµ at at weak
coupling (λ = 1.0, top) and at the strongest coupling in this
study (λ = 3.0, bottom), for several values of β. Finite-β
effects are clearly visible, especially around the maximum.
Note the ranges in the x and y axes are different from those
of Fig. 1.

where A2 = eτg − 1, again the dots include all possible
flavor pairs, and we have also used the exact property

exp (τg n̂1n̂2) = 1 +A2n̂1n̂2, (B5)

for each pair of fermion flavors appearing in the interac-
tion. Note that the size of the subleading terms O(A2n)
are controlled by the size of τg and vanish as (τg)n when
τg → 0.

We next notice that a single Hubbard-Stratonovich
transformation is able to reproduce the leading terms
written above. Indeed, one could use for instance the
following discrete form

1

2

∑
σ=±1

(1 +Aσn̂1)(1 +Aσn̂2) . . . (1 +Aσn̂Nf
) =

1 +A2(n̂1n̂2 + n̂2n̂3 + . . . ) +O(A4). (B6)

Thus, within the above approximation a single Hubbard-
Stratonovich field is enough to factorize the interaction.

Note that the approximation is already present in the use
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Figure 7. (Color online) Density n for Nf = 6, in units of
the non-interacting density n0, as a function of βµ at at weak
coupling (λ = 1.0, top) and at the strongest coupling in this
study (λ = 3.0, bottom), for several values of β. Finite-β
effects are clearly visible, especially around the maximum.
Note the ranges in the x and y axes are different from those
of Fig. 1.

of the Trotter-Suzuki factorization, such that no new ap-
proximations are actually being introduced. Each factor
on the right-hand side of the above equation is a one-body
operator that affects only one of the fermion flavors.

From this point on, the usual derivation (see e.g.
Ref. [28]) proceeds normally and one may “integrate out”
the fermions to produce a fermion determinant for each
species. As all of the fermion species are identical, one
obtains the same determinant for each of them, which
yields the result advertised above, namely that the gen-
eralization of the Nf = 2 case to Nf identical species
only requires replacing the power 2 in the determinant
with a power of Nf .

We stress that this derivation is simply one way to ar-
rive at the standard expressions used in this work for ar-
bitrary Nf . The analogues of such standard expressions
are used for electrons throughout condensed matter as
well as for gluons in quantum chromodynamics and are
therefore not new.
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distribution of repulsive Fermi gases: Insights from QCD

noise analyses, arXiv:1609.09401.
[40] X. Guan, Critical phenomena in one dimension from

a Bethe ansatz perspective, Int. J. Mod. Phys. B 28,
1430015 (2014).

[41] P. Vignolo, A. Minguzzi, Universal Contact for a Tonks-
Girardeau Gas at Finite Temperature, Phys. Rev. Lett.
110, 020403 (2013).

[42] M. T. Batchelor et al., Journal of Physics Conference
Series 42, 5 (2006).

[43] X.-W. Guan, M. T. Batchelor, C.-H. Lee and M. Bortz,
Phase transitions and pairing signature in strongly at-
tractive Fermi atomic gases, Phys.Rev. B 76, 085120
(2007).

[44] E. Zhao, X.-W. Guan, W. V. Liu, M. T. Batchelor, and
M. Oshikawa, Analytic Thermodynamics and Thermom-
etry of Gaudin-Yang Fermi Gases, Phys. Rev. Lett. 103,
140404 (2009).

[45] E. R. Anderson, J. E. Drut, Pressure, Compressibility,
and Contact of the Two-Dimensional Attractive Fermi
Gas, Phys. Rev. Lett. 115, 115301 (2015).


