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This paper investigates the Fano-Feshbach resonance with a two-channel coupled-square-well
model in both the frequency and time domains. This systems is shown to exhibit Fano lineshape
profiles in the energy absorption spectrum. The associated time-dependent transition moment re-
sponse has a phase shift that has recently been understood to be related to the Fano lineshape
asymmetric q parameter by ϕ = 2arg(q − i). The present study demonstrates that the phase-q
correspondence is general for any Fano resonance in the weak coupling regime, independent of the
transition mechanism.
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I. INTRODUCTION

Understanding time-dependent quantum dynamics has
emerged as one of the fundamental problems in physics
[1]. In recent years, with the development of new tech-
nologies, especially with ultrashort light sources and ul-
trafast optical techniques, it has become possible to ex-
perimentally probe the real time electron dynamics in the
quantum regime [2–9], e.g., time-domain measurements
of the autoionization dynamics using attosecond pulses
[10–12], creation and control of time-dependent electron
wave packet [13, 14]. Studying time domain resonance
physics has been attracting increasing interests in atomic
and molecular physics [15–20].
A recent study [21] has both theoretically established

and experimentally verified a general correspondence be-
tween the photon absorption lineshape in the frequency
domain, which is characterized by a Fano lineshape asym-
metry parameter q [22], and the phase shift ϕ of its time-
dependent dipole response:

ϕ = 2 arg(q − i). (1)

In a further development, it was shown that by coupling
the system with a short pulsed laser immediately after
the excitation, the phase ϕ of its dipole response can be
externally controlled. In this way, the q-parameter of
the system’s subsequent absorption spectrum can be ef-
fectively modified. In the frequency domain, the Fano
q parameter provides a sensitive test of atomic struc-
ture calculations under field-free conditions [23, 24]. The
phase-q relation thus provides a possible way to control
aspects of the time-dependent quantum dynamics.
The above infrared laser pulse control mechanism of

the phase shift ϕ was explained by both a quasi-classical,
ponderomotive-motion picture [21] and in terms of res-
onant coupling dynamics [25]. However, the universal
phase-q correspondence Eq.(1) was only demonstrated
as a general macroscopic property of a dielectric system,
though it has already been faithfully applied to scenarios
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far beyond the area of atomic physics, e.g., condensed
matter systems [26, 27], plasma systems[28, 29], high en-
ergy processes [30], or optomechanics systems [31]. Thus,
it would be more interesting to have a unified treatment
of this phase-q relation for any Fano resonance.

In the present work, with all these questions in mind,
we focus on an analytically solvable two-channel square
well model and study its resonance physics in both the
frequency and time domains. As an extension of a text-
book single-channel square-well scattering problem, the
coupled-channels model captures much of the physics of
near-threshold bound and scattering states [32]. This
model has been used to successfully explain the threshold
scattering of cold neutrons from atomic nuclei [33] and
to represent Feshbach resonances in ultracold atom scat-
tering processes [34–36]. Investigation of the Fano-phase
correspondence with such a model would then general-
ize the previous result in the dielectric atomic systems
to a more general class of scenarios, and thus extend its
potential applications.

This paper is organized as following. Section II in-
troduces the two-channel coupled-square-well model. By
adding an auxiliary ground state belonging to a third
channel, we study the energy absorption spectrum when
the system is excited from the ground state to the cou-
pled two channels. A standard Fano lineshape is observed
for the excitation cross section, with the asymmetry q
parameter linearly depending on the transition moment
ratio d2/d1, consistent with Fano’s configuration interac-
tion theory [22]. In section III, the transition moment
response in the time domain is studied. The phase-q
correspondence Eq. (1) is revealed numerically in the
present model problem. A general proof of this relation
for any transition mechanism is also presented. Finally,
Sec. IV summarizes our conclusions. Derivation of the
eigen solutions and discussions of the scattering proper-
ties of the two-channel square-well model are given in the
Appendix.



2

II. COUPLED SQUARE WELL MODEL

The two-channel square well model in the present
study describes two particles with reduced mass m in-
teracting in three dimensions with the following s-wave
Hamiltonian in the relative coordinate r:

Ĥ = −
h̄2

2m
Î
d2

dr2
+ V̂ (r) + Êth. (2)

Here the potential coupling matrix is assumed to vanish
at r > r0, but it is a constant 2× 2 matrix at r < r0:

V̂ (r) =

[

−V1 V12
V12 −V2

]

θ(r − r0). (3)

We are most interested in the case for which the diagonal
elements are attractive, which is why a negative sign has
been separated out from this equation at the outset, given
that V1 and V2 are positive. The matrix Êth containing
the real energy thresholds is diagonal. We choose the
lower threshold, channel |1〉 in our notation, as defining
the zero of our total energy scale, whereby

Êth =

[

0 0
0 Eth

2

]

. (4)

This model has a single analytic solution between the two
energy thresholds, which contains both an exponentially
decaying solution in the closed channel |1〉 and a scatter-
ing solution in the open channel |2〉. In matrix form the

channel bases read |1〉 =

[

1
0

]

and |2〉 =

[

0
1

]

. The radial

parts of the energy eigenfunctions are linear combina-
tions of the two channels’ configuration basis functions:
|ǫ〉 = φ1(r; ǫ)|1〉 + φ2(r; ǫ)|2〉, the derivation of which is
presented in the Appendix.
For appropriate potential parameters, there exist one

or more bound states below the lower energy threshold.
Up to this point, external field excited transition from
these bound states can then be investigated. However,
in order to simplify the model without losing the key
features of the problem, while making it extendable to
problems involving more than two channels, we model the
ground state with an auxiliary channel |0〉 independent
with channel |1〉 and |2〉. This might correspond to an
independent degree of freedom in realistic systems, such
as hyperfine spin state in a cold atom pair.
Suppose the system is initially prepared in the s-wave

ground state |g〉 = f(r)|0〉, where f(r) is the normalized
radial part of the ground state wave function in the co-
ordinate representation. In this paper, we consider the
ground state to be strongly localized, and for definiteness
we take f(r) = 2e−2r. At t = 0, a strong δ pulse couples
the auxiliary channel |0〉 to the two channels, and then
consequently excites the system to channel |1〉 and |2〉.
The short pulse in modeled by a delta interaction,

Ĥδ = γδ(t)d̂+ h.c., (5)

FIG. 1. Resonance profiles at various transition moments are
shown as cross sections versus the energy. The solid blue
lines are the numerically calculated excitation cross sections.
Dashed red lines are standard Fano lineshapes (Eq.(9)) with
a background cross section σ0=1.9E-4, resonance position
ǫr=1.65 a.u. and resonance width Γ = 1.7E−2. Model poten-
tial parameters are fixed at V1 = 75, V2 = 10, V12 = 10, Eth

2 =
2, r0 = 3. The transition moment parameter d1 is fixed to be
1. The corresponding Fano lineshape parameters and values
of d2 are a) d2 = −0.137, q = 0; b) d2 = −0.130, q = 1; c)
d2 = −0.144, q = −1 and d) d2 = 0.600, q = 100.

where γ is a dimensionless interaction strength param-

eter. d̂ = d1|1〉〈0| + d2|2〉〈0| is the transition moment.
Parameters d1 and d2 control the transition strengths
into the corresponding channels.

The wavefunction immediately after the excitation
pulse is given by

|ψ(t = 0)〉 = e
−i

∫ 0+

0
−

dtĤδt |g〉

= e−iγd̂ |g〉.
(6)

In the perturbative limit, where γ ≪ 1, the evolution
operator is expanded to the first order of γ:

|ψ(t = 0)〉 ≈ |g〉 − iγd̂ |g〉

= |g〉 − iγ

∫

dǫ 〈ǫ|d̂|g〉|ǫ〉,
(7)

where |ǫ〉 denotes the energy eigenstates. The excitation
cross section can then be calculated as

σ(ǫ) = |〈ψ|ǫ〉|2

= γ2|〈ǫ|d̂|g〉|2.
(8)

According to Fano’s configuration interaction theory,
in the energy range between the two threshold energies,
where the bound states in the first channel are coupled
to the continuum of the second channel, the resonance
profile at each resonance point is predicted to have a
simple form:

σFano(ǫ) = σ0
(q + ǭ)2

1 + ǭ2
, (9)
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where ǭ = ǫ−ǫr
Γ/2 . With the assumption of a flat-

background near resonance and constant coupling poten-
tial V , the q parameter is defined by

q ≡
〈α|d̂|g〉

πV 〈βE |d̂|g〉
, (10)

where |α〉 and |βE〉 are respectively the bare closed-
channel bound state and the unperturbed open-channel
energy-normalized continuum eigenstate. In the present
model problem, for fixed system potential parameters, it
can be further deduced that

q ∝
d2
d1
. (11)

In our numerical study, we tune the potential parame-
ters such that there is exactly one bound state in the
first channel, and such that the background cross section
is relatively flat near the position of the resonance. In
Fig. (1) the cross sections for different transition prob-
abilities are plotted. The Fano and Lorentz line profiles
can both be realized by tuning the ratio between d2 and
d1. Fig. (2) shows the numerically fitted q parameters at
various values of d2/d1, which matches the linear relation
as predicted by Eq. (11).

III. TRANSITION MOMENT RESPONSE

With the aid of the time dependent wavefunction,

|ψ(t)〉 = e−iǫgt|g〉 − iγ

∫ ∞

−∞

dǫ e−iǫt〈ǫ|d̂|g〉|ǫ〉θ(t), (12)

where θ(t) is the Heaviside step function, the transition
moment response can be calculated as the quantum av-
erage of the transition operator:

d(t) = 〈ψ(t)|d̂|ψ(t)〉

= 2Re[iγ

∫ ∞

−∞

dǫ 〈g|d̂†|ǫ〉〈ǫ|d̂|g〉ei(ǫ−ǫg)tθ(t)]

=
2

γ
Im [

∫ ∞

−∞

dǫ σ(ǫ)e−i(ǫ−ǫg)tθ(t)],

(13)

where Re and Im denote the real part and imaginary
part, respectively. In the case of a Fano resonance with
cross section Eq.(9), the above shifted Fourier transform
can be evaluated directly:

∫ ∞

−∞

dǫ σFano(ǫ)e
−i(ǫ−ǫg)tθ(t) = 2πσ0δ(t)

+πσ0(Γ/2)e
−Γ

2
te−i(ǫr−ǫg)t(q − i)2θ(t),

(14)

giving the transition strength a delta function response,
which comes from the non-zero background cross section
σ0, followed by a decaying single mode oscillation. A
standard Fourier transform of Fano resonance cross sec-
tion similar to Eq. (14) has been used in Ref. [37] to

FIG. 2. q versus d2/d1. Dots are numerically fitted q parame-
ters, which exhibit a linear dependence on d2/d1, as expected
from Eq. (11)

discuss the structure of Fano resonance in the time do-
main in the study of laser-assisted autoionization. The
complex factor (q− i)2 can be cast into exponential rep-
resentation, (q − i)2 = (q2 + 1)exp[iφ(q)], where φ(q) =
2 arg(q − i) induces a phase shift.
We note the following remarks: 1) The above deriva-

tion involves only the physically measurable real quan-
tities d(t) and σ(ǫ), and is general for any transition in-
teraction and model Hamiltonian, as long as wavefunc-
tion Eq.(12) is valid in the perturbative limit. This gen-
eralizes the application of the phase-q correspondence
Eq.(1), which was originally developed in Ref. [21]
for macroscopic dielectric systems; in that study, the
complex dipole in the energy domain d̃(ǫ) and relation

σ(ǫ) ∝ Im[d̃(ǫ)] [38] were used as the starting point. 2)
The frequency of the transition moment response is of
course the transition energy between the ground state
and the resonance energy (neglecting the small resonance
level shift due to discrete-continuum level mixing), in
agreement with Ref.[21] including the phase shift and q
parameter relationship. In the following numerical study
of the phase shift, we always ignore the ground state en-
ergy, i.e., setting ǫg = 0 [39].
The physically measurable response function Eq.(14) is

understood to be exact when the integral is ranging over
the whole range of the energy spectrum, in which case
the transition moment response would be a complicated
superposition of different frequencies modes. When one
is interested in observing the effect of an isolated res-
onance at position ǫr, namely, the particular frequency
mode (ǫr− ǫg)/2π of the response, the integral can be re-
stricted to a finite range of a few resonance widths near
the resonance energy, e.g., [ǫr −∆E, ǫr +∆E]. However,
in this manner the transition moment response would be
dependent on the choice of ∆E - the integral in Eq.(14)
does not converge with ∆E because of the non-zero back-
ground cross section. To eliminate this dependence with-
out changing the critical phase information, in the follow-
ing numerical study we compute the response function
using the shifted cross section σ(ǫ) − σ0. In Fig. 3, the
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FIG. 3. Time-dependent transition moment response for dif-
ferent q-parameters. The model potential parameters are cho-
sen as in Fig. 1. The solid blue line, dotted red line and
dashed green line correspond to q = 0, 1, 2 respectively.

FIG. 4. Phase shift versus q parameters. Dots are values
read out from the explicit numerical calculation of the time
dependent transition moments. The solid line is the q-phase
relation of Eq. (1).

time-dependent transition moment responses for different
Fano q-parameters are plotted [40]. The phase shifts are
read out and compared with the phase-q correspondence
Eq. (1) in Fig. (4).
The above analysis shows the decay of response func-

tion and the change of line shapes corresponding to differ-
ent transition parameters, i.e., tuning of the internal sys-
tem parameter. On the other hand, it is more interesting
to show that for a system with fixed internal parameters,
the resonance profiles can be controlled through external
field. Similar to the treatment in Ref. [21], we introduce
a subsequent control pulse, applied to the system imme-
diately after the first excitation pulse, modeled by the
following interaction:

Ĥ2 = βeiφδ(t)D̂, (15)

where D̂ = D1|1〉〈1|+D2|2〉〈2| is the transition operator
of the two channels. The frequency of the second pulse

is assumed to be far from resonance such that excitation
of the ground state channel by the control pulse would
not take place. In the region that the control pulse is
much shorter than the lifetime of the system, we treat
the pulse as a δ function, with two free parameters left to
be tuned: the strength β characterizing the overall effect
of the intensity and duration of the pulse, and the phase
shift φ, characterizing the phase offset between the initial
time of the system evolution and the control pulse when
interaction is turned on. To see the effect of the second
pulse, we apply the evolution operator to the initial state
(6):

|ψ′(t = 0)〉 = e−iβeiφD̂|ψ(t = 0)〉

≈ (1 − iβeiφD̂)(1− iγd̂)|g〉

= |g〉 − iγ(d̂− iβeiφD̂d̂)|g〉,

(16)

which, compared with state (6), has an overall effect of

modifying the original transition operator d̂. For appro-
priate tuned phase shift, e.g., φ = ±π/2, the effective
transition moment becomes

d̂→ d1(1± βd1D1)|1〉〈0|+ d2(1± βd2D2)|2〉〈0|, (17)

or

d1
d2

→
d1
d2

(1 + β(d1D1 ∓ d2D2)). (18)

Combined with the fact that the Fano line shape pa-
rameter is proportional to the ratio between d2 to d1, it
is concluded that the control pulse will lead to an effec-
tive change of q-parameter, namely, a modification of the
Fano line shape.

IV. CONCLUSION

To summarize, we have investigated the Fano res-
onance with an analytic solvable coupled-square-well
model in both frequency and time domain. The Fano
asymmetric parameter q and the phase shift φ of the
time dependent transition moment response were shown
to have a simple relation ψ = 2 arg(q− i), which general-
izes the result originally discovered in Ref.[21] for electric
dipoles. This relation was proven to be valid for any tran-
sition mechanism, as long as an isolated Fano resonance
is present in the perturbative limit.
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Appendix A: Solution of the model

We present here the derivation of the solution of the en-
ergy eigenfunctions and discuss the scattering behavior
of the coupled two square well model. The time inde-
pendent Schrodinger equation of Hamiltonian (2) would
possess 4 independent solutions in general, but when we
restrict the solutions to obey the regular physical con-
strains ψ(r = 0) = 0, only two linearly independent so-
lutions remain. Our solution strategy will be to begin
by solving for these two linearly-independent solutions
that are regular at the origin. In a second step, we will
impose long-range boundary conditions, enforcing expo-
nential delay in the closed channel, and determine the
exact S-matrix for this model so we can study its poles
in the complex energy plane. Since the coupling potential
is constant within the reaction volume, it can be diago-
nalized by an r-independent eigenvector matrix, which
reduces the solution to two uncoupled short-range eigen-
channels. First, define the matrix

Ŵ =

(

−
2m

h̄2

)

(

V̂ + Êth − εÎ
)

=

(

2m

h̄2

)(

ε+ V1 −V12
−V12 ε− Eth

2 + V2

)

,

(A1)

and indicate the constant orthogonal eigenvector ma-
trix as Xiα and the (weakly) energy-dependent diago-
nal eigenvalue matrix by wα(ε)

2. Thus we have, in ma-

trix notation, Ŵ X̂ = X̂ŵ2. Next we replace the solu-
tion matrix û(r) by X̂X̂T û(r) just before the solution
matrix û(r) in the time-independent Schrodinger equa-

tion û′′(r) + Ŵ û(r) = 0. Upon left-multiplying the

whole equation by X̂T , we obtain two uncoupled single-
channel equations in the eigenrepresentation. The diag-
onal eigensolution matrix at short range will be denoted
ŷ(r) = X̂T û(r), and the components of this solution obey
the 2nd order equation, y′′α(r) + wα

2yα(r) = 0. The reg-
ular solution at the origin is of course sin (wαr).
The next step consists of matching this solution to the

simple trigonometric solutions that apply outside the re-
action volume, at r > r0, and imposing the physically
relevant boundary conditions at r → ∞. The correct
physical solution at all distances r > r0 is of course a
scattering solution in the open channel |1〉, and an expo-
nentially decaying solution in the closed channel |2〉:

~ψphys(r) =

(

eikrS − e−ikr

Ne−qr

)

. (A2)

Here S is the desired scattering matrix at energy ε, while
N is a closed-channel amplitude, which we organize into

a column vector ~s =

(

S
N

)

. The components of this

vector will be determined by matching this form for the
outer region solution and derivative to our short range so-
lution derived above, at r = r0. Note that k2 = 2mε/h̄2,

while q2 = 2m(Eth
2 − ε)/h̄2. Neither of our two short-

range eigensolutions will in general match smoothly onto
this desired long range behavior. We must superpose the
two solutions with constant coefficients ~z = {z1, z2}

T in
order to accomplish this. This leads to a set of continuity
equations with the structure:

~ψphys(r0) = X̂ŷ(r0)~z = −~a(r0) + D̂(r0)~s (A3)

~ψphys ′(r0) = X̂ŷ′(r0)~z = −~a′(r0) + D̂′(r0)~s. (A4)

Here, for notational convenience, we have defined a vector

~a(r) =

(

e−ikr

0

)

(A5)

and a diagonal matrix

D̂(r) =

(

eikr 0
0 e−qr

)

. (A6)

The next step is to eliminate ~z = −ŷ(r0)
−1X̂T~a(r0) +

ŷ(r0)
−1X̂T D̂(r0)~s, and insert it into the derivative con-

tinuity equation, giving

X̂ŷ′(r0)[−ŷ(r0)
−1X̂T~a(r0) + ŷ(r0)

−1X̂T D̂(r0)~s]

=− ~a′(r0) + D̂′(r0)~s.
(A7)

Wigner’s real, symmetric R-matrix is now evident in this
equation, and it will simplify our algebra if we denote it
explicitly:

R̂ =X̂ŷ′(r0)ŷ(r0)
−1X̂T

=X̂

(

w1 cotw1r0 0
0 w2 cotw2r0

)

X̂T .
(A8)

The above equation now reads −R̂~a(r0) + R̂D̂(r0)~s =

−~a′(r0) + D̂′(r0)~s. Thus we obtain our solution for the
physically important quantities contained in ~s:

~s =
(

D̂′(r0)− R̂D̂(r0)
)−1 (

~a′(r0)− R̂~a(r0)
)

. (A9)

More explicitly,

(

S
N

)

=

(

(ik −R11) e
ikr0 −R12e

−qr0

−R21e
ikr0 (−q −R22) e

−qr0

)−1

(

−ik −R11

−R21

)

e−ikr0

(A10)

Now the scattering matrix S is readily evaluated, but
instead of giving that explicit formula here, we give in-
stead the formula for the poles of S. These occur at
energies for which
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(q +R22)(−ik +R11)−R2
12 = 0. (A11)

This equation could now be solved numerically to de-
termine the pole positions in the complex energy plane.
However, it will be consistent with the other approxima-
tions we have made to this point if we make a linear ex-
pansion of q about zero energy and about the magnetic
field point B0 at which a new bound state appears or
disappears. Our approximate treatment will neglect the
energy and field dependences of the R-matrix itself, and
assume that the closed channel wavenumber q depends
on energy as is evident in its definition above, and on
magnetic field through an assumed variation of the upper
threshold energy with magnetic field, i.e. Eth

2 = Eth
2 (B),

whereby we can write

q(ǫ, B) ≃ q0 + ζk2 + γ(B −B0). (A12)

Here the two real constants ζ and γ are defined by

ζ ≡
h̄2

2m
[
∂q(ǫ, B)

∂ǫ
]ǫ=0,B=B0

,

γ ≡ [
∂q(ǫ, B)

∂B
]ǫ=0,B=B0

.

(A13)

Three pole locations now emerge as the roots of a cubic
equation in k, at any chosen field value B. The fact that
the scattering length at k = 0 is infinite when B = B0

implies that q0 is fixed to have the value q0 = −(R11R22−
R2

12)/R11, which brings our final cubic equation to the
form:

ik
R2

12

ζR11
+ (R11 − ik)(

γ

ζ
B

′

+ k2) = 0. (A14)

Interestingly, there are 3 real parameters that control the
structure of these S-matrix poles in the complex energy
plane, namely R12 ,R11, and γ/ζ. Each of these can be
assigned a direct physical interpretation in this problem.
First of all, R11 can be approximately associated with the
background scattering length, i.e. Y ≡ R11 ≃ −1/Abg,
provided Abg ≫ r0, as is usually the case for the atom-
atom s-wave scattering in most alkali systems. Notice

that Z ≡ h̄2γ
2mζ is the slope of the Feshbach resonance, i.e.

the variation of the resonance energy per unit change of
the magnetic field. Finally, the parameterX ≃ R2

12/ζR11

is a measure of the coupling strength between the chan-
nels, giving

ikX + (Y − ik)(ZB
′

+ k2) = 0. (A15)

The actual scattering amplitude itself takes the follow-
ing form, in terms of the original R-matrix elements:

S = e−2ikr0
R2

12 −R11R22 − qR11 − ik(q +R22)

R2
12 −R11R22 − qR11 + ik(q +R22)

.

(A16)

In thinking about the energy dependence of this scat-
tering matrix, it should be remembered that each element
of the R-matrix is in general a meromorphic function of
the energy. However, since the scale of short-range inter-
actions is typically huge compared to the ultra-cold en-
ergy scale, it will usually be a good approximation to re-
gard each element of the R-matrix as energy-independent
in applications at sub-microkelvin temperatures. Also, a
linear expansion of q as a function of ǫ and B can be
inserted, as was discussed above.
It may be interesting to contrast this expression with

the exact single-channel result for a short-range poten-
tial. The most general S-matrix for the single channel
problem has the form:

S = e−2ikr0
R(ǫ) + ik

R(ǫ)− ik
. (A17)

Here again, the most general energy-dependence for R(ǫ)
is a meromorphic function with poles on the real energy
axis.

Appendix B: Physical scattering length

The physical scattering length of the system at zero
energy can be extracted from the low-energy behavior of
the scattering phase shift. First, however, it is useful to
define the (weakly) energy-dependent scattering length,
in terms of the exact S-wave scattering phase shift:

a(ǫ, B) ≡ −
tanδ(ǫ, B)

k
. (B1)

The zero-energy scattering length is typically used in the
context of BECs and DFGs, which is of course just the
zero energy limit of this last expression, or in terms of
the scattering amplitude derived earlier,

a(0, B) = lim
ǫ→0

(−
1

2ik
lnS(ǫ, B)). (B2)

This gives the following for the zero-energy scattering
length as a function of magnetic field:

a(0, B) ≃
R2

12 + γR11(B −B0)

−γR2
11(B −B0)

+ r0

≡ abg(1 −
∆

B −B0
).

(B3)

This expression is valid only at zero energy, and over
the range of magnetic field values for which q can be
expanded linearly in B ≈ B0. The next important cor-
rection term should be included when B ≈ B0, where the
denominator should include a linear function of energy in
order to obtain a more general and effective parameteri-
zation, i.e.

a(ǫ, B) ≃ abg(1−
∆

B −B0 + ζǫ
). (B4)

This form for the general phase shift is very accurate,
typically within approximately 1 to 10 microkelvin above
and below zero energy.
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Appendix C: Bound State Energy Level Properties

The above wavefunction used to describe low energy
atom-atom scattering still applies at negative energies,

ǫ = −h̄2κ2

2m . For definiteness, I assume that the analytic
continuation in going from positive to negative energies
is carried out by setting k → iκ, with the convention
that κ is a real, positive number in this regime. Then
the entire derivation could be repeated from the begin-
ning, of course, but a shorter route to the desired result
just begins from the above unnormalized wavefunction,
except we divide it by S(ǫ, B) . The wavefunction in the
?weakly-closed? channel is then

ψ → e−κr − eκrS−1, (C1)

which will be unphysical and diverge exponentially un-
less S−1 → 0 for some κ > 0. Referring to the above
expression for S, the condition for a bound state thus
becomes:

κ =
R2

12 − R11R22 − qR11

q +R22
. (C2)

The linear expansion can now be inserted, q ≃ q0+γ(B−
B0), i.e. neglecting the weak energy dependence of q.
When this result is combined with the fact that the point

at which the scattering length is infinite has been defined
to be B0, the bound state wavenumber is seen to be given
simply by:

κ =
−γR2

11(B −B0)

R2
12 + γR11(B −B0)

. (C3)

Since the bound state energy is ǫ = −h̄2κ2

2m (provided the
preceding expression for κ is positive), this proves that
the binding energy of a high-lying bound level always ap-
proaches 0 quadratically in the magnetic field, except in
the uninteresting limit where the channels are noninter-
acting.

Another quantity of physical interest is the probability
that the system resides in the upper (strongly-closed)
channel. In the limit of a zero-range potential r0 → 0,
and in the limit of very small binding where κ → 1/A,
this probability is given by

Probability(|2〉) ≃
(1 +AR11)

2

(1 +AR11)2 +A3q0R2
12

, (C4)

which vanishes as 1/A in the limit where the physical
scattering length diverges, i.e. when B → B0 and A →
∞.
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