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Use of time delays in high-order harmonic generation (HHG) driven by intense two-color, few-
cycle pulses is investigated in order to determine means of optimizing HHG intensities and plateau
cutoff energies. Based upon numerical solutions of the time-dependent Schrödinger equation for the
H atom as well as analytical analyses, we show that introducing a time delay between the two-color,
few-cycle pulses can result in an enhancement of the intensity of the HHG spectrum by an order of
magnitude (or more) at the cost of a reduction in the HHG plateau cutoff energy. Results for both
positive and negative time-delays as well as various pulse carrier-envelope phases are investigated
and discussed.
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I. INTRODUCTION

Few-cycle laser pulses, due to their unique character-
istics compared to conventional continuous wave laser
fields [1], have propelled advances in numerous areas.
The short time duration (as short as femtoseconds) en-
ables time-resolved studies of ultrafast processes in atoms
and molecules in various pump-probe experiments [2–4].
A train of short pulses enables promising optical fre-
quency comb and high-resolution laser spectroscopy [2,
5]. Most important, high intensity few-cycle pulses pro-
vide sufficient energy to drive highly-nonlinear processes
in gases, solids, or plasmas, such as the generation of
high-order harmonics and attosecond pulses [1, 4, 6].
High-order harmonic generation (HHG) is considered a

promising means for producing a compact, table-top co-
herent light source [7, 8]. The HHG process transforms
available visible and near-infrared intense laser fields into
ultrashort pulses that have frequencies in the extreme ul-
traviolet and X-ray regimes and pulse durations ranging
from femtoseconds to attoseconds [9]. The rapidly de-
veloping field of attosecond physics, which is based upon
HHG, has greatly advanced the investigation of ultrafast
processes [8, 10, 11]. Moreover, the HHG spectra them-
selves are increasingly being utilized to probe or image
molecular structures [4, 10, 12–14].
Although the physical process of HHG is mostly well

understood [9, 10, 14–17], its low conversion efficiency
remains a major limitation that prevents HHG from be-
coming an important new light source. Investigations
of ways to address the low efficiency issue focus on two
physical regimes that are important for HHG. On the
macroscopic propagation level, reducing the phase mis-
match through precise pressure tuning in gases or, al-
ternatively, introducing very high gas pressures have be-
come common practices in HHG experiments [1, 18]. On
the microscopic single-atom (or local cluster) interaction
level, the use of two-color fields to enhance the intensi-
ties of harmonic spectra (such as by increasing ionization

rates or by favoring short trajectories while suppressing
long trajectories, etc.) has been investigated for more
than two decades [19–26]. Recently, as a result of ad-
vances in optical technology, there has been renewed in-
terest in HHG driven by two-color (or multi-color) laser
pulses owing to the possibility of sub-cycle waveform con-
trol in the synthesis of such pulses [9, 27]. Control of the
synthesis of intense short pulses in turn allows the control
of strong field processes such as HHG [28, 29]. Thus, e.g.,
a linear ramp with a dc offset has been proposed as “an
optimum waveform which maximizes the electron recolli-
sion energy” [30, 31]; a multi-color laser field of different
polarizations has been employed to selectively enhance
particular harmonics [32]; and studies have shown that
synthesized two-color laser fields with favorable phase-
matching conditions can enhance harmonic yields signif-
icantly [33–35].

In many of the investigations cited above, a time delay
between two pulses is often treated as equivalent to a rel-
ative phase [or as an extra carrier-envelope phase (CEP)].
This phase–time delay equivalence is valid for long pulses:
e.g., cos(ω1t)+cos(ω2t+φ) ≡ cos(ω1t)+cos[ω2(t+φ/ω2)],
in which the phase φ is viewed as a time delay φ/ω2

between the two pulses. However, as the pulses be-
come shorter so that they have only a few oscillations,
a time delay between two pulse envelopes can no longer
be viewed as equivalent to a CEP shift (see, e.g., Fig. 10
in Ref. [36]). For two coherently superposed few-cycle
pulses, it is more appropriate to consider the result as a
single synthesized waveform [28, 36]. Although it is well
known that both time delays and CEPs play important
roles in two-color few-cycle pulse synthesis, systematic
investigations of the role that time delays play in HHG
processes driven by two-color, few-cycle pulses have not
to our knowledge yet been carried out.

In this paper, we study how the laser pulse wave-
form resulting from a time delay between two component
pulses affects the resulting HHG spectrum for the impor-
tant cases of two-color, few-cycle pulses having carrier



2

frequencies of either ω and 2ω or ω and 3ω. In general,
we find that a higher field strength at the ionization of the
active electron and a lower field strength during its accel-
eration and recombination leads to a higher HHG yield
but lower cutoff energy than the opposite scenario (e.g.,
a lower field at ionization and a higher field during accel-
eration and recombination). Our results demonstrate the
utility of using the time delay between two-color pulses
as a sensitive means to control HHG spectra.
Our theoretical formulation and numerical methods

for solving the time-dependent Schrödinger equation
(TDSE) are presented briefly in Sec. II. Our numerical
HHG spectra results for the H atom driven by two-color,
few-cycle pulses differing by either a positive time delay
(in which the harmonic pulse comes ahead of the fun-
damental pulse) or by a corresponding CEP shift (a no
time delay case for comparison with the time delay case)
are presented in Sec. III. These TDSE numerical results,
which show that the HHG spectra are highly sensitive to
the introduction of a time delay between the two-color,
few-cycle pulses, are analyzed and interpreted in Sec. IV
by using both a time-frequency analysis and an analytic
description of HHG driven by a short laser pulse [37–40].
These sub-cycle analyses of the electron dynamics reveal
the underlying physics producing the different HHG spec-
tra between the laser pulse waveforms involving a time
delay or not. The case of negative time delays is ana-
lyzed in Sec. V. Finally, a summary of our results and
conclusions is presented in Sec. VI. Throughout this pa-
per, unless otherwise specified, we employ atomic units
(me = ~ = |e| = 1).

II. THEORETICAL FORMULATION

Consider a two-color few-cycle pulse with no time delay
(NTD) between its two component pulses, described by
the following time-dependent vector potential:

ANTD(t) =− c

ω1
f1(t) sin(ω1t+ φ1)

− c

ω2
f2(t) sin(ω2t+ φ2) . (1)

where ω1 and ω2 are the carrier frequencies of the two
pulses, φ1 and φ2 are the carrier envelope phases (CEPs),
and f1(t) and f2(t) are the pulse envelopes (which we
assume are time-even functions with maxima at t = 0).
Compare this field to the sum of two laser pulses with a
time delay (TD) τ :

ATD(t) =− c

ω1
f1(t) sin(ω1t+ φ1)

− c

ω2
f2(t+ τ) sin [ω2 (t+ τ) + φ′

2] , (2)

In order to focus our investigation on the effect of shifting
the position in time of the second pulse envelope, we
compare the HHG spectrum produced by the time delay
field ATD(t) with that produced by the no time delay

field ANTD(t) for the case in which the arguments of the
sine functions of the second pulses in each of the two
fields are the same, i.e., we require in general that:

ω2τ + φ′

2 = φ2 . (3)

(More specific conditions ensuring the overlap of the
two pulses and taking into account the 2π periodicity
of the CEPs are discussed below [cf. Eqs. (8) and (28)].)
Thus, the only difference between the fields ANTD(t) and
ATD(t) is that the ATD(t) field has a time shift τ between
the envelope peaks of its two component pulses. Notice
that a positive delay (τ > 0) means the ω2 pulse comes
before the ω1 pulse. The electric fields corresponding to
the vector potentials ANTD(t) and ATD(t) in Eqs. (1)
and (2) are applied to the hydrogen (H) atom and the
HHG spectra are calculated and compared.
To calculate the HHG yield, we solve the TDSE for

an H atom in a linearly polarized laser electric field F (t)
directed along the z-axis within the dipole approximation
and using the length gauge:

i
∂

∂t
Ψ(r, t) =

[

p
2

2
− 1

r
+ zF (t)

]

Ψ(r, t). (4)

The harmonic spectrum S(Ω) is then obtained from the
Fourier transform of the time-dependent dipole accelera-
tion D̈z(t) [41]:

S(Ω) =

∣

∣

∣

∣

1

tf − ti

∫ tf

ti

dtD̈z(t)e
−iΩt

∣

∣

∣

∣

2

, (5)

where

D̈z(t) ≡ 〈Ψ(r, t)|−z̈|Ψ(r, t)〉
= 〈Ψ(r, t)| z

r3
|Ψ(r, t)〉+ F (t). (6)

The TDSE is solved in spherical coordinates using a time-
dependent generalized pseudospectral method [42, 43], in
which the wavefunction is expanded in Legendre polyno-
mials and the time propagation is done with a second-
order split-operator technique.
In order to avoid any static field component of a short

pulse [44, 45], we derive the electric field F (t) via the
vector potential A(t): F (t) = −∂tA(t)/c, where A(t) is
either ATD(t) or ANTD(t). In both our numerical and
analytical calculations we employ pulse envelopes defined
as follows:

fi(t) = Fie
−2 ln 2 t2/τ2

i (i = 1, 2) , (7)

where Fi is the electric field strength of the ith pulse com-
ponent and τi is the full width at half maximum (FWHM)
of the intensity profile of the ith component.
Since the goal of the present investigation is to deter-

mine how the time-delayed superposition of the two-color
pulses in Eq. (2) forms a waveform ATD(t) that enhances
the intensity of the HHG spectrum relative to that pro-
duced by the waveformANTD(t) in Eq. (1), the two pulses
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in Eq. (2) must overlap (because otherwise one obtains
the trivial HHG spectrum of two independent pulses).
Moreover, in order that the peak field intensities of the
waveform ATD(t) are comparable to those of the wave-
form ANTD(t), the magnitude of the TD τ must be kept
small, i.e., |τ | < τ1/2. It should be emphasized that the
CEP-dependence of the HHG yield is periodic in φ2 with
a period 2π [cf. Eq. (1)], while the TD-dependence does
not present such periodicity owing to the shift of the pulse
envelope with the TD τ . For the case of |τ | < τ1/2, the
correspondence between φ2 and τ in Eq. (3) can be re-
fined by explicitly taking into account the 2π periodicity
of the CEPs as follows:

φ2

2π
=

τ

T2
+

φ′

2

2π
−
[

τ

T2
+

φ′

2

2π

]

, τ > 0, (8)

where [x] is the integer part of x and T2 = 2π/ω2. Note
that τ1 and τ2 in Eq. (7) can be independently adjusted;
we assume in this paper that τ1 > τ2 (as in the experi-
ments of Ref. [28]).

III. NUMERICAL RESULTS: INTENSITY

ENHANCEMENTS AND CUT-OFF EXTENSIONS

We consider first a two-color field comprised of a fun-
damental frequency and its second harmonic: λ1 =
2πc/ω1 = 1600 nm and λ2 = 2πc/ω2 = 800 nm. The
two component pulses have comparable peak intensities,
with 6× 1013W/cm2 for ω1 and 4× 1013W/cm2 for ω2.
They both have short pulse durations: τ1 = 8.0 fs (1.5T1)
and τ2 = 5.6 fs (2.1T2), where Ti ≡ 2π/ωi is the period
for each carrier frequency.
For clarity, we set φ′

2 = 0 for the TD field ATD (see
the end of this section for a brief discussion about cases
when φ′

2 6= 0). The CEP of the first pulse φ1 is set
equal to zero initially. We choose four time delays so that
their corresponding phases cover the range [0, 2π]. The
values of the pairs of time delays and phases are shown in
Table I. The HHG results of our TDSE calculations for
these eight cases are shown in Fig. 1 in panels (a), (b), (c)
and (d). In each of the panels of Fig. 1, we compare the

TABLE I. For the ω-2ω HHG results shown in Fig. 1, we
give here the numerical values of the laser pulse parame-
ters in Eqs. (1) and (2) that are varied [φ1, τ (in units of
T2 = 2.67 fs), and φ2] as well as key measures of the corre-

sponding HHG results (the cutoff energies, Ω
(TD)
c (eV) and

Ω
(NTD)
c (eV), the cutoff shifts, ∆Ωc (eV) [cf. Eq. (9a)], and

the intensity ratios, Rc [cf. Eq. (9b)]).

Fig.1 φ1 τ (TD) φ2 (NTD) Ω
(TD)
c Ω

(NTD)
c ∆Ωc Rc

(a) 0 1.1T2 (2.9 fs) 0.2π 66.7 78.4 11.7 4.5

(b) 0 1.45T2 (3.9 fs) 0.9π 53.1 54.3 1.2 3.3

(c) 0 0.65T2 (1.7 fs) 1.3π 71.4 78.4 7.0 2.3

(d) 0 0.8T2 (2.1 fs) 1.6π 75.5 86.4 10.9 4.6

 2 = 1.6
   = 2.1 fs

FIG. 1. Comparison of calculated two-color (ω-2ω) HHG
spectra for the H atom produced by the linear combinations
ANTD(t) and ATD(t) of 1600 nm (6 × 1013W/cm2, 8 fs) and
800 nm (4× 1013W/cm2, 5.6 fs) pulses [cf. Eqs. (1) and (2)]
for four different time delays τ and corresponding CEPs φ2,
with τ and φ2 related according to Eq. (8). In each panel,
the solid (red) line is for the TD case, and the dashed (blue)
line is for the NTD case. In all panels, φ1 = φ′

2 = 0. The
arrows indicate the locations of the cutoff energies, Ωc, whose
values are given in Table I. The insert in each panel shows
the electric fields FNTD(t) and FTD(t) corresponding to the
vector potentials in Eqs. (1) and (2), respectively.

HHG spectra produced by the laser fields FNTD(t) and
FTD(t) corresponding to the vector potentials in Eqs. (1)
and (2), respectively.

The results in Fig. 1 exhibit the expected behavior
of HHG spectra produced by few-cycle pulses: the CEP
dependence, the multi-plateau structure, the large wavy
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TABLE II. For the ω-2ω HHG results shown in Fig. 2, we give
here the same laser pulse parameters (for the case of φ1 6= 0)
and the same key measures of their HHG results as in Table I.

Fig.2 φ1 τ (TD) φ2 (NTD) Ω
(TD)
c Ω

(NTD)
c ∆Ωc Rc

(a) 0.5π 1.3T2 (3.5 fs) 0.6π 74.1 86.4 12.3 32.5

(b) 1.0π 0.8T2 (2.1 fs) 1.6π 50.5 52.1 1.6 2.2

(c) 1.5π 1.3T2 (3.5 fs) 0.6π 46.0 46.0 0.0 5.2

oscillations (due to the sub-cycle interference of long and
short trajectories) [46], and the fine scale oscillations (due
to inter-cycle interference) [16, 38, 39]. Besides these
common features, the two curves in each plot are rather
different near the cutoff region, despite the similarity of
their electric fields. Moreover, there is one key com-
mon difference in the second plateaus (the higher energy
ones) in each panel: the no time delay field FNTD gives a
spectrum with a higher cutoff energy, whereas the time-
delayed field FTD gives a higher HHG yield near the cut-
off. To quantify the difference, we define the energy shift
of the cutoff, ∆Ωc, and the ratio of HHG yields at the
cutoff, Rc, as follows:

∆Ωc ≡ Ω(NTD)
c − Ω(TD)

c , (9a)

Rc ≡ S(TD)(Ω(TD)
c )/S(NTD)(Ω(NTD)

c ) , (9b)

where Ω
(TD)
c and Ω

(NTD)
c are the cutoff energies. Ta-

ble I lists the numerical values of ∆Ωc and Rc. One sees
that the intensity ratio, Rc, is always greater than unity
(Rc > 1), indicating that the time-delayed fields give
higher HHG yields near the cutoff. One sees also that all
the energy shifts, ∆Ωc, are greater than zero (∆Ωc > 0),
indicating that the no-time-delay fields give higher cutoff
energies.
In experiments, the CEP of the first pulse may not

equal zero. Thus, we have calculated results for three
cases involving φ1 6= 0. The same ω− 2ω pulses are used
as in Fig. 1 with three pairs of time delays and phases as
listed in Table II (together with key measures of their cor-
responding HHG results). The HHG spectra are shown in
Fig. 2. One sees that the intensity enhancement (Rc > 1)
and the cutoff extension (∆Ωc ≥ 0) features occur again
for all three pairs of TD and NTD results. Note that
in Fig. 2(c) the cutoff extension happens also for the

plateau with higher cutoff energies: Ω
(TD)
c = 58.9 eV,

Ω
(NTD)
c = 75.8 eV and ∆Ωc = 16.9 eV.
We have also investigated ω-3ω two-color fields, since

C. Jin et al. [33, 34] proposed that “the third harmonic
is the best in a two-color synthesis” of multicycle pulses
when maximizing the HHG yield with a fixed cutoff en-
ergy. We have chosen a fundamental ω1 with wavelength
1500 nm (6× 1013W/cm2, 7.5 fs) and its third harmonic

ω2 with wavelength 500 nm (4× 1013W/cm
2
, 3.5 fs). We

have investigated two pairs of TD and NTD fields, whose
time delays and phases are listed in Table III. (Note that
the CEP of the first pulse, φ1, is again set equal to zero,

(c)
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FIG. 2. Calculated HHG spectra for the H atom produced by
the same two-color (ω-2ω) pulse as in Fig. 1 but with different
time delays τ and CEPs φ1 and φ2. In each panel, the solid
(red) line is for the TD case, and the dashed (blue) line is for
the NTD case. For all TD pulses, φ′

2 = 0. The arrows indi-
cate the locations of the cutoff energies, Ωc, which are given
in Table II. The insert in each plot shows the electric fields
FNTD(t) and FTD(t) corresponding to the vector potentials in
Eqs. (1) and (2), respectively.

TABLE III. For the ω-3ω HHG results in Fig. 3, we give here
the same laser pulse parameters and the same key measures
of the HHG results as in Table I. Note that T ′

2 = 1.67 fs.

Fig.3 φ1 τ (TD) φ2 (NTD) Ω
(TD)
c Ω

(NTD)
c ∆Ωc Rc

(a) 0 1.4T ′

2 (2.3 fs) 0.8π 51.3 58.5 7.2 61.2

(b) 0 0.7T ′

2 (1.2 fs) 1.4π 62.8 69.0 6.2 4.5

and φ′

2 is also zero.) The HHG results are shown in Fig. 3
and the cutoff energy shifts and intensity ratios, ∆Ωc and
Rc, are given in Table III. As for the ω-2ω case in Fig. 1,
the HHG results for the ω-3ω case display the same in-
tensity enhancement and cutoff extension features: the
time-delayed fields produce higher intensities near the
cutoff at the cost of reduced cutoff energies as compared
to the NTD fields.
Lastly, for the general case in which φ′

2 6= 0, we have
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FIG. 3. Calculated two-color (ω-3ω) HHG spectra for the
H atom produced by a linear combination of 1500 nm (6 ×

1013W/cm2, 7.5 fs) and 500 nm (4×1013W/cm2, 3.5 fs) pulses
with different phases and time delays. φ1 = φ′

2 = 0 for all
panels. In each panel, the dashed (blue) line is for the NTD
case, and the solid (red) line is for the TD case: (a) τ = 2.3 fs,
φ2 = 0.8π; (b) τ = 1.2 fs, φ2 = 1.4π. The insert in each plot
shows the electric fields FNTD(t) and FTD(t) corresponding
to the vector potentials in Eqs. (1) and (2), respectively. The
arrows indicate the locations of the cutoff energies, Ωc, which
are given in Table III.

investigated cases over the range φ′

2 ∈ [0, 2π] in which φ2

is held fixed and the time delay τ is varied [cf. Eqs. (3)
and (8)]. Our calculations show that as τ increases, the
HHG spectrum evolves as expected, i.e., the intensity en-
hancement and cutoff extension features increase in mag-
nitude monotonically. Our calculations also show that
when τ < 0.1τ1, the HHG spectra for the TD and the
NTD fields are nearly identical. As all of these results
are as expected, we have not shown HHG spectra for
cases in which φ′

2 6= 0.

IV. ANALYSIS AND INTERPRETATION OF

THE RESULTS

In order to understand the physics behind the dif-
ferences in the spectra in the time-delay and no-time-
delay cases, specifically the intensity enhancement and
cutoff extension features, we have employed both a time-
frequency analysis and a closed-form analytic description
of HHG spectra produced by few-cycle pulses [38–40] to
interpret the results of our TDSE calculations.
To avoid repetition, we have selected for our analysis

the HHG spectra shown in Fig. 1(d). The spectra show
clearly that the TD field (with τ = 2.1 fs) gives a higher
HHG yield in the second (higher energy) plateau region,
with an intensity ratio of Rc = 4.6 [cf. Eq. (9b)], whereas
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FIG. 4. Time-frequency analysis of the TDSE spectra in
Fig. 1(d). (a) Time-frequency results for the laser electric
field FNTD(t) with φ = 1.6π. (b) Time-frequency results for
the laser electric field FTD(t) with τ = 2.1 fs. In both (a) and
(b) the intensities of the spectra are plotted on a color-coded
log scale shown at the right of the figure. (c) The electric
fields FNTD(t) and FTD(t) [which correspond to the vector
potentials in Eqs. (1) and (2), respectively, and are the same
fields as in the inset in Fig. 1(d)] are plotted vs. time on the
same scale as in (a) and (b), and the dots are the ionization
and recombination times of the second trajectory in Table IV.

the NTD field (with φ2 = 1.6π) gives a higher cutoff, with
an energy shift of ∆Ωc = 10.9 eV.

A. Time-Frequency Analysis of the HHG Spectra

We use the Gabor transform [47, 48] for our time-

frequency analysis: the dipole acceleration, D̈z(t)
[Eq. (6)], is multiplied by a Gaussian window function be-
fore being Fourier transformed. Figs. 4(a) and 4(b) plot
our time-frequency analysis results for the TDSE calcu-
lations in Fig. 1(d), showing the correspondence between
the recombination times and the harmonic energies.
One sees in Fig. 4 that there are clearly three main



6

bursts of high harmonics, labeled as 1, 2, and 3 in the
figure, which appear around times -2.5, 1.2, and 3 fs.
The electric fields are also plotted in Fig. 4(c) for easier
comparison. From the energy distribution, one can tell
that it is the second burst that contributes to the second
(higher energy) plateau in the spectrum. Comparing the
two figures (a) and (b), one sees that the second burst
in (a) leads to the generation of more energetic photons
than the one in (b), but for the latter case the HHG yield
is more intense, which explains qualitatively the origin of
the differences in the spectra in Fig. 1(d).

B. Analytic Analysis of the HHG Spectra

For a more quantitative understanding of our results,
we have employed an analytical description of HHG spec-
tra produced by few-cycle pulses [38–40]. In this analytic
description, the harmonic spectrum ρ(Ω) is obtained by
coherently adding a handful of amplitudes corresponding
to ionized electron trajectories (labeled by j and k) from
different half-cycles of the laser pulse:

ρ(Ω) =
∑

j,k

sjk cos(ϕj − ϕk)Aj(E)Ak(E), (10)

where the harmonic photon energy Ω and the returning
electron energy E satisfy the relation:

Ω = E + |E0|. (11)

Here E0 is the ground-state energy of the electron, which
equals E0 = −1/2 for the hydrogen atom. [The sign fac-
tors sjk = ±1 in Eq. (10) are defined in Eq. (26) be-
low.] Each amplitude Aj(E) equals the square root of a
product of three factors representing the three steps of
high harmonic generation: the ionization factor Ij , the
propagation factor Wj(E), and the recombination factor

σ(r)(E):

Aj(E) ≡
√

IjWj(E)σ(r)(E) . (12)

The calculation of each Aj(E) amplitude begins by
noting that it corresponds to a classical trajectory that

starts at t
(j)
i (the ionization time), and ends at t

(j)
r (the

recombination time). These times satisfy equations for a
closed trajectory along which an electron with zero initial

velocity gains a maximum classical energy, E(cl)
max(j):

∫ t(j)r

t
(j)
i

A(t)dt − (t(j)r − t
(j)
i )A(t

(j)
i ) = 0 , (13a)

A(t(j)r )−A(t
(j)
i ) + cF (t(j)r )(t(j)r − t

(j)
i ) = 0 , (13b)

where the first equation (13a) describes the closed tra-
jectory (over which the electron returns to its starting
point), and the second equation (13b) gives the maximum
energy acquired by the electron (cf. Eq. (2) in Ref. [38]).

Here A(t) is the vector potential and F (t) is the laser

electric field. The classical energy, E(cl)
max(j), is calculated

in terms of the change in momentum:

E(cl)
max(j) =

1

2c2
[A(t(j)r )−A(t

(j)
i )]2 . (14)

The phase, ϕj , of the jth amplitude is evaluated by
integrating the classical action along the trajectory
(cf. Eq. (55) in Ref. [39]):

ϕj = Ωt(j)r −
∫ t(j)r

t
(j)
i

{

1

2c2
[A(t)−A(t

(j)
i )]2 − |E0|

}

dt .

(15)

The ionization factor for an electron in the 1s-state of
the H atom by laser-induced tunneling is (cf. Eq. (75) in
Ref. [39])

Ij =
4

π
γ̃2
jΓst(F̃j)

Γst(F̃j) = C2
10

1

F̃j

e
−

2
3F̃j

, (16)

where Γst is the tunneling rate for a bound atomic elec-
tron in a static electric field, and C10 is the coefficient
of the electron’s wave function at large (asymptotic) dis-
tances (cf. Eq. (26) in Ref. [39]). For the 1s-state in the H

atom, C10 = 2. Also, F̃j is the magnitude of the electric
field at the ionization time,

F̃j = |F (t
(j)
i )| , (17)

and the effective instantaneous Keldysh parameter γ̃j is
defined as

γ̃j ≡ ω̄
√

2|E0|/F̃j , (18)

where ω̄ = max(ω1, ω2). Combining Eqs. (16) and (18),
the ionization factor can be written as

Ij =
16ω̄2

π

1

F̃ 3
j

e−2/(3F̃j) . (19)

It is important to note that the intensity of the HHG
spectrum is largely determined by the ionization factor,
which is very sensitive to the strength of the electric field
F̃j at the time of ionization.

The propagation factor Wj(E) is given by (cf.
Eqs. (62)-(65), (70), and (72) in Ref. [39]):

Wj(E) =
πΩ

2ω̄2

√
2E

Ai2(ξj)

∆t3jζ
2/3
j

, (20)
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where Ai(ξ) is the Airy function, and

∆tj = t(j)r − t
(j)
i , (21)

ξj =
E − E

(j)
max

ζ
1/3
j

, (22)

E(j)
max = E(cl)

max(j)−
F (t

(j)
r )

F (t
(j)
i )

|E0| , (23)

ζj =
F (t

(j)
r )2

2

[

F (t
(j)
r )

F (t
(j)
i )

− Ḟ (t
(j)
r )

F (t
(j)
r )

∆tj − 1

]

. (24)

The cutoff energy, E
(j)
cut, of the HHG spectrum generated

upon recombination of the electron traveling along the
jth trajectory is encoded in the corresponding propaga-
tion factor and is largely determined by the electron’s

maximum classical energy, E(cl)
max(j), acquired along the

jth trajectory (cf. Eq. (74) in Ref. [39]):

E
(j)
cut = |E0|+ E(cl)

max(j)

− F (t
(j)
r )

F (t
(j)
i )

|E0| − 1.019ζ
1/3
j .

(25)

Note that the sign factors sjk in the summation in
Eq. (10) are determined by the signs of the Airy func-
tions in Eq. (20):

sjk = (−1)j−ksign[Ai(ξj)Ai(ξk)] , (26)

where sign[x] = +1(−1) if x > 0(x < 0).
Finally, the recombination factor, σ(r)(E), is given by

the photorecombination cross section of an electron to
the 1s ground-state of the H atom:

σ(r)(E) = 32πα3

exp

[

−4

p
arctan(p)

]

p2(1 + p2)2(1− e−2π/p)
, (27)

p =
√
2E.

Note that the energy dependence of the recombination
factor depends only on the target and not on the laser
field. Since our calculations are for the H atom in all
cases, the recombination factor remains the same, and
thus does not contribute to differences in the calculated
HHG spectra.
Our analytic calculations for the HHG spectra are

based upon Eq. (10). The calculations begin by solving
Eqs. (13a) and (13b) for the ionized electron trajectories
corresponding to the fields in Fig. 4(c), whose electric
field amplitudes are F1 = 0.041 a.u. and F2 = 0.034 a.u.
[cf. Eq. (7)]. Our calculations show that there are three
major contributions to the HHG spectra (i.e., three tra-
jectories with large ionization factors Ij), one from each
of three half-cycles. For each of these three trajectories
(for each field), we present the ionization and recombina-
tion times, the cutoff energies, the ionization factors, and
the effective Keldysh parameters in Table IV. Results for

TABLE IV. Numerical values of t
(j)
i and t

(j)
r [cf. Eqs. (13a)

and (13b)], E
(j)
cut [cf. Eq. (25)], Ij [cf. Eq. (19)], and γ̃j

[cf. Eq. (18)] for three half-cycles of the pulses in Fig. 4(c).
Part (a) is for the NTD field with φ2 = 1.6π, and part (b) is
for the TD field with τ = 2.1 fs.

j t
(j)
i (fs) t

(j)
r (fs) E

(j)
cut (eV) Ij γ̃j

(a) φ2 = 1.6π

1 -4.76 -2.34 38.6 2.37(-6) 1.6

2 -2.69 1.11 87.6 3.10(-7) 1.8

3 0.586 2.82 46.7 1.89(-3) 0.89

(b) τ = 2.1 fs

1 -4.71 -2.51 41.9 1.13(-4) 1.2

2 -2.80 1.09 75.6 1.68(-6) 1.6

3 0.476 3.31 43.7 1.10(-3) 0.95

the NTD field with φ2 = 1.6π are presented in Part (a)
of Table IV, and results for the TD field with τ = 2.1 fs
are given in Part(b). Notice that the three contributions
for each field have a one-to-one correspondence with the
three bursts shown in the time-frequency analysis results
in Fig 4: the jth contribution in Table IV(a) (or IV(b))
corresponds to the jth burst in Fig. 4(a) (or Fig. 4(b)).
For example, the third trajectory for the NTD field in
Table IV(a) has a return time of 2.8 fs, a cutoff energy of
46.7 eV, and the highest ionization factor, which all agree
very well with the TDSE numerical results for burst 3 in
our time-frequency analysis shown in Fig. 4(a).

The HHG spectra calculated analytically using
Eq. (10) for the three trajectories whose data are given
in Tables IV(a) and IV(b) are shown in Fig. 5(a). For
ease of comparison, the TDSE results in Fig. 1(d) are
replotted in Fig. 5(b) on the same scale as in Fig. 5(a).
Both the analytic and the TDSE HHG spectra have a two
plateau structure and agree quantitatively on the cutoff
energies of each plateau and qualitatively on the intensity
enhancement features. The quantitative disagreement in
the HHG intensities in the high energy plateau region
between the analytic and TDSE results is due to signifi-
cant non-tunneling ionization contributions to the TDSE
results, as discussed in Sec. IVC below.

In order to understand the cutoff energy and inten-
sity differences in the analytic HHG spectra shown in
Fig. 5(a) for the two fields shown in Fig. 4(c), we focus
now on the contributions of the second trajectory (j = 2).
This j = 2 trajectory, whose data are given in Table IV
and whose ionization and recombination times are shown
in Fig. 4(c), accounts for the higher energy plateau in
Fig. 5(a). At the time of ionization, the TD field has
a larger amplitude than the NTD field, with a ratio of
FTD/FNTD = 1.1. Since the ionization factor is very sen-
sitive to the electric field (cf. Eq. (19)), this 10% greater
amplitude for the TD field leads to a five-fold larger ion-

ization factor, I(TD)
2 /I(NTD)

2 = 5.4, which explains the
higher HHG yield in the spectrum produced by the TD
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FIG. 5. Comparison of analytic and TDSE HHG spectra for
the two laser fields shown in Fig. 4(c). (a) Analytic HHG
spectra calculated from Eq. (10) are multiplied by a constant
factor of 27.6 so that the low energy plateau has the same
intensity as the TDSE results. (b) TDSE HHG spectra calcu-
lated from Eq. (5) [which are the same results as in Fig. 1(d)].

field. The intensity ratio at the cutoff is Rc = 5.9 for
the analytic results, and Rc = 4.6 for the TDSE results.
To understand the difference in the cutoff energies, con-
sider the recombination half-cycle of the electric field in
Fig. 4(c): the TD field has a smaller amplitude in the re-
combination half-cycle and, hence, the returning electron
gains less energy compared to its gain in the NTD field
leading to a smaller cutoff energy. Our analytic calcula-
tions predict a cutoff energy difference for the two fields
of ∆Ωc=12.0 eV, while our TDSE calculations predict a
difference of ∆Ωc=10.9 eV.
Thus, our analytic analysis establishes a quantitative

explanation for the different HHG spectra produced by
our TDSE calculations for the TD and NTD two-color
fields. Specifically, it explains the different cutoff ener-
gies and the intensity enhancement features in our TDSE
results. A remaining question is: Why are the yields of
the high energy HHG plateau predicted by our analytic
analysis far lower than predicted by our TDSE results?
We address this question in the next section.

C. Applicability of the Analytic Description

First, the analytic description is applicable in the
tunneling regime, i.e., for instantaneous Keldysh pa-
rameters γ̃j < 1. The lower intensity of the second
(high energy) HHG plateau predicted by the analytic
result (cf. Fig. 5(a)) as compared to the TDSE result
(cf. Fig. 5(b)) is due to the fact that the relevant instan-
taneous Keldysh parameter, γ̃2, is much larger than 1,
as shown in Table IV. Our TDSE calculations, evidently,

40 50 60 70 80 90 100 110 120 130

-13

-12

-11

-10

-9
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lo
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(H
H

G
 y

ie
ld

)

  TDSE
  Analytic

FIG. 6. Comparison of analytic and TDSE two-color HHG
spectra for laser pulses of 1600 nm (1.2× 1014 W/cm2, 5.3 fs)
and 800 nm (8×1013 W/cm2, 3.8 fs) having no time delay with
φ1 = 0 and φ2 = 1.2 π. The solid (red) line is the analytic
result, ρ(Ω), and the dashed (blue) line is the TDSE result,
S(Ω). Note that ρ(Ω) is multiplied by an overall constant
factor of 32.2.

account for the ionization step exactly, taking into ac-
count all processes leading to ionization, while the ana-
lytic analysis, which is valid in the tunneling regime, only
accounts for ionization by tunneling. Thus the TDSE
results may be expected to produce higher HHG yields
owing to the larger ionization rates in those calculations.
Despite this violation of the assumptions of the analytic
analysis, the analytic results still reproduce the cutoff
extension and intensity enhancement features predicted
by the TDSE calculations, which suggests that the other
ionization mechanisms mainly affect the relative yields of
the high energy and low energy HHG plateaus.

Second, the analytic analysis is valid for harmonics
with energies close to the high energy HHG plateau cut-
off. Since the analytic HHG spectrum ρ(Ω) only includes
trajectories with the maximum energies [cf. Eqs. (13a)
and (13b)] in each half-cycle, the HHG yields are in gen-
eral less accurate for harmonics with energies far from
the high energy HHG cutoff. This explains the discrep-
ancy in the shape of the second (higher energy) plateau
in Figs. 5(a) and 5(b) between 50 eV and 65 eV: namely,
the energies of the oscillation minima in the TDSE results
disagree increasingly from those in the analytic results as
the energy decreases below the plateaus cutoffs.

In order to demonstrate the accuracy of the analytic
analysis vis-a-vis the TDSE results, one must increase
the field intensities (and/or use longer wavelengths) so
that the instantaneous Keldysh parameter remains small
for both plateaus. As an example, we have carried
out HHG calculations for the following two-color laser
fields: 1600 nm (1.2 × 1014 W/cm2, 5.3 fs) and 800 nm

(8 × 1013W/cm
2
, 3.8 fs) having no time delay with

φ1 = 0 and φ2 = 1.2 π. For these fields the instanta-
neous Keldysh parameter for the trajectory responsible
for the low energy HHG plateau is γ̃ = 0.83, while that
for the trajectory responsible for the high energy plateau
is γ̃ = 0.89, i.e., both are now in the transitional regime
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TABLE V. Numerical values of the pairs of positive and neg-
ative time delays, τ , for a given φ2 obtained from Eqs. (8)
and (28). For each of the time delays, we give the cutoff

energies, Ω
(TD)
c (eV), of the HHG spectra (shown in Fig. 7)

that are produced by the corresponding TD fields [defined in
Eq. (2), with φ1 = φ′

2 = 0]. See text for discussion.

Fig.7 φ2 τ (TD) Ω
(TD)
c

(a) 0.2π 1.1T2 (2.9 fs) 66.7

-0.9T2 (-2.4 fs) 74.1

(b) 0.9π 1.45T2 (3.9 fs) 53.1

-0.55T2 (-1.5 fs) 56.4

(c) 1.3π 0.65T2 (1.7 fs) 71.4

-1.35T2 (-3.6 fs) 74.3

(d) 1.6π 0.8T2 (2.1 fs) 75.1

-1.2T2 (-3.2 fs) 82.5

(e) 0.8π 1.4T ′

2 (2.3 fs) 51.3

-0.6T ′

2 (-1.0 fs) 62.0

(f) 1.4π 0.7T ′

2 (1.2 fs) 62.8

-1.3T ′

2 (-2.2 fs) 67.2

(γ̃ < 1), in which the tunneling ionization rates are rea-
sonably accurate [49, 50]. The corresponding analytic
results are shown in Fig. 6 and compared with results of
TDSE calculations. Except for an overall constant multi-
plicative factor, the analytic results are in extraordinarily
good agreement with the TDSE calculation results for the
HHG spectrum over a wide energy range from about 60
eV to 130 eV.

V. POSITIVE VS NEGATIVE TIME DELAYS

So far, we have only considered the TD case in which
the two component pulses of a two-color laser field have
a positive time delay, τ > 0, i.e., in which the harmonic
pulse comes before the fundamental [cf. Eq. (2)]. In
Sec. II the correspondence between a positive TD τ and
a CEP φ2 [for comparison with the NTD field in Eq. (1)]
was given in Eq. (8). However, for a given CEP φ2 (0 6

φ2 < 2π) there is also a corresponding negative TD τ .
By reasoning similar to that used in Sec. II for positive
time delays, the correspondence between a negative TD
τ and a NTD phase φ2 is given by:

φ2 = 2π

(

τ

T2
−
[

τ

T2

]

+ 1

)

, τ < 0 (28)

where the extra “+1” has been added in order that the
phase φ2 remains in the range [0, 2π]; also, we choose
φ′

2 = 0. In this section, we present HHG spectra for
pulses with negative time delays, in which the harmonic
pulse comes after the fundamental, and compare the re-
sults with those for the positive time delay case, with
both time delays corresponding to the same CEP φ2.
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FIG. 7. Two-color HHG spectra predicted by TDSE calcula-
tions for laser pulses having positive (solid red line) and neg-
ative (dashed blue line) time delays. Results in panels (a)-(d)
are for the same ω-2ω pulses as in Fig. 1; results in panels (e)
and (f) are for the same ω-3ω pulses as in Fig. 3. Positive and
negative time delays are calculated using respectively Eqs. (8)
and (28). The arrows indicate the HHG plateau cutoff ener-
gies, whose values are given in Table V.

The two-color HHG spectra predicted by our TDSE
calculations are shown in Fig. 7 for the same ω and 2ω
pulse parameters as in Fig. 1 and the same ω and 3ω
pulse parameters as in Fig. 3; in all cases φ1 and φ′

2 are
chosen equal to zero. Using Eqs. (8) and (28), we obtain
for each chosen CEP φ2 pairs of positive and negative
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FIG. 8. Same as Fig. 4, but for the HHG spectra in Fig. 7(c).

TDs, whose values are listed in Table V. In both Fig. 7
and Table V (a)-(d) are for the ω − 2ω case and (e) and
(f) are for ω − 3ω case.
In each panel of Fig. 7 one sees that the negatively

time-delayed pairs of pulses (in which the harmonic
pulses come after the fundamental pulses) produce HHG
spectra that have significantly lower intensities as com-
pared to the positively time-delayed pairs of pulses (in
which the harmonic pulses come before the fundamen-
tal pulses). The arrows in each panel of Fig. 7 indicate
the HHG plateau cutoff energies, whose values are given
in Table V. One clearly sees that in each case the nega-
tive time delay pulses produce HHG spectra with higher
cutoff energies.
We have carried out both time-frequency and analytic

analyses for the positive and negative time delay TDSE
results shown in Fig. 7(c). The time-frequency analyses
of the positive and negative time-delay TDSE spectra in
Fig. 7(c) are shown in Fig. 8. The numerical values of
the analytic calculations for these two spectra are given
in Table VI. Clearly, the harmonic bursts from the time-
frequency analysis are in one-to-one correspondence with
the half-cycle trajectory contributions in the analytical
calculations.

TABLE VI. Numerical values of t
(j)
i and t

(j)
r [cf. Eqs. (13a)

and (13b)], E
(j)
cut [cf. Eq. (25)], Ij [cf. Eq. (19)], and γ̃j

[cf. Eq. (18)] for three half-cycles of the pulses in Fig. 8(c).
Part (a) is for τ = 1.7 fs, and part (b) is for τ = −3.6 fs. In
each case, φ2 = 1.3π [cf. Eq. (28)].

j t
(j)
i (fs) t

(j)
r (fs) E

(j)
cut (eV) Ij γ̃j

(a) τ = 1.7 fs

1 -4.57 -2.19 59.3 1.97(-5) 1.4

2 -2.71 1.30 71.0 7.89(-4) 0.99

3 0.668 3.22 49.9 2.56(-4) 1.1

(b) τ = −3.6 fs

1 -2.54 1.36 74.4 1.27(-5) 1.4

2 0.690 3.06 66.0 7.93(-5) 1.2

3 2.63 6.67 34.2 8.77(-4) 0.98

Comparing the three harmonic bursts in Figs. 8(a)
and 8(b), one sees that for the positive TD τ = 1.7 fs all
three bursts contribute to the harmonics with energies
above 40 eV, whereas for the negative TD τ = −3.6 fs
only the first two bursts contribute to the higher energy
harmonics. These time-frequency results thus provide
a qualitative explanation for the lower intensity of the
HHG spectrum produced by the negative TD pulse in
Fig. 7(c) (as compared to that for the positive TD pulse).
The analytic analysis, whose data are given in Ta-

ble VI, provides a quantitative reason for the lower inten-
sity of the HHG spectrum produced by the negative TD
pulse. Comparing the trajectory contributions for the
positive and negative TD pulses in Table VI, we see that
the j = 2 contribution accounts for most of each spec-
trum in the high energy region (40 eV and above) for
both the positive and negative TD pulses, judging from

the ionization factors Ij and the cutoff energies E
(j)
cut.

The ionization and recombination times of the j = 2 tra-
jectories are indicated by dots plotted on the curves for
the laser fields in Fig. 8(c). These times are also given in
Table VI. One sees that the electric field of the positive
TD pulse has a larger magnitude at the time of ioniza-
tion than that for the negative TD pulse. Thus it has
a higher ionization factor, which leads to its having an
HHG spectrum with a higher yield, as shown in Fig. 7(c).

VI. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the HHG spec-
tra produced by laser pulse waveforms comprised of
time-delayed, two-color, few-cycle pulses using a TDSE
method. Our focus has been on the time delay between
the two pulse envelopes. We determine the effect of the
time-delay (TD) τ on the HHG spectra by comparing the
results with those produced by a superposition of similar
pulses whose envelopes are not separated in time, i.e.,
the no-time-delay (NTD) case. The component pulses
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in the NTD case are made similar to those in the TD
case by introducing a phase φ2 that is related to the
time-delay τ according to Eqs. (8) and (28), depending
respectively upon whether τ > 0 or τ < 0. Our results
have shown that the TD waveform produced by the time-
delayed two-color component pulses having τ > 0 (in
which the harmonic pulse comes before the fundamental
frequency pulse) gives a higher intensity HHG spectrum
near the cutoff as compared to the NTD waveform. On
the other hand, the NTD waveform gives a higher cut-
off energy than does the TD waveform with τ > 0. In
all cases considered, the waveforms with τ > 0 give or-
ders of magnitude more intense HHG spectra than do
those for τ < 0. These intensity enhancement and cutoff
extension features appear to be quite general: they are
exhibited in the HHG spectra for both the ω − 2ω and
the ω − 3ω two-color fields we have considered across a
range of time-delays and phases.
We have also elucidated the physical origin of these

features using both time-frequency and analytic analyses
of the HHG spectra produced by the pairs of few-cycle
pulses. Specifically, for the cases we investigated, our
analyses show that a positive time delay can produce a
larger magnitude of the laser field in the half cycle in
which ionization occurs and a lower magnitude of the
laser field in the half cycle in which recombination oc-
curs. A larger magnitude of the electric field at the time
of ionization results in more ionized electrons and thus
leads to a higher intensity of the HHG spectrum. On the

other hand, a smaller magnitude of the electric field in
the recombination half cycle results in a smaller energy
gain of the returning electrons, and thus a lower cutoff
energy.

To conclude, our work has mapped out the time delay
features of two-color few-cycle pulses and has shown how
time delays affect HHG spectra produced by such pulses
for the H atom. The results of our investigations suggest
that when using two-color few-cycle pulses to generate
high harmonics, it is preferable to employ a positive time
delay between the two pulses, i.e., the harmonic pulse
should come before the fundamental in order to obtain
higher HHG yields near the cutoff. On the other hand no
time delay between the two pulses is preferred in order
to obtain a higher HHG spectrum cutoff energy.
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G. Cerullo, and F. X. Kärtner, “High-energy pulse syn-
thesis with sub-cycle waveform control for strong-field
physics,” Nat. Photon. 5, 475–479 (2011).

[29] A Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon,
A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A.
Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak,
F. Krausz, and E. Goulielmakis, “Synthesized Light
Transients,” Science 334, 195–200 (2011).

[30] L. E. Chipperfield, J. S. Robinson, J. W. G. Tisch, and
J. P. Marangos, “Ideal Waveform to Generate the Maxi-
mum Possible Electron Recollision Energy for Any Given
Oscillation Period,” Phys. Rev. Lett. 102, 063003 (2009).
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