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Super-ponderomotive regime of tunneling ionization
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Beam Physics Branch, Plasma Physics Division

Ultra-relativistic photoelectron spectra exhibit unexpected characteristics in a paraxial laser fo-
cus. The photoelectron energy scales super-ponderomotively, and the usual parabolic momentum
distribution is distorted into a variety of intricate patterns, depending on the location of the ion.
These patterns include discrete contours, which in some cases can be easily identified with a par-
ticular sub-cycle burst of ionization current. An analytical formula for the maximum photoelectron
energy in a paraxial radiation field is given, and high resolution momentum distributions with nar-
rowly peaked features are presented. These narrowly peaked features suggest application to electron
injection into plasma based accelerators.

I. INTRODUCTION

As laser technology continues to advance, new regimes
of laser-matter interaction appear. Serious efforts are
currently underway to build multi-petawatt laser facil-
ities capable of delivering a focused irradiance on the
order of 1023 W/cm2. Such facilities open up new ex-
perimental possibilities in high field physics (see, e.g.,
Ref. [1]). Relativistic tunneling ionization is a funda-
mental process that automatically accompanies any such
experiment where the target composition includes atoms
heavier than boron [2]. In this letter, a new regime of tun-
neling ionization, characterized by super-ponderomotive
energy scaling, and accessible to multi-petawatt lasers,
is reported. Apart from its significance as a fundamen-
tal physical process, tunneling ionization of electrons in
super-strong fields has applications in plasma based ac-
celerators [3–6].

The photoelectron distribution due to relativistic tun-
neling ionization is most often analyzed in the plane wave
approximation [7–10]. Finite spot size effects are gener-
ally thought to lead to a preference for photoelectron en-
ergies commensurate with the ponderomotive potential
[3, 4]. Full scale three dimensional ab initio simulations
of relativistic photoionization are just now becoming pos-
sible [10], but even the state of the art does not permit
determination of the wave function far enough from the
interaction region to directly compute observable photo-
electron distributions. On the other hand, the two-step
model [11] can be employed to estimate photoelectron
distributions far from the interaction region. This let-
ter applies the two-step model to the case of tunneling
ionization in a paraxial radiation focus, where the free
electron dynamics are ultra-relativistic (see supplemen-
tary material for details). Under these conditions, the
photoelectron distribution is qualitatively different from
what is obtained under either plane wave illumination,
or weakly relativistic paraxial illumination.

In tunneling ionization, the probability current near
the barrier depends only on the instantaneous field
[12, 13], and is therefore strongly localized in phase. In
an extreme field, its becomes possible for free electrons
to remain localized in phase until they leave the confo-
cal region. Such an electron is exposed to only a few

radiation cycles before the field is geometrically atten-
uated, and may be said to be in phase resonance with
the electromagnetic wave (cf. Landau resonance [14]).
This cannot happen in a plane wave, where there is no
geometric attenuation. Important consequences of phase
resonance include super-ponderomotive energy scaling,
and non-parabolic momentum space contours. The laser
power needed to readily observe these effects falls in the
multi-petawatt range.

Existing literature dealing with finite spot size effects
in tunneling ionization includes Refs. [3, 4, 15–18], among
others. The analysis, calculations, and experiments con-
sidered in Refs. [3, 4] are in the ponderomotive regime,
and so do not address phase resonance. Refs. [15, 16]
discuss phase resonance, but lack analytical treatment,
and discussion of scaling with irradiance. Refs. [15, 16]
utilize a classical model for the bound states, whereas the
two-step model used here employs a quantum mechanical
ionization rate [9], and includes radiation reaction during
the classical motion. This approach produces highly re-
solved S-matrix and momentum distributions which are,
in principle, observable quantities that can be correlated
with sub-cycle bursts of ionization current, and may be
useful for particle acceleration applications.

II. SUPER-PONDEROMOTIVE
PHOTOELECTRONS

Quantum mechanically, there is a finite probability
of obtaining any photoelectron energy. In contrast, the
quasi-classical two-step model produces a bounded pho-
toelectron energy spectrum. The maximum energy is
meaningful if the characteristic energy spread in the
quasi-classical distribution is similar to the quantum me-
chanical energy spread, for then the probability of ob-
taining energies beyond the maximum is exponentially
small. We verified that this is the case by comparing the
two-step model with the Coulomb corrected strong field
approximation of Ref. [9], in the appropriate limit.

The scaling of the maximum photoelectron energy with
radiation amplitude is shown in Fig. 1, with radiation
amplitude given in terms of the peak normalized vec-
tor potential, a0 = eA0/mc

2. The parameter a0 char-
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FIG. 1: Maximum energy in the photoelectron spectrum for
a 0.8 µm wavelength, 30 fs pulse, focused to a 5 µm spot,
for a range of radiation amplitudes and matching ionization
potentials (pulse metrics are referenced to 1/e of the field).

acterizes the importance of relativistic effects, i.e., when
a0 . 1 the free electron dynamics are weakly-relativistic,
while when a0 � 1 they are ultra-relativistic. Each value
of a0 is paired with a particular ionization potential, Uion,
shown on the upper horizontal axis. The Uion values are
chosen so that the corresponding a0 is twice the threshold
value for tunneling ionization. The plot shows simulation
results, along with three theoretical curves for compari-
son (see derivation below).

Fig. 1 illustrates several important points. First,
two regimes of photoelectron generation are clearly sug-
gested, one for a0 . 10 and one for a0 & 100. The
simulation results for a0 ≤ 10 are well matched by the
theoretical curves marked “ponderomotive” and “phase
resonance.” The ponderomotive model is just the pre-
diction of Refs. [3, 4], u0 = 1 + a2

0/4, where u0 is the
time component of the four-velocity. The phase reso-
nance model is derived below. Results for a0 & 100
are well matched only by the phase resonance model.
The “relativistic ponderomotive” curve, defined by u0 =
(1 + a2

0/4)/
√

1 + a2
0/2, is wrong everywhere (this model

applies in the quasistatic limit of laser-plasma interac-
tions [19]). In the transition region, 10 . a0 . 100,
quantitative accuracy is missing from all the models, but
the correct qualitative behavior is capture by the phase
resonance model. The compelling feature of Fig. 1 is
the super-ponderomotive scaling of energy with a0, espe-
cially for 10 < a0 < 30. This scaling should be contrasted
with that of the mass corrected ponderomotive potential,
which underestimates the energy by two orders of mag-
nitude at the point where phase resonance sets in.

The simulation points in Fig. 1 alternate between runs
that include and do not include classical radiation reac-

tion (RR). Clearly, RR is found to have a minor effect on
the maximum photoelectron energy. There is, however,
an effect on the detailed momentum distribution, which
becomes noticeable for a0 > 103 (not shown). It should
be noted that the radiation reaction model used here only
affects the motion in the classical region, and that quan-
tum electrodynamics effects such as pair production are
not accounted for (the highest field used is about 3% of
the Schwinger limit). Ion motion is also neglected.

III. PHASE RESONANCE MODEL

The phase resonance model is based on the expecta-
tion that when an inner shell electron is tunnel-ionized,
it is accelerated abruptly to the speed of light. In this
limit, the motion is nearly parallel to the wavevector of
the radiation, and the phase of the particle in the radia-
tion field can be regarded as constant. The primary con-
straint is that the interaction is limited to regions where
the irradiance is high and the phase velocity is close to
c. This corresponds to the two regions just outside the
confocal region. That is, far from the confocal region the
irradiance is too low, but inside the confocal region the
phase velocity is too high.

Let the four dimensional coordinate and velocity of an
electron be denoted x and u, respectively. Consider the
lowest order, linearly polarized, Hermite-Gaussian laser
mode, with x1 the polarization direction and x3 the prop-
agation direction. The equations of motion for a perfectly
resonant particle can be integrated most conveniently in
the case x2 = 0, so that the axial magnetic field van-
ishes. As will be shown below, this is the most inter-
esting case for high energy photoelectron production. In
matrix form, the equations of motion are dx/ds = cu and
du/ds = Ωu, where x(s) is the world line of the particle,
u(s) is the four-velocity, and Ω(s) = a(s)ωF (s). The pa-
rameter s is the proper time, a(s) = qE(s)/mcω, E is
the electric field, q is the charge of the particle, m is the
mass, and ω is the frequency of the radiation. Using the
coordinate system described above, the matrix F is

F (s) =

 0 1 0 ε(s)
1 0 0 −1
0 0 0 0
ε(s) 1 0 0

 (1)

Here, ε is the ratio of axial to transverse electric field,
which need not be small. Define a phase resonant par-
ticle as one for which Ω is slowly varying on x(s). Such
particles have x(s) confined to the intersection of two re-
gions, one being a neighborhood about a hypersurface of
constant ε, and the other a neighborhood about a hyper-
surface of constant phase. In the first approximation, Ω
is constant, and the solution of the velocity equation is
u(s) = Λ(s)u(0), where

Λ(s) = eΩ(s)s (2)
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It can be shown that Λ is a Lorentz transformation, i.e.,
ΛT gΛ = g, where T indicates the transpose, and g =
diag(1,−1,−1,−1). Of particular interest is the initial
condition u(0) = (1, 0, 0, 0)T , which according to most
theories holds for an electron at the moment of ionization,
at least when the atomic number satisfies Z � 137. In
this case,

u(s) =
1

ε2

 cosh εσ − 1 + ε2 cosh εσ
ε− ε cosh εσ + ε sinh εσ

0
cosh εσ − 1 + ε2 sinh εσ

 (3)

where σ(s) = a0ωs. In the plane wave limit (ε → 0) the
particle momentum is

u(s) =

 1 + σ2/2
σ
0

σ2/2

 (4)

As expected, taking the plane wave limit leads to the
invariance of [8, 9]

Υ ≡ u0 − u3 (5)

Moreover, when σ � 1, the momentum is predominantly
in the forward direction, i.e., u3 � u1. Assuming a0 �
1, this requires that ωs be at least of order unity, i.e.,
the time elapsed according to a clock moving with the
particle should read at least one laser period, as measured
by a lab frame clock. This does not necessarily violate
the assumption that the particle should stay in phase,
since the two clocks may keep very different time.

In order to estimate the maximum energy gain, values
for s and ε are needed. The value of s is constrained by
either phase slippage or interaction length. The phase
change after a proper time s is

ϕ(s) =

∫
ω(u0 − u3)ds =

1− cosh εσ + sinh εσ

εa0
(6)

whereas the distance traversed by the particle is

x3(s) =c

∫
u3(s)ds

=
λ

2πε3a0

[
sinh εσ − εσ + ε2(cosh εσ − 1)

] (7)

where λ = 2πc/ω. The maximum energy gain is u0(s′),
where s′ = min {s|ϕ(s) = π/4, s|x3(s) = zR}. Here,
zR = πr2

0/λ is the Rayleigh length, with r0 the radius of
the beam waist. A characteristic value for ε is obtained
by evaluating the field at the point (r0, 0, zR), which gives
ε2 = λ/4πzR. The phase resonance limit corresponds to
the case where the energy gain is limited by the interac-
tion length, i.e., the case where x3(s′) = zR.

Closed expressions for u0(s′) can be obtained by ex-
panding s′ to some desired order in ε. More generally,

s′ can be found numerically. The zero order analytical
solution, in the phase resonance limit, is

u
(0)
0,max = 1 + 2

(
3πr0

λ

)2/3(
Pre
mc3

)1/3

(8)

where P is the laser power and re is the classical elec-
tron radius. As an example, a 10 PW laser pulse, with
λ = 0.8 µm, focused to r0 = 5 µm, gives a0 ≈ 100, and
u0,maxmc

2 ≈ 1.5 GeV. As can be seen in Fig. 1, the anal-
ysis tends to overestimate the energy in the superpon-
deromotive regime. Note that in the first approximation,
the wavelength appears only in the combination r0/λ,
which is fixed by the focusing geometry.

An expression for the phase resonance threshold ampli-
tude is obtained by equating the ponderomotive energy
with the lowest order phase resonance energy, and solv-
ing for a0 (i.e., the threshold is estimated as the point
where the two curves intersect). This results in

athresh
0 = 27/4

√
3
πr0

λ
≈ 6πr0

λ
(9)

It should be noted that the whole of the forgoing theory
assumes paraxial focusing, i.e., r0 � λ. As a result, it is
evident that a0 must always be large.

The essential element in the forgoing analysis is the as-
sumption that upon ionization into an extreme field, an
electron can be accelerated to nearly the speed of light
in a fraction of an optical cycle. This requires that the
ionization potential be large enough so that the electron
is held in position by its parent ion until it is exposed to
ultra-relativisitic intensity, but not so large that ioniza-
tion becomes highly improbable.

IV. PHOTOELECTRON DISTRIBUTIONS

In order to calculate detailed photoelectron distribu-
tions numerically, a large number of trials of the two-step
model are carried out, using a paraxial model for the
vector fields in a laser focus, and an advanced, covari-
ant, particle tracking model (see supplementary mate-
rial). Tracking photoelectrons through this field gives the
quasi-classical S-matrix, Sxu, where |Sxu|2 is the proba-
bility that a photoelectron with initial coordinate x has fi-
nal momentum u. Here, x0 is the time of ionization, while
x = (x1, x2, x3) is the position of the parent ion. The pa-
rameter x0 falls out of the two-step ionization model, and
is only defined quasi-classically. The dependence on x is
present in the quantum mechanical S-matrix, but is often
ignored because it disappears in the plane wave limit.

Consider laser parameters a0 = 100, λ = 0.8 µm,
r0 = 5 µm, and τ = 30 fs, which are chosen to be achiev-
able by near-term 10 PW laser systems. Projections of
the classical S-matrix for Ar17+, correlating final energy
with initial coordinate, are shown in Fig. 2. In any given
projection, there is a large low energy population, and
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FIG. 2: Quasi-classical S-matrix projections for Ar17+. The
correlation of final energy with initial polarization coordinate
is in (a), with intial cross-polarization coordinate is in (b),
and with initial axial coordinate is in (c). Variables not in
the subscript of S are integrated out.

only a small number of high energy particles. The high-
est energy particles originate roughly from the coordi-
nates x1 ≈ ±r0, x2 ≈ 0, and x3 ≈ 0. This suggests that
a high quality, high energy beam, might be obtained by
localizing the parent ions to a small neighborhood about
one or both of these two points.

The photoelectron distribution from a single Ar17+ ion,
for two different ion coordinates, is shown in Fig. 3. This
is computed using 106 trials of the two-step model, with
the ion coordinate x = 0 in panel (a), and ion coordi-
nate x = (r0, 0, zR) in panel (b). The case with the ion
at the origin is nearly symmetric in u1, with the slight
asymmetry due to the fact that the first burst of ion-
ization current must occur in a field with one sign or
the other. The case with the ion offset from the axis is
highly asymmetric in u1, as might be expected. The de-
parture from the parabolic form of the plane wave case
is obvious [4, 20]. Interestingly, the fine structure ex-
hibits a multiplicity of discrete contours. This structure
can be understood in terms of the S-matrix projected
into the plane of ionization phase, Φ0 = Φ(x0,x), and

FIG. 3: Momentum distributions from an Ar17+ ion posi-
tioned (a) at x = 0, and (b) at x = (r0, 0, zR). Panel (c)
is the same as (b), except that the color scale identifies the
average ionization phase associated with the given final mo-
mentum. The monochromaticity of a given contour illustrates
that the entire contour is associated with a particular phase.
Variables not in the subscript of S are integrated out.

energy (see supplementary material). For example, it is
found that the densely packed low energy contours in (b)
are generated for Φ0 ≈ π/2 + 2πn, where n is an inte-
ger, while the higher energy contours are generated for
Φ0 ≈ 3π/2+2πn. More importantly, each of the high en-
ergy contours in the bundle of contours can be associated
with a particular sub-cycle burst of ionization current, as
shown in panel (c). This is intriguing because the tem-
poral structure of the unobservable probability current is
directly mapped to a corresponding observable structure.

V. CONCLUSIONS

Multi-petawatt lasers access a new regime of strong
field physics and free space acceleration, which appears
when the normalized vector potential a0 & 10. When
ionized electrons are released into an extreme field, they
can be accelerated to super-ponderomotive energies due
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to phase resonance, i.e., they stay near the same opti-
cal phase throughout a substantial portion of the con-
focal region. The resulting photoelectron momentum
distributions have unique features, which depart signif-
icantly from the usual parabolic form expected in the
plane wave or weakly relativistic limits. Single atoms, or
possibly clusters of atoms, produce discrete contours in
momentum space that can be related to sub-cycle bursts
of ionization current. The narrow, non-parabolic, con-
tours in momentum space suggest a potential application
in the area of laser-plasma acceleration of electrons. Al-
though super-ponderomotive tunneling ionization cannot
compete with plasma as a primary accelerating struc-
ture, it may be useful as an injection source, i.e., as
the front-end of a laser-plasma accelerator. This pos-
sibility was considered previously in Refs. [3, 4] in the
context of parabolic momentum space contours. In par-
ticular, angular selection was proposed as a means of
controlling the energy spread. The difficulty was the low

charge resulting from the angular selection. The variety
of non-parabolic momentum space contours that occur
in the super-ponderomotive regime raise further possi-
bilites, which may allow for simultaneous extraction of
high charge, and low energy spread.
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