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The interaction of a helium atom with intense short 800 nm laser pulse is studied theoretically
beyond the single-active-electron approximation. For this purpose, the time-dependent Schrödinger
equation for the two-electron wave packet driven by a linearly-polarized infrared pulse is solved
by the time-dependent restricted-active-space configuration-interaction method (TD-RASCI) in the
dipole velocity gauge. By systematically extending the space of active configurations, we investigate
the role of the collective two-electron dynamics in the strong field ionization and high-order harmonic
generation (HHG) processes. Our numerical results demonstrate that allowing both electrons in He
to be dynamically active results in a considerable extension of the computed HHG spectrum.
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I. INTRODUCTION

An electron released from an atom or molecule and fur-
ther on steered in the field of the parent ion by intense
laser fields gives rise to many fundamental phenomena
[1]. For instance, the field driven electron-ion recombi-
nation results in the emission of coherent radiation with
frequencies which are odd integer multiples of the carrier
frequency of exciting pulse, a phenomenon known as the
high-order harmonic generation (HHG) process. Over
the last two decades, HHG has been intensively studied
experimentally and theoretically (see, e.g., review articles
[2–4] and references therein), owing to its powerful ap-
plication to the generation of coherent XUV laser pulses
down to the attosecond regime [5–8].
In principle, high harmonics can be generated by tran-

sitions among excited bound electronic states as well
as by the involvement of unbound continuum electronic
states. Detailed calculations on an array of quantum dots
with only bound discrete electronic states have demon-
strated an efficient HHG [9]. However, as the current ex-
periments on atoms and molecules are performed in the
strong-field ionization regime, below we concentrate on
this regime. Here, the essential mechanism behind the
HHG process is explained within the simplified three-
step model [1, 10, 11], in which an electron: (i) es-
capes from the potential formed by the superposition
of the ionic core and linearly-polarized laser field po-
tentials; (ii) is accelerated back to the parent ion dur-
ing the next half-cycle of the driving pulse; and (iii) re-
combines with the ion emitting thereby high-energy pho-
tons. The validity of this illustrative model has been
confirmed by numerous theoretical studies of HHG pro-
cess in atoms and molecules performed within the single-
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active-electron (SAE) approximation (for recent results
see, e.g., Refs. [12–20] and references therein).
The role of inactive electrons, which are kept frozen

within the SAE approximation, is not negligible for the
strong-field processes. However, exact numerical solution
of the time-dependent Schrödinger equation (TDSE) for
many-electron systems in laser fields is very formidable
task. At present, it has been realized only for He atom
[21–27] to calculate single- and double-electron multi-
photon ionization rates. The method of full dimensional
numerical integration of TDSE for two electrons, devel-
oped in these works, utilizes a basis set of coupled spheri-
cal harmonics [21], and it is particularly efficient to study
strong-field problems which can be described by implying
very small radial grids of about 100 Bohr.
There are several theoretical studies of HHG process

performed beyond the SAE approximation in atoms [28–
31] and molecules [32–36]. Ref. [28], for instance, pro-
poses generalization of the three-step model for many-
electron systems by introducing perturbative corrections
due to exchange and electron correlations. A more con-
sistent tracking of electron correlations and dynamics
is provided by the multi-configuration time-dependent
Hartree-Fock (MCTDHF) method [37–42]. Its straight-
forward implementation to the solution of the strong-field
problems is, however, a challenging computational task
[43, 44]. In order to be able to study HHG by MCTDHF
method in realistic systems, one can either lower dimen-
sionality of the problem [35] (i.e., consider only one or
two dimensions for each electron), or/and neglect the ex-
change interaction [29] (i.e., utilize the MCTDH method
[45]).
Alternatively, relaxing the full configuration interac-

tion character of MCTDHF by cleverly selecting and in-
corporating only the important electron correlation and
dynamical effects into the ansatz for the wavepacket, one
can fully catch the essential physics of the process at
hand, and at the same time reduce considerably the nu-



2

merical effort and thus make the computation tractable.
This can be realized by limiting the space of active elec-
tron configurations utilizing, e.g., the time-dependent
restricted-active-space configuration-interaction method
(TD-RASCI, [46, 47]), the time-dependent generalized-
active-space configuration-interaction (TD-GASCI, [36,
48]), or the time-dependent restricted-active-space self-
consistent-field theory (TD-RASSCF, [30]). The latter
approach has already been applied to calculate HHG
spectra of the 1D beryllium atom [30].
Recently [47], we have applied the TD-RASCI method

developed in Ref. [46] to investigate the photoioniza-
tion of He by intense high-frequency laser pulses. In
the present work, we utilize this method to investigate
the influence of the correlative electron dynamics on the
HHG spectra of this simplest system with two electrons,
treated each in three dimensions (i.e., we treat here a six
dimensional problem). The paper is organized as follows.
Sec. II outlines our theoretical approach and justifies the
present choice of the active space of electron configura-
tions. In the numerical calculations, we systematically
increased the space of active configurations and proceed
as far as we could. These numerical results are presented
and discussed in Sec. III. We conclude with a brief sum-
mary.

II. THEORY

The present theoretical approach is fully described in
our previous work [47]. More details on its numerical
implementation can be found in Refs. [49–53]. Therefore,
only essential relevant points are discussed below.
We describe the light-matter interaction in the velocity

gauge, which is the most suitable gauge for strong field
problems [54], since it ensures rapid convergence of the
numerical solution over angular momentum of released
photoelectrons [17]. In the electric dipole approximation,
the total Hamiltonian governing dynamics of two elec-
trons of He exposed to intense coherent linearly-polarized
laser pulse reads (atomic units are used throughout)

Ĥ(t) = −1

2
~∇2

1 −
1

2
~∇2

2 −
2

r1
− 2

r2
+

1

|~r1 − ~r2|
− i (∇z1 +∇z2)A0 g(t) sin(ωt). (1)

Here, g(t) is the time-envelope of the pulse, ω is its car-
rier frequency, A0 is the peak amplitude of the vector
potential (the vector potential and the electric field vec-
tor are related via E = −∂tA), and the peak intensity

of the pulse is I0 = ω2

8παA2
0 (α ≃ 1/137.036 is the fine

structure constant, and 1 a.u. of intensity is equal to
6.43641×1015 W/cm2).
The present calculations were performed for laser

pulses with carrier frequency of ω = 0.0569 a.u. (cor-
responding to a wavelength of λ = 800 nm) and peak
intensity of 5 × 1014 W/cm2. For this photon energy,
ionization of He requires the absorption of at least 16

photons (the ionization potential is 24.587 eV [55]). The
corresponding Keldysh [56] parameter γ = 0.64 indicates
that ionization takes place in the intermediate regime be-
tween the strong-field tunnel-ionization (γ ≪ 1) and mul-
tiphoton ionization (γ ≫ 1) extremes. At the chosen field
strength, the rates for double ionization of He are very
small compared to its single ionization rates [23, 26, 57].
We may, therefore, neglect in the present study of the
HHG process the double ionization and permit only one
of the electrons of He to be ionized by the pulse. Nev-
ertheless, we allow the bound electron to interact with
the laser field as well as with the photoelectron, i.e., it is
fully active but kept bound.
To accomplish the above description, we utilized the

following symmetrized ansatz for the spatial part of the
total two-electron wave function Ψ(~r1, ~r2, t) in the singlet
spin state:

Ψ(~r1, ~r2, t) =
∑

α

aα(t)φα(~r1)φα(~r2)

+
∑

α>α′

bαα′(t)
1√
2
[φα(~r1)φα′ (~r2) + φα′ (~r1)φα(~r2)]

+
∑

αβ

1√
2
[φα(~r1)ψβ(~r2, t) + ψβ(~r1, t)φα(~r2)] . (2)

As justified above, the wave function (2) is constructed
by using two different mutually-orthogonal one-electron
spatial basis sets {φα(~r )} and {ψβ(~r, t)}. The for-
mer describes dynamics of the electron which remains
bound to the nucleus, and it includes selected discrete
orbitals {φα(~r ) ≡ φnℓm(~r )}. The latter is formed by
the time-dependent wave packets of a photoelectron
{ψβ(~r, t) ≡ ψα

ℓm(~r, t)}, which are built to be orthogonal
to all incorporated discrete orbitals, i.e., 〈φα|ψβ(t)〉 = 0.
In order to describe these one-electron basis sets,

we applied the finite-element discrete-variable repre-
sentation (FEDVR) scheme and introduced the three-
dimensional basis element ξλ(~r ) as:

ξλ(~r ) ≡ ξik,ℓm(~r ) =
χik(r)

r
Yℓm(θ, ϕ). (3)

Here, the radial coordinate is represented by the basis set
of the normalized Lagrange polynomials χik(r) [49–53]
constructed over a Gauss-Lobatto grid {rik} (index i runs
over the finite intervals [ri, ri+1] and index k counts the
basis functions in each interval). Using this FEDVR, the
normalized stationary orbitals and the time-dependent
wave packets can be expanded as follows (note that λ ≡
{ik, ℓm} is four-dimensional index):

φα(~r ) =
∑

λ

dα
λ ξλ(~r ), (4a)

ψβ(~r, t) =
∑

λ

cβλ (t) ξλ(~r ). (4b)

In the used basis set of the three-dimensional elements
Eq. (3), all matrix elements of the Hamiltonian (1) can
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be evaluated analytically. The corresponding explicit ex-
pressions can be found in our previous work [47], apart
from the light-matter interaction term which was treated

there in the dipole length gauge. In the velocity gauge
used here, the dipole transition matrix element reads

〈ξλ |∇z| ξλ′ 〉 =
〈

χik
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 δm,m′ ,

(5)

where the first derivative dχik/dr can be evaluated ana-
lytically via Eqs. (10) from Ref. [47].
Evolution of the total wave function (2) in time is given

by the vector of the time-dependent expansion coeffi-

cients ~A(t) =
{

aα(t); bαα′(t); cβλ (t)
}

, which was propa-

gated according to the Hamiltonian (1):

~A(t+∆t) = exp
{

−iP Ĥ(t)P∆t
}

~A(t). (6)

The one-particle projector P = 1−
∑

α |φα〉〈φα| in Eq. (6)

acts on the
{

cβλ (t)
}

subspace and ensures the orthogonal-

ity condition 〈φα|ψβ(t)〉 = 0. The propagation was car-
ried out by the short-iterative Lanczos method [58]. The

initial ground state ~A(t = 0) was obtained by the propa-
gation in imaginary time (by relaxation) in the absence
of the field. The total three-dimensional photoemission
probability was computed as the Fourier transformation
of the final electron wave packets at the end of laser pulse:

W (~k ) =
1

(2π)3/2

∑

β

∣

∣

∣

∣

∫

ψβ(~r) e
−i~k·~rd3~r

∣

∣

∣

∣

2

. (7)

Finally, the HHG spectrum I(ω) was computed as the
squared modulus of the Fourier transformed acceleration
of the total electric dipole moment:

I(ω) =
1

(2π)1/2

∣

∣

∣

∣

∫

d2D(t)

dt2
e−iωtdt

∣

∣

∣

∣

2

, (8)

with D(t) given by

D(t) = 〈Ψ(~r1, ~r2, t) |~r1 + ~r2|Ψ(~r1, ~r2, t)〉 . (9)

The present study was conducted for two different
pulse envelopes g(t). The main set of calculations was
performed for a trapezoidal pulse with a linearly-growing
front-edge, a constant plateau with unit height, and a
linearly-falling back-edge, each supporting five optical cy-
cles. The propagation was thus performed in the time
interval of [0, Tf ] with Tf = 15 2π

ω ≃ 40 fs. In addition,

we performed a few key calculations for a sine-squared
pulse of the same length g(t) = sin2(π t

Tf
). The size of

the radial box was chosen to be Rmax = 3500 a.u. The
interval [0, Rmax] was represented by 1750 equidistant
finite elements of the 2 a.u. size, each covered by 10
Gauss-Lobatto points. The photoelectron wave packets
were described by the partial harmonics with ℓ ≤ 50.
Finally, in order to avoid reflection of the wave packets
from the boundary at Rmax, they were multiplied at each
time-step by the following mask-function [13, 59]

g(r) =

{

1, r < R0
(

cos
[

π
2

r−R0

Rmax−R0

])
1

8

, R0 < r < Rmax,
(10)

The mask-function (10) was set-in at R0 = 3400 a.u.
Simultaneously, we paid attention that the total electron
density in the interval of [0, R0] does not deviate from its
initial value of 2 by more than 10−8.

III. RESULTS AND DISCUSSION

The present calculations were performed on differ-
ent levels of approximation which are systematically im-
proved by extending in the total wave function (2) the
set of electronic configurations describing the dynamics
of the electron which remains bound. The photoelectron
is described fully. For this purpose, in each improve-
ment step we expanded the basis set {φα(~r )} describ-
ing the bound electron by one additional hydrogen-like
nℓ+ function of the He+ ion with large quantum num-
bers n and ℓ. The smallest basis set used includes only
one 1s+ orbital of He+. Hence, in this simplest level of
approximation the bound electron is frozen and exhibits
no dynamics. This approximation is an analogue of the
SAE approximation. One should stress, however, that it
differs from the usual one-electron SAE approximation
in hydrogen, since the Hamiltonian (1) includes direct
and exchange Coulomb interactions between bound and
continuum electrons. The largest basis set of active or-
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FIG. 1: (Color online) The final photoelectron radial densi-
ties (upper panel) and the final photoionization spectra (lower
panel) after the linearly-polarized 800 nm trapezoidal pulse
has expired. The time-shape, duration and intensity of the
pulse are indicated in the text. Note the logarithmic scales
on the vertical axes. The calculations are performed in a sys-
tematic series of improving approximations by sequentially
extending the basis set of discrete orbitals {nℓ+}, used to de-
scribe dynamics of the bound electron. In each step, this basis
was extended by the layer of all nℓ+ orbitals with larger prin-
cipal quantum number n, as indicated at the right-hand side
of each spectrum. The results labeled by n = 1 correspond to
the SAE approximation. To enable for a better comparison,
the different spectra in each panel are vertically shifted up-
wards by multiplying successively with 103 starting with the
spectrum of the SAE (n = 1 layer) approximation.

bitals used in the calculations consists of all the discrete
one-electron functions {nℓ+} with n ≤ 4 and ℓ ≤ 3.

We start the present discussion with analysis of results
obtained for the trapezoidal pulse. The upper panel of
Fig. 1 depicts the final radial photoelectron wave packet
densities at the end of the laser pulse, computed in the
different approximations explained above. The electron
density obtained in the SAE approximation (labeled as
n = 1) falls exponentially as a function of distance to the
nucleus (note the logarithmic scale on the vertical axis).
This density is modulated by weak sharp features which
represent bunches of fast electrons released by the strong-
field multiphoton above-threshold ionization. One can
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FIG. 2: (Color online) The total time-dependent electric
dipole moment Eq. (9), induced by the linearly-polarized
800 nm trapezoidal pulse described in the text. The calcu-
lations are performed in a systematic series of improving ap-
proximations as indicated in the caption of Fig. 1.

see from this figure that enabling the bound electron in
He to be dynamically active causes considerable changes
in the computed radial density. Indeed, systematically
extending the {nℓ+} basis set by the layers of orbitals
with n=2, 3, and 4 results in a significant lowering of
the computed electron density around the nucleus and to
its slight enhancement in the outer region. This already
indicates the loss of low-kinetic-energy and gain of high-
kinetic-energy electrons in the spectrum.
The final photoelectron spectra obtained as a Fourier

transformation from the final wave packets via Eq. (7)
are compared in the lower panel of Fig. 1. Because of the
trapezoidal pulse envelope, the computed spectra consist
of a comb of sharp peaks. These peaks with exponen-
tially falling intensity are separated by the photon energy
ω (note also the logarithmic scale on the vertical axis).
Each peak represents photoelectrons with kinetic energy
of εnj = En − E0 − jω released by the above-threshold
multiphoton ionization of He (here j is the number of ab-
sorbed photons, E0 is the ground state energy of He, and
En stands for the energy of the nℓ+ ionic state of He+).
By comparing slopes of the electron spectra obtained in
different approximation (see lower part of Fig. 1), one can
now directly observe the already announced diminution
of the low-energy and enhancement of the high-energy
parts of the computed spectra, caused by the dynamics
of the bound electron.
Figure 2 compares the total time-dependent electric

dipole moments (9) computed in different approxima-
tions. As is evident from this figure, the impact of the
dynamics of the bound electron on this quantity is dra-
matic: The maximal value of D(t), computed for the
largest basis set used here (labeled as n = 4), drops by
almost a factor of 7 as compared to the SAE approxima-
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tion (labeled as n = 1).

We now turn to Fig. 3 which collects all HHG spec-
tra computed for the trapezoidal pulse by sequentially
extending the basis set of discrete orbitals {nℓ+} by one
additional function. For a better eye view, the spectra
obtained in each step are shifted vertically: The lower-
most spectrum corresponds to the SAE approximation,
whereas the uppermost one corresponds to the largest
basis set used here. The HHG spectrum computed in the
SAE approximation (the lowermost spectrum in Fig. 3 la-
beled as 1s+) exhibits a set of sharp harmonics kω with
odd numbers k ≤ 100, which, as expected [2–4], build a
typical plateau with a cutoff.

This ‘classical’ picture changes if the dynamics of the
bound electron in He is allowed. As one can see from the
second from the bottom spectrum, already adding the
2s+ state to the basis set of active orbitals for the bound
electron extends the number of generated harmonics. Al-
lowing the bound electron to occupy the 2s+ and 2p+ or-
bitals, further extends the number of generated harmon-
ics. One can speak of the formation of a second relatively
weak plateau in the HHG spectrum, which starts at the
cutoff of the main plateau and exhibits its own cutoff at
much higher kω. Including sequentially the additional
3s+, 3p+, 3d+, and further on the 4s+, 4p+, 4d+, and
4f+ orbitals in the {nℓ+} basis set results in a systemati-
cal broadening of the second plateau shifting its cutoff to
harmonics kω of higher and higher order k (see Fig. 3).

The HHG spectra computed by sequentially adding a
layer of {nℓ+} states with fixed principal quantum num-
ber n = 1, 2, 3, and 4 are summarized again in the upper
panel of Fig. 4. One can see that the extension of the
first plateau of the HHG spectrum does not change as
the basis set is enlarged. The extension of the second
plateau, which is due to the presence of a second active
electron, appears once the basis set contains quantum
numbers n larger than 1, and grows fast with additional
basis functions n = 2 and n = 3. The extension of this
plateau computed for the largest basis set with n = 4
does, however, not differ much from that obtained with
n = 3 indicating a noticeable trend in the convergence
of the present computational results with respect to the
basis set of discrete orbitals. We stress that the calcula-
tions performed here for the largest basis with n = 4 were
already at the limit of our computational capabilities.

As a final point of our study, we ensure that the effect
observed here is independent of the time-envelope of the
laser pulse employed. For this purpose, we performed an
analogous set of calculations using a sine-squared pulse
of the same length Tf and intensity I0 (for details see
the last paragraph of the preceding section). The results
of these calculations are collected in the lower panel of
Fig. 4. The HHG spectrum computed in the SAE ap-
proximation (labeled as n = 1) exhibits a main plateau
and cutoff which are very similar to those obtained for
the trapezoidal pulse in the same approximation (com-
pare with the lowermost spectrum in the upper panel of
this figure). From the lower panel of Fig. 4 one can also
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FIG. 3: (Color online) The HHG spectra of He computed for
the trapezoidal laser pulse. The calculations are performed in
a systematic series of improving approximations by sequen-
tially extending the basis set of discrete orbitals {nℓ+}, used
to describe dynamics of the bound electron. In each step,
this basis was extended by one orbital, which is indicated at
the right-hand side of each spectrum. The results labeled by
1s+ correspond to the SAE approximation. To enable for a
better comparison, the spectra for each nℓ-state are vertically
shifted upwards by multiplying successively with 104 starting
with the 1s+ spectrum.
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FIG. 4: (Color online) Summary of the HHG spectra of He,
computed for the trapezoidal (upper panel) and sine-squared
(lower panel) laser pulses in different approximations (see cap-
tion of Fig. 1 and text for details). To enable for a better
comparison, the spectra for each n-layer are vertically shifted
upwards by multiplying successively with 104 starting with
the spectrum of the SAE (n = 1 layer) approximation.

see that allowing the bound electron in He to occupy the
next layer of orbitals with n = 2 results in the forma-
tion of a second plateau in the computed HHG spectrum.
As demonstrated by the calculations which also include
the next layer of orbitals with n = 3, the second cutoff
further moves toward higher photon energies.

IV. CONCLUSION

Generation of high-order harmonics in the He atom
exposed to intense linearly-polarized 800 nm laser pulse
is studied beyond the single-active-electron approxi-
mation by the time-dependent restricted-active-space
configuration-interaction method. During the propaga-
tion of the two-electron wave packets in strong laser
fields, we allowed only one of the electrons to be ion-
ized and kept the other electron always bound to the

nucleus, neglecting thereby the double ionization process
which is very weak for the pulse applied. For this pur-
pose, the present active space was restricted to configura-
tions which permit only one of the electrons to populate
continuum states. This photoelectron was described in
the time-dependent wave packets with angular momenta
ℓ ≤ 50. The dynamics of the bound electron was de-
scribed by a set of selected discrete orbitals {nℓ+} of the
He+ ion. In the numerical calculations, this discrete one-
electron basis was systematically increased by including
states with larger quantum numbers n and ℓ up to n ≤ 4
and ℓ ≤ 3.

The pulse-driven collective correlated dynamics of two
electrons in He result in a considerable increase of the
number of generated harmonics in the computed HHG
spectrum. In particular, compared to the SAE approx-
imation, we observe the formation of a second plateau
with weaker harmonics of higher order, which starts at
the cutoff of the main plateau and ends with its own cut-
off. Increasing sequentially the basis set of active orbitals
describing the bound electron results in a systematic ex-
tension of the second cutoff to the high-energy side. For
the presently used pulse parameters, the computed main
plateau extends in the spectrum of harmonics kω up to k
of about 100. For the largest basis set of discrete orbitals
used here, the second plateau, which is about three or-
ders of magnitude weaker than the main one, consists of
additional harmonics with 100 < k < 180.

Taking into account that our calculations are probably
still not fully converged over the basis set of discrete or-
bitals {nℓ+}, it is rather difficult to exactly predict the
final fate of the second plateau found at higher order har-
monics. Nevertheless, the main theoretical conclusion of
the present work – that going beyond the SAE approxi-
mation and allowing more electrons to be active and to
interact is important and leads to the generation of con-
siderably more harmonics – will remain unchanged. A
full understanding of how two or more active electrons
impact the HHG is a rather involved subject and goes
much beyond the present work.

Nevertheless, we can say already now that having more
discrete orbitals implies many more bound states of the
two and in other systems possibly more electrons partici-
pating in the process. These bound states alone can also
give rise to some HHG [9]. In Ref. [9] a realistic model
for an array of quantum dots with six active correlated
bound electrons has been solved numerically exactly and
shown to unambiguously give rise to a second plateau in
the HHG spectrum. Although the situation in Ref. [9]
differs from ours, this result supports our finding that al-
lowing more electrons to be active generates higher har-
monics and is likely to give rise to a second plateau. In
our present example of He, the ionization of an electron
plays a crucial role, but the existence of the additional
bound states certainly leads to additional different path-
ways of the important ionization channel and this will
also influence the HHG. Finally, after one electron is ion-
ized, the He+ ion can stay in several excited states. The
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recombination step is then also different from that in the
SAE approximation as there are many new pathways for
it now.
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