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We study the universality of the three-body parameters for systems relevant for ultracold quantum
gases with positive s-wave two-body scattering lengths. Our results account for finite-range effects
and their universality is tested by changing the number of deeply bound diatomic states supported by
our interaction model. We find that the physics controlling the values of the three-body parameters
associated with the ground and excited Efimov states is constrained by a variational principle and
can be strongly affected by d-wave interactions that prevent both trimer states from merging into
the atom-dimer continuum. Our results enable comparisons to current experimental data and they
suggest tests of universality for atomic systems with positive scattering lengths.
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I. INTRODUCTION

The recent theoretical and experimental progress in the
exploration of ultracold quantum gases in the strongly
interacting regime have largely established the relevance
of the three-body Efimov physics [1–3] for the under-
standing of both dynamics and stability of such systems
[4–12]. The control of interatomic interactions through
magnetic-field dependent Feshbach resonances [13] al-
lows for dramatic changes in the s-wave two-body scat-
tering length, a, making it possible to tune systems to
the vastly different collective (mean-field) regimes of at-
tractive, a < 0, and repulsive, a > 0 interactions. In
the regime of strong interactions, |a|/rvdW ≫ 1, where
rvdW is the van der Waals length [13], the Efimov ef-
fect is manifested through the appearance of an infinite
series of three-body states that can lead to scattering
resonances and interference effects accessible to experi-
ments [2, 3]. Such dramatic few-body phenomena open
up the possibility to explore new quantum regimes in
ultracold gases. One of the striking signatures of the
Efimov effect is the geometric scaling of the system for
many trimer properties, which interrelates all the three-
body observables via the geometric factor eπ/s0 , where
s0 ≈ 1.00624 for identical bosons. As a result, if universal
scaling holds, the determination of a single observable —
the three-body parameter— would allow derivation of all
properties of the system. However, since the early days of
Efimov’s original prediction it was largely accepted that
this three-body parameter would be different for every
system. Nevertheless, a few years ago, as experiments in
ultracold gases evolved, it became clear that this concept
needed reassessment.
The turnaround came from the experimental observa-

tions in 133Cs [14] showing that the three-body parame-
ter a−, associated with the value of a < 0 at which the
first Efimov state merges with the three-body continuum,
were the same (within a 15% margin) for different reso-
nances in 133Cs. Moreover, if the results were recast in

terms of rvdW, the observations in every other available
atomic species also led to similar results, a−/rvdW ≈ −10
(see Ref. [3] for a summary of such experimental find-
ings). Theoretical works then successfully confirmed and
interpreted the universality of the a− parameter [15–
21] and consolidated a new universal picture for Efimov
physics in atomic systems dominated by van der Waals
forces.

This paper assesses the universality of the three-body
parameter in the yet unexplored regime of positive scat-
tering lengths, a > 0. The available experimental data
for Efimov features within this regime is relatively sparse
and, consequently, does not clearly display the same de-
gree of universality found for a < 0. Although not ex-
plicitly demonstrated here, our present theoretical study
shows that universality for a > 0 persists and is rooted in
the same suppression of the probability of finding parti-
cles at short distances previously found for a < 0 [15–17].
The observables we analyze are related to the value of a at
which an Efimov state intersects the atom-dimer thresh-
old, a∗, thus causing a resonance in atom-dimer colli-
sions [22, 23], and the value a+ at which a minimum in
three-body recombination occurs as a result of a destruc-
tive interference between the relevant collision pathways
[22, 24–26]. One important feature that can help to inter-
pret our computed values for a∗ and a+ associated with
the ground Efimov state is the existence of a variational
principle [27, 28] that constrains its energy to always lie
below a certain value lower than the dimer energy, thus
preventing the trimer to cross the atom-dimer threshold.
This has a direct impact on both the lowest atom-dimer
resonance and on interference phenomena, even when,
as we show here, the conditions for the validity of that
variational principle are not strictly satisfied. Moreover,
our analysis indicates that the presence of strong d-wave
interactions [29, 30], and/or possibly some other finite-
range effects, also prevents the first excited Efimov state
from merging with the dimer threshold, although it still
produces a resonance feature in atom-dimer observables
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and a recombination minimum for small a.

II. BRIEF THEORETICAL BACKGROUND

Here we use the adiabatic hyperspherical representa-
tion which offers a simple and conceptually clear de-
scription of few-body systems while still accurately de-
termining their properties [3]. Within this representa-
tion, after solving for the hyperangular internal motion
—which includes all interparticle interactions— three-
body observables can be obtained by solving the hyper-
radial Schrödinger equation [31]

[

− ~
2

2µ

d2

dR2
+Wν(R)

]

Fν(R)

+
∑

ν′ 6=ν

Wνν′ (R)Fν′(R) = EFν(R). (1)

where the hyperradius R describes the overall size of the
system, µ = m/

√
3 is the three-body reduced mass and

ν is an index including all necessary quantum numbers
to characterize each channel. Equation (1) describes the
radial motion governed by the effective hyperspherical
potentials Wν and non-adiabatic couplings Wνν′ , which
determine all bound and scattering properties of the sys-
tem. In the present study, each pair of particles interacts
via a Lennard-Jones potential

vLJ(r) = −C6

r6

(

1− λ6

r6

)

, (2)

where λ is adjusted to give the desired value of a and
C6 is the usual dispersion coefficient. Note that our
calculations use van der Waals units (with energy and
length units of EvdW = ~

2/mr2vdW and rvdW) such that
the specification of the value of C6 is unnecessary. Our
present study is centered around the first three poles of
a, which occur at the values denoted λ = λ∗

1, λ∗
2 and

λ∗
3. One important point to keep in mind is that near

λ∗
1 there can exist only a single two-body s-wave state,

whereas near λ∗
2 and λ∗

3 multiple deeply bound states ex-
ist (4 and 9, respectively), owing to the presence of higher
partial wave dimers.

III. RESULTS

Figure 1 shows the energies of the lowest three Efi-
mov states, E3b, for values of a near the three poles con-
sidered (λ∗

1, λ∗
2 and λ∗

3), offering a global view of the
degree of the universality of our results. Near λ∗

1, Efi-
mov states (black filled circles) are true bound states
while near λ∗

2 and λ∗
3 (red and green open circles, re-

spectively) Efimov states are resonant states whose (pre-
sumably nonuniversal) widths have been calculated using
the Ref. [32] procedure, indicated in Fig. 1 as the error
bars. The atom-dimer threshold, defined by the dimer

energy, E2b = −~
2/ma2 (a ≫ rvdW), is also shown (solid

line). In Fig. 1 the ground Efimov state does not “cross”
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FIG. 1: Energy of Efimov states calculated near the first three
poles of a, λ = λ∗

1, λ∗
2 and λ∗

3, in our model potential in
Eq. (2). Near λ∗

1, Efimov states (black filled circles) are true
bound states while near the λ∗

2 and λ∗
3 (red and green open

circles, respectively) Efimov states are resonant states with
the corresponding widths indicated as the error bars. Ap-
proximated values for a−, a∗, and a+ are also indicated.

or intersect the atom-dimer threshold, as expected from
the variational principle in Refs. [27, 28], which state
that E3b < 3E2b . In principle, this variational con-
straint applies only to bound states, i.e., only for Efimov
states near λ∗

1, however, our calculations for the energies
of Efimov resonances near λ∗

2 and λ∗
3 also follow the same

non-crossing rule. Evidently, this effect strongly modifies
the expected universality predicted by zero-range models
since it prevents an atom-dimer resonance and can also
modify the minima in recombination associated with the
ground Efimov state. Table I summarizes our computed
values of the three-body parameters —see also Fig. 1 for
their approximate location. [The values for a− were pre-
viously determined in Ref. [15] (and in unpublished work
from that study).] The additional index on the a−, a+,
and a∗ parameters indicates their Efimov family parent-
age. The physics involved and caveats on the determina-
tion of these three-body parameters are given below.

Closer inspection of Fig. 1 reveals that the first excited
Efimov state also fails to intersect with the dimer thresh-
old. This is clearly shown in Fig. 2 for the binding energy
of the Efimov states, Eb = E2b − E3b. Near λ∗

1 (black
filled circles) the non-crossing of the first excited state
is evident within the shaded region in Fig. 2. Near λ∗

2

(red open circles), the qualitative behavior is the same,
however: As the energy of the Efimov state approaches
the threshold its width increases to the point in which it
exceeds the value of its binding energy —therefore, los-
ing some its “bound” state character— and eventually
“dissolving” into the atom-dimer continuum (see shaded
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TABLE I: Values for the three-body parameters a−, a∗ and a+

for the lowest two Efimov scattering features in recombination
and atom-dimer collisions, near the lowest three poles in the
scattering length. For a+,1 we also show its dependence on
the temperature by 〈K3〉 (see text) at values of kBT/EvdW

(indicated in square brackets) listed in the last three columns
below. In the bottom part of the table we list the universal
ratios θαβ

ij [see Eq. (3)] resulting from the average value of the
three-body parameters (see text for the comparison with the
zero-range results).

a−,i/rvdW a∗,i/rvdW a+,i/rvdW 〈a+,1〉/rvdW
Pole (i = 0, 1) (i = 1, 2) (i = 0, 1) [10-4] [3× 10-4] [10-3]

λ∗
1 -9.60, -161 3.41, 157 1.41, 27.2 28.0 29.1 32.1

λ∗
2 -9.74, -164 3.26, 160 1.41, 27.9 28.7 30.7 34.8

λ∗
3 -9.96, — 3.33, 160 1.41, 28.0 — — —

Avg. -9.77, -163 3.33, 159 1.41, 27.7 28.4 29.9 33.5

(i, j) (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)

θ+−
ij 0.143 0.195 0.125 0.170 — —

θ∗−ij — — 0.015 0.020 0.032 0.043

θ∗+ij — — 0.105 0.120 0.220 0.253

region in Fig. 2). Passing this point, as a decreases fur-
ther, the state recovers its bound character. Our physi-
cal interpretation of the non-crossing of the first excited
Efimov state [33] is that it results from the existence
of strong d-wave interactions near a/rvdW = 1 [29, 30].
Within our theoretical model, since s- and d-wave in-
teractions can not be separated, a more clear physical
picture of the non-crossing of the first excited Efimov
state still remains, leaving even the possibility of that
being a generalization of the same variational principle
[27, 28] which prevents the ground state to unbind. Fig-
ure 2 shows that only the second excited Efimov state
displays the expected intersection with the atom-dimer
threshold.

Evidently, the effects analyzed above have an impor-
tant impact on the determination of the three-body pa-
rameter a∗. This is achieved here by directly calculating
the corresponding atom-dimer scattering properties. Of
particular importance for ultracold experiments is the
atom-dimer scattering length aad and the atom-dimer
loss rate β [34]. Figure 3 shows our calculated values for
these quantities. In Fig. 3 (a), around the shaded region
(corresponding to the same shaded region in Fig. 2) aad
is enhanced, however, remaining always positive and con-
sistent with the failure of the first excited Efimov state in
Fig. 2 to become unbound. (Note that in this regime aad
for λ∗

2 and λ∗
3 displays a more complicated dependence on

a due to the presence of strong couplings to nearby three-
body channels.) For larger a, aad is now enhanced and
changes sign, implying that the second excited Efimov
state intersects with the dimer energy (see Fig. 2). Note
that here, aad for λ∗

2 and λ∗
3 does not actually diverge due

to the presence of inelastic processes [35]. Figure 3(b)
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FIG. 2: (a) Binding energies, Eb = E2b−E3b, of Efimov states
near λ∗

1 and λ∗
2 (black filled and red open circles, respectively)

showing that both ground and first excited Efimov states fail
to merge into the atom-dimer threshold (see text). In (b) and
(c) we show a blow up of (a) near the second and first excited
Efimov states, respectively.
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FIG. 3: (a) The atom-dimer scattering length, aad, and (b)
corresponding loss rate, β, displaying resonant behavior due
to Efimov resonances associated with the first and second ex-
cited Efimov states. The values of the three-body parameters
a∗,1 and a∗,2 are indicated in the figure. The dashed curve
gives the analytical zero range results from Ref. [23].
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shows the corresponding atom-dimer loss rates, which
display the resonant behavior associated with the first
and second excited Efimov states. Even though the first
excited Efimov state does not become unbound, it ap-
proaches the atom-dimer threshold close enough to pro-
duce a clear enhancement in the atom-dimer loss rate.
We define a∗,1 and a∗,2 as the value of a where β is max-
imum [see Fig. 3 (b)], except for our calculations near the
first pole, where no losses occur (β = 0). In this case a∗,1
and a∗,2 were determined from the maximum value of aad
[see Fig. 3(a)]. Numerical values are listed in Table I. In
order to contrast our numerical results with the universal
predictions (based on two-body contact interaction mod-
els), we also display in Fig. 3 (dashed lines) the expected
behavior for aad and β from Ref. [23]. For the zero-range,
universal, model of Ref. [23] we used the averaged value
for a∗,2 from Table I as the three-body parameter, and set
the inelasticity parameter η = 0 in Fig. 3(a) and η = 0.03
for Fig. 3(b), in order to better fit the data for λ∗

3. Al-
though the agreement is very good for large a, near a∗,1
not only finite range corrections become more important
but also the fact that the first excited Efimov state fails
to intersect with the atom-dimer threshold, imply strong
deviations between universal zero-range theory and our
results.

 1  10  100

 10  20  30  40  50

FIG. 4: Three-body recombination, K3, displaying interfer-
ence minima associated with the ground and first excited Efi-
mov states. Values of the three-body parameters a+,0 and
a+,1 are indicated in the figure. The dashed curve gives the
analytical zero range result in the absence of deeply bound
dimers [2, 38]. Inset: Thermally averaged recombination rate,
〈K3〉, illustrating the temperature dependence of 〈a+,1〉.

Finally, we have also calculated the three-body recom-
bination rate, K3, in the lowest three-body angular mo-
mentum (J = 0) [36, 37] to determine the values of the
three-body parameter a+. Figure 4 shows our results for
K3 in the zero-energy limit (E = 10−6EvdW) clearly dis-
playing two minima, whose locations are identified as the
values for a+,0 and a+,1 listed in Table I. Our numerical

results obtained near λ∗
1 are compared with the analyti-

cal results in the absence of deeply bound dimers [2, 38]
(dashed line). For large a our results agree well with the
analytical ones while strong deviations can be observed
for small a. In particular, one can see that the predicted
minimum in recombination near a/rvdW = 1 is strongly
affected by finite-range effects. We trace such effects to
the presence of strong d-wave interactions [33]. In fact,
near a/rvdW = 1 our results display an enhancement due
to a universal three-body resonance with strong d-wave
character [30]. Therefore, our result for a+,0 is a bal-
ance between universal s- and d-wave physics [33]. The
inset of Fig. 4 shows the temperature dependence of K3

obtained by calculating the thermally averaged recombi-
nation rate 〈K3〉 [37], which illustrates the temperature
dependence of 〈a+,1〉 in the regime relevant for experi-
ments —see also the values listed in Table I. In princi-
ple, at finite temperatures one would also need to include
higher partial-waves contributions to recombination. For
identical bosons, however, the next leading contribution
is for J = 2 and scale with the temperature and scatter-
ing length as T 2a8 [37]. In that case, for the temperatures
we explore in Fig. 4 and values for 〈a+,1〉 listed Table I,
such effects are likely to be small, except perhaps for our
largest temperature, where ka+,1 ≈ 0.88 (see also the
analysis in Ref. [37]).
Our results for the three-body parameters —

summarized in Table I— clearly show universal behavior
(with deviations between themselves within a few per-
cent) and should be applied for atomic species with iso-
lated broad Feshbach resonances. We also used our re-
sults in Table I to determine other universal properties
—for instance, the ratios a+/a−, a∗/a−, and a∗/a+—
and compare with those resulting from zero-range mod-
els [2, 39]. For that we define the ratio between different
three-body parameters as

aα,i/aβ,j = θαβij (eπ/s0)i−j , (3)

where α and β can assume the values “−”, “+” and “∗”,
while i and j run over the index labeling the Efimov state.
Within the zero-range model θ is a universal number and
does not depend on i and j: θ+−

ij ≈ 0.210; θ∗−ij ≈ 0.047;

θ∗+ij ≈ 0.224 [2, 39]. Comparing those with the ones

shown in the bottom part of Table I (calculated using the
averaged values for a−, a+ and a∗) we have found sub-
stantial deviations, most likely due to finite-range effects
and the absence of d-wave interactions in the zero-range
model. Moreover, the values for the geometric scaling
factors obtained from our calculations, a−,1/a−,0 ≈ 16.7,
a+,1/a+,0 ≈ 19.7, and a∗,2/a∗,1 ≈ 47.8, also display

strong deviations from the universal value eπ/s0 ≈ 22.69.
We note that the results for the geometric scaling factor
for a− obtained in Refs. [18, 40] are consistent to ours
but the corresponding results for a∗ from [18] are not.
A comparison with results originated from models which
include finite-range corrections [18, 40–44] needs to be
made carefully to ensure that the interaction parameters
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are the same. This, however, is beyond the scope of the
present study. A more direct comparison, however, can
be made with the work in Ref. [45], where a model similar
to ours, however, considering only s-wave interactions, is
used. The calculations of Ref. [45] involve a separable
approximation of a hard-core-type van der Waals poten-
tial as two-body interaction potential. The comparison
between our results and the ones from Ref. [45] thus pro-
vides a sense of how important d-wave interactions might
be. In Table II we list our average results, marked by LJ,
(see Table I) and the corresponding average results from
Ref. [45], marked by LJs. In Table II we also list the

value of κ0 = (mE
(0)
3b /~2)1/2 obtained from our calcula-

tions for λ∗
1 and the corresponding averaged result from

Ref. [45]. The agreement is generally good for all cases
(the relative differences are indicated in Table II between
square brackets), with the exception for the value of a∗,1,
most likely because the non-crossing of the first excited
Efimov state is absent in the model of Ref. [45], clearly
indicating a strong effect due to d-wave interactions. We
note, however, that the agreement for the geometric fac-
tors a−,1/a−,0 and a+,1/a+,0 are generally better than
the absolute values of the three-body parameters. This
indicates that the effect of the d-wave interactions in such
parameters is mainly to introduce a shift:

ax → axe
−φd/s0 , (4)

or, equivalently, a change in the three-body phase:
s0 ln(a/ax) → s0 ln(a/ax)+φd. Indeed, forcing our value
of a+,0 to reproduce the one from Ref. [45], we obtain
φd ≈ −0.146 and the resulting rescaled three-body pa-
rameters, marked by LJ∗ in Table II now agree much
better, evidently, with the exception of a∗,1. The above
rescaling process, therefore, can be seen as an attempt
to subtract-off d-wave effects from our calculations, al-
though a more rigorous study that can provide a more
quantitative analysis of such effects still needs to be per-
formed.

TABLE II: Comparison between the average results for the
three-body parameters in Table I, marked here by LJ, and the
corresponding average results from Ref. [45], marked by LJs.

The Table also lists the value of κ0 = (mE
(0)
3b /~2)1/2 obtained

from our calculations for λ∗
1 and the corresponding averaged

result from Ref. [45]. The corresponding relative differences
between the LJ-LJs and LJ-LJ∗ models are indicated between
square brackets.

a−,i a−,1/a−,0 κ0 a+,i a+,1/a+,0 a∗,1

(i = 0, 1) (i = 0, 1)

LJ -9.77,-163 16.7 0.230 1.41,27.7 19.7 3.33

LJs -10.7,-187 17.5 0.193 1.63,33.5 20.6 5.49

[0.10,0.15] [0.05] [0.16] [0.16,0.21] [0.05] [0.65]

LJ∗ -11.3,-188 16.7 0.199 1.63,32.0 19.7 3.85

[0.05,0.01] [0.05] [0.03] [0.00,0.05] [0.05] [0.43]

TABLE III: Experimental values for the three-body param-
eters a+ and a∗. The table displays our assignment of the
parameters by indicating the value of i for a+,i and a∗,i for
each case. We also list the values for a/ac [37] characterizing
the degree of thermal effects in the experimental data.

Atom a+/ac i a+,i/rvdW a∗/ac i a∗,i/rvdW
133Cs 0.08 0 2.1(0.1) [46] 0.13 1 4.2(0.1) [54, 55]

0.03 0 2.7(0.3)[14] 0.24 1 6.5(0.3) [55]

— 0 2.5(0.4) [47]
7Li 0.02 0 2.7(0.1)[48, 49] 0.09 1 13.0(0.6) [48, 49]†

0.29 1 44(3) [48, 49] 0.04 1 5.5 [56]

0.32 1 35(4) [50, 51] 0.05 1 6.0(0.1) [56]†

0.34 1 39(2) [51, 52]
39K 0.03 0 3.5(0.1) [53] 0.01 0 0.5(0.2) [53]†

0.76 1 88(14) [53] 0.12 1 14.4(0.6) [53]†

6Li 0.01 1 2.9 [57]

We now analyze the currently available experimental
data for a+ and a∗ listed (and assigned) in Table III.
As one can see from Table III, the values listed for a+,0

and a+,1 are qualitatively consistent among themselves,
with the exception of the data for 39K [53] —a new analy-
sis presented in Ref. [58] suggests that this data might be
subject of a new calibration. Although the values for a+,1

in Table III are likely to suffer from thermal effects (the
condition |a| ≪ ac = ~/

√
mkBT [37] ensuring the ab-

sence of thermal effects is not strictly satisfied), our finite
temperature calculations covering the range of tempera-
tures relevant for the experiments (see Table I) indicate
that thermal effects might lead to no more than a 10%
variation from the zero temperature result. We also note
that for 7Li and 39K the resonances are substantially less
broad than the ones for 133Cs (see Ref. [13]), thus open-
ing up the possibility of finite-width effects as responsi-
ble for the deviations among the experimental data in
Table III. In comparison to the values for a+, the re-
sults for a∗,1 listed in Table III display a much stronger
deviation among themselves. A more careful analysis,
therefore, is necessary in order to understand some of
the possible factors affecting such observations. For in-
stance, the value for a∗,1 for 133Cs from Ref. [55], as well
as the results for 7Li from Ref. [56], were obtained using
a Feshbach resonance that is not well separated from an-
other nearby resonance, possibly affecting the observed
value for a∗,1. Most of the results marked in Table III by
“†” present the largest variations compared with the total
averaged result for a∗,1 (≈ 6.63rvdW). They were, how-
ever, obtained based on the assumption that atom-dimer
resonances can be observed in atomic samples by means
of an avalanche mechanism [53]. Although modifications
on the description of such mechanism can lead to more
reasonable results [56, 59], this hypothesis is currently
considered questionable [55, 60, 61].
Therefore, accordingly to our analysis above, in order

to properly compare the experimental data to theoretical
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predictions, we excluded the data from 39K [53] and those
marked by “†” in Table III. From the remaining exper-
imental data, we determine an average value and corre-
sponding average error as listed in Table IV (the average
errors are indicated in parentesis). Using the zero-range
(ZR) universal relations derived in Refs. [2, 39] [Eq. (3)]
we determined the values for a+,0, a+,1 and a∗,1, using
the average value for a−,0 in Table I, and list these in
Table IV, along with our corresponding averaged results
(LJ) from Table I. As one can see, the zero-range re-
sults for a+,0 and a+,1 perform better than our results
when compared to the experimental data, while our re-
sult for a∗,1 outperforms the zero-range result. In fact,
within the zero-range model the atom-dimer resonance
associated to a∗,1 originates from an actual crossing be-
tween the first excited Efimov state while in our model it
does not (see Fig. 2 and corresponding discussion in the
text). We note, however, that our result for a+,1/a+,0

better reproduces the value from the experimental data.
This indicates that a shift on the position of the three-
body parameters for a > 0, in the same spirit than the
one obtained from Eq. (4), can improve the comparisons
of the individual three-body parameters while keeping
their ratios unchanged. In fact, as shown in Table IV,
using the results for LJ∗ listed in Table II —obtained
via the rescaling in Eq. (4) in order to subtract off d-
wave interactions— an overall improved comparison to
the experimental data can be observed (see Table IV).
Although there is no clear reason why such scaling should
be allowed, the above analysis clearly indicates that our
numerical results might generate different finite-range ef-
fects from the ones in the experimental systems, whether
originated from the strong s- and d-wave mixing in our
theoretical model or from the finite-width character pro-
duced by real interatomic interactions.

TABLE IV: Comparison between the values for the three-
body parameters from different theories and the average ex-
perimental data, marked by Exp (see text), with average er-
rors indicated in parentesis. The zero-range (ZR) results were
obtained from the universal relations derived in Refs. [2, 39]
[Eq. (3)] using the average value for a−,0 in Table I while
our average results (LJ and LJ∗) are those from Table II.
The corresponding relative differences between the different
theoretical models and the averaged experimental data are
indicated between square brackets.

a+,0/rvdW a+,1/rvdW a+,1/a+,0 a∗,1/rvdW

Exp 2.50(0.10) 39.3(0.12) 15.7(0.22) 4.78(0.20)

ZR 2.05[0.22] 46.5[0.16] 22.7[0.31] 10.4[0.54]

LJ 1.41[0.77] 27.7[0.42] 19.7[0.20] 3.33[0.43]

LJ∗ 1.63[0.53] 32.0[0.23] 19.7[0.20] 3.85[0.24]

Evidently, there is much to be understood on the ef-
fects that realistic interactions can impose in the deter-
mination of the three-body parameters. In more realis-
tic systems the short-range multichannel nature of the
interactions can produce, for instance, a different mix-

ing of s- and d-wave components than the single channel
model does. One can expect d-wave interactions to be
more important when the system possesses a small back-
ground scattering length, i.e., of the order of rvdW, since
in this case the entrance channel physics, obeying the
universality of the van der Waals interactions [29], can
include a weakly bound d-wave state. Finite-width ef-
fects can lead to values of the effective range different
than the one produced in our model, also determined by
the universal van der Waals physics [62]. Such effects,
although not entirely understood yet, can also lead to
substantial deviations of the three-body parameters [18].
In fact, the model developed in Ref. [63], which incorpo-
rates some of the multichannel physics of the problem,
shows a much better agreement between theory and ex-
periment [55], including for the a < 0 geometric scaling
a−,1/a−,0 ≈ 21.0 from Ref. [64], indicating that both s-
and d-wave mixing and finite-width effects might be at
the heart of deviations of the three-body parameters for
a > 0 here obtained, as well as the deviations among the
currently available experimental data (Table III). A fun-
damental difference between the physics for a < 0 (where
a more robust universal picture was found [15–21] —see
Refs. [3, 47] for a summary of such experimental find-
ings) and for a > 0 is that corrections for the energy of
the weakly bound s-wave dimer, whether originated from
mixing of s- and d-wave interactions or finite-width ef-
fects, should already lead to modifications on the a > 0
three-body parameters. For a+, the atom-dimer chan-
nel controls the interference effects in recombination via
the exit channel while it represents the initial collision
channel responsible for the resonant effects determining
a∗. In fact, under this perspective, a simple criteria can
be established to determine whether s- and d-wave mix-
ing and finite-width effects are important: if the degree
of deviation between the binding energy obtained from
multichannel interactions and the one obtained from sin-
gle channel models are substantially different, such effects
are likely to be important.

IV. SUMMARY

In conclusion, our present study establishes the uni-
versal values for the three-body parameters a∗ and a+,
both relevant for ultracold quantum gases with positive
scattering lengths. One of the most interesting results
that has emerged from this study is the fact that the
first excited Efimov resonance fails to intersect the dimer
threshold, which is a surprising difference from the zero-
range universal theories that always predict such an in-
tersection. Our interpretation, that this failure of the
resonance to intersect the threshold derives from impor-
tant d-wave interactions, is consistent with findings from
another recent study of this a > 0 region [65] which uses
a nonlocal potential model having no d-wave physics, and
which does show such an intersection. The robustness of
the present prediction thus hinges critically on whether
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the d-wave two-body physics is tightly constrained in the
way predicted by van der Waals physics in single channel
potential models [29, 30]. Whether it is reasonable to ex-
pect that in the case of broad two-body Fano-Feshbach
resonances, this linkage of two-body s-wave and d-wave
resonance positions is satisfied, remains an open ques-
tion deserving further investigation. However, especially
in the case of narrow two-body resonances, s-wave and
d-wave resonances are likely to be largely uncorrelated
which presumably invalidates the present predictions in
the vicinity of a/rvdW ≈ 1. Nevertheless, the qualitative
agreement between our results and the currently avail-
able experimental data partially confirms the notion of
universality of Efimov physics for ultracold atoms. How-
ever, more experimental data and more sophisticated the-

oretical models incorporating the multichannel nature of
the atomic interactions might be necessary in order to
quantitatively address present discrepancies.
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