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A set of simple analytic formulas is derived via electrostatics-based methods to accurately calcu-
late the values of electron affinities An and ionization potentials In for n-carbon icosahedral fullerene
molecules as a function of their average radii Rn. These formulas reproduce with accuracy the values
of An, In, and their scaling with 1/Rn that were determined previously in detailed, computation-
ally intensive density functional theory (DFT) calculations. The formula for An is derived from an
enhanced image-charge model that treats the valence region of the icosahedral system as a quasi-
spherical conductor of radius (Rn+δ), where δ=1/4W∞ is a small constant distance determined from
the work function W∞ of graphene. Using this model, though, a formula for In that includes only
electrostatics-like terms terms does not exhibit accuracy similar to the analogous formula for An. To
make it accurate, a term must be added to account for the large symmetry-induced quantum energy
gap in the valence energy levels (i.e., the HOMO-LUMO gap). An elementary two-state model based
upon a quantum rotor succeeds in producing a simple expression that evaluates the energy gap as an
explicit function of An. Adding this to the electrostatics-like formula for In gives a simple quantum
equation that yields accurate values for In and expresses them as a function of An. Further, the
simple equations for An and In yield much insight into both the physics of electron detachment in
the fullerenes and the scaling with Rn of their quantum capacitances Cn = 1/(In −An).

I. INTRODUCTION

Fullerene nanostructures [1, 2] are in many ways
archetypal carbon particles. Further, carbon particles
are at the heart of a number of important electrical en-
ergy storage innovations [3, 4], while more such innova-
tions are essential to develop and improve a wide vari-
ety of other advanced technology products. Thus, it is
important to establish a firmer foundation for our prior
analysis [5] of how fullerenes store charge and electrical
energy, how much they can store, and how that quan-
tity or capacitance varies as carbon particles in practi-
cal applications are shrunk to the nanoscale to achieve
much greater aggregate surface areas. Additionally, the
invariance of the local electronic structure and the qua-
sispherical global structure of fullerenes Cn as they vary
in carbon number n and average radius Rn makes them
ideal for investigating the nature and scaling of quantum
properties, such as electron detachment energies. Espe-
cially, fullerenes are ideal for considering scaling that oc-
curs as one crosses dimensional boundaries that usually
are regarded as separating the domain of classical behav-
ior from that of quantum behavior.
Motivated by this coupling of practical concerns and

long-term fundamental concerns [5–9], we develop here
a very simple set of equations for accurately calculating
the values of the electron affinity An and the ionization
potential In for an icosahedral fullerene as a function of
Rn. We employ these equations to analyze the scaling of
An and In with 1/Rn. For it is these electron detachment
energies and their scaling that determine the molecules’
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quantum capacitances [10, 11]

Cn = 1/(In −An) (1)

and their linear scaling with Rn [5].
For large molecules, like the fullerenes, In and An usu-

ally are difficult to determine accurately from theory, at
least without very computationally intensive ab initio or
density functional theory (DFT) calculations, such as we
collaborated in performing as part of an earlier study [5]
of fullerene capacitances. Obtaining accurate electron
affinities is particularly challenging, from experiment or
from theory.
In this work, though, we discover that we are able to

treat neutral fullerene molecules as though they are hol-
low spherical conductors and adapt a spherical image-
charge model [12–14] from classical electrostatics to de-
rive an analytic equation that evaluates their electron
affinities with much accuracy. This can be seen in Fig. 1
for the case of closed-shell icosahedral fullerenes, hav-
ing the formula C60k, where k is an integer. In the fig-
ure, the open circles and their dashed regression line are
determined from the above-mentioned electrostatics-like
analytic equation we derive for An. These points are
nearly identical to the filled-circle points and solid re-
gression line plotted from detailed DFT calculations [5]
to determine An for icosahedral fullerenes.
On the other hand, we found that the usual prescrip-

tion [13, 14] arising from a spherical image-charge model
for calculating an ionization potential from an electron
affinity is not at all accurate in determining the ioniza-
tion potentials for icosahedral fullerenes. That is, the
detachment energies are all much too small if we start
with a neutral fullerene, then remove to r = ∞ its high-
est energy valence electron from a radius Rn + δ just
outside the quasisphere containing the nuclei, while ac-
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FIG. 1. Plot versus 1/Rn of icosaheral fullerene electron de-
tachment energies from DFT calculations [5] and from simple
formulas derived in this work. See text. Values plotted are
given in Table I. Labels of the two-headed arrows correspond
to the terms in Eq. (2) that sum to the energies represented by
points plotted along the different scaling curves in the graph.
Scaling curves are determined via second-order polynomial
regression analysis. Notable in the graph are the very close
matches of the dashed scaling curves determined from analyt-
ical equations derived here with solid curves determined from
accurate DFT calculations of detachment energies In and An.

counting only for: (a) the image charge contribution to
the energy of removal, which is identical to An, plus (b) a
“charging term” 1/(Rn+δ) that arises from the coulomb
attraction of the departing electron to the single posi-
tive charge ζ = +1 on the cation it leaves behind. The
resulting set of too-small values for the ionization po-
tentials also is seen in Fig. 1, where the open squares
and their nearly linear dotted regression line from this
purely image-charge-based approach to In are well be-
low the filled diamonds and the solid bold black curved
regression line that arise from accurate DFT values.

The discrepancy can be attributed to the fact that
the icosahedral fullerenes are not actually spheres and
that taking explicit account of their true symmetry splits
the energy level in which the highest energy π-electrons
would reside. This splitting introduces a large quan-

tum energy gap ∆E
(Gap)
n between the one-electron energy

level that corresponds to the highest occupied molecular
orbital (HOMO) in the neutral species and its lowest un-
occupied molecular orbital (LUMO) [15–20], which also
closely approximates the energy level in which the extra
electron resides in the anion. This energy gap is present
and should be of very nearly the same magnitude in an
icosahedral fullerene anion, because the addition of a sin-
gle electron should have little effect on the valence one-
electron energy levels in a molecule with so many valence
electrons as a fullerene.
The energy gap is important because the energies of

the HOMO and LUMO one-electron states approximate
those of the different energy states from which the first
electrons are detached in the neutral and anionic sys-
tems, respectively. Thus, to calculate In from An for
an icosahedral fullerene, one must account for this differ-
ence and add a corresponding quantum mechanical en-
ergy gap term to the two above-described electrostatics-
like terms (a) and (b) that arise from a spherical electro-
static model:

In = An +
1

Rn + δ
+∆E(Gap)

n . (2)

This relation is depicted schematically in Fig. 1.
Above, the parameter δ is a small distance, 1.45 Bohr,

that can be thought of, classically, as the difference be-
tween the average radius Rn for a fullerene and the radius
for the attachment or detachment of a valence electron to
or from a fullerene [21]. In Eq. (2), the charging energy
term that involves δ arises from classical electrostatics
and is classical in form. However, δ itself is quantum me-
chanical in origin in that it represents an average distance
outside the surface containing the carbon nuclei at which
an electron standing wave is established. The value of
δ, which is constant for all n, is determined below from
that of W∞, the work function of graphene.
Even though the energy gap arises from non-spherical

symmetry breaking, a second discovery here is that we
still can take further advantage of the fact that the
fullerene anions and neutral molecules behave, electro-
statically, like spherical conductors to develop a very sim-

ple formula for ∆E
(Gap)
n , based upon a spherical quantum

rigid rotor model for the valence electrons in the anion.

The formula gives ∆E
(Gap)
n as a function of An.

Then, employing that formula for ∆E
(Gap)
n in Eq. (2),

we are able to obtain below a simple analytic formula for
In, which also is expressed as a function of An. That
simple formula for In yields values (the open diamonds
in Fig. 1) which are in both qualitative and quantitative
agreement with those from very computationally inten-
sive DFT calculations (the filled diamonds in Fig. 1). In
fact, as seen in the figure and in Table I, the analytic
estimate of In for C60 is closer to the experimental value
(× in Fig. 1) than is the estimate from DFT.
In addition, we show below that the aforementioned

simple analytic expressions for An and In can be ap-
plied in Eq. (1) to develop physically revealing expansions
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FIG. 2. Diagram of image charge model for the ionization of a
fullerene anion or neutral state. See text, plus Refs. [12], [13],
and [14].

for the parameters κ and C0 that govern the previously
demonstrated [5] linear scaling of the fullerenes’ quantum
capacitances with their average radii:

Cn = κRn + C0. (3)

First, however, we derive in mathematical detail the sim-
ple formulas for An and In in accordance with the qual-
itative prescription outlined above.

II. DERIVATION

OF ANALYTIC FORMULAS FOR An AND In

To derive analytic formulas for An and In, this paper
adapts to fullerene molecules prior classical electrostatic
analyses [13, 14] of the energetics of electron detachment
in small metal particles. Because of its mobile valence
π electrons, we begin by treating a fullerene as though
it were simply a net neutral conducting sphere, in ac-
cordance with the diagram in Fig. 2. We take all the
positive charges to be on the surface of the sphere at ra-
dius Rn, while the equal number of negative charges are
distributed in a thin region above and below that sur-
face, with their positions having an average radius Rn,
as well. Further, in a detachment process, an electron
outside the sphere is considered to move from a radius
r=Rn + δ above the spherical surface to r =∞, where
0 < δ ≪ Rn.

A. Electron Affinity Formula

Then, to calculate An, we model such a process that
detaches an extra electron from the radius r = Rn + δ,

just outside the conducting surface within a fullerene an-
ion. This leaves behind the neutral molecule, which we
represent by constraining the surface of the sphere to al-
ways have a net charge of zero. A particular virtue of this
conceptual approach is that it enables us to apply an el-
ementary classical image charge model for a conducting
sphere [12] to yield directly the formulas

An =
R3

n

2(Rn + δ)2((Rn + δ)2 −R2
n)

(4a)

≈
1

4δ
−

5

8

( 1

Rn

)

+
9

16
δ
( 1

Rn

)2

. (4b)

Above, Eq. (4b) is a simplification of the result of a power
series expansion of Eq. (4a) taken through second order
in δ/Rn.
While these equations are classical in their overall

form, the distance δ is quantum mechanical in its ori-
gin, as we have noted above. Thus, the addition of this
finite distance to Rn in the expression above provides a
kind of quantum adaptation or correction to the simple,
otherwise classical electrostatic model.
Some investigators [11, 22] have expressed reserva-

tions about the application of electrostatic equations like
Eqs. (4) for estimating electron affinities and ionization
potentials. However, these concerns are connected to
the limitations of the conducting sphere model described
above when it is applied to a solid particle, wherein there
are energetic effects that have been attributed [22] to the
accommodation or “solvation” of electrons in the filled in-
terior. Such reservations do not apply to the fullerenes,
quasispheres which have hollow interiors.
Thus, the simple electrostatics-like equation (4a) is

seen in Fig. 1 and in Table I to provide an uncannily
accurate approximation to values for An obtained from
prior [5] detailed DFT calculations. In the figure, the
solid circles and the lowermost solid black curve fitted
to them represent the DFT values, while virtually on
top of them are the open circles and bold, dashed re-
gression curve determined from Eq. (4a). In the n= 60
case, the value A60=0.105 Hartree from Eq. (4a) is even
very slightly closer to the experimental value of 0.098
Hartree [23] than is the DFT value of 0.107 Hartree.
To obtain these values and points from Eq. (4a), we

have associated the first term in Eq. (4b), the second-
order series expansion of An, with the intercept of the
second-order curve fitted to the DFT values of An when
they are plotted versus 1/Rn, as in Fig. 1. That intercept
is the work function W∞ for bulk graphene [5, 24]:

0.172 Hartree = W∞ =
1

4δ
. (5)

This relation enables us to evaluate δ = 1.45 Bohr [21]
and to determine from Eq. (4a) the values of An pre-
sented in Fig. 1 and the fourth column of Table I.
The close matches in the figure and table between the
electostatics-based analytic results for An and those from
the intensive DFT calculations are especially remarkable
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TABLE I. Closed-shell icosahedral fullerene electron detachment energies, An and In, from simple electrostatics-based theory
and resulting analytic equations compared with those from DFT. See text.

Number Electron Affinities Ionization Potentials
of

Carbon Average From From From From From From
Atoms, Radiusa, DFTb Eq. (4a) DFTb Eq. (6b) Eq. (7c)c Eq. (16)

n Rn 1/Rn An An In Ĩn In In
(Bohr) (Bohr−1) (Hartree) (Hartree) (Hartree) (Hartree) (Hartree) (Hartree)

60 6.705 0.1491 0.107 0.105 0.283 0.228 0.293 0.277
180 11.593 0.0863 0.127 0.128 0.254 0.205 0.252 0.247
240 13.366 0.0748 0.130 0.133 0.241 0.201 0.244 0.238
540 19.942 0.0501 0.144 0.145 0.222 0.192 0.223 0.218
720 22.990 0.0435 0.148 0.148 0.218 0.189 0.217 0.212
960 26.520 0.0377 0.151 0.151 0.212 0.187 0.212 0.207
1500 33.112 0.0302 0.155 0.155 0.205 0.184 0.205 0.200
2160 39.711 0.0252 0.158 0.158 0.200 0.182 0.200 0.196

a Average radius Rn is the arithmetic mean of distances of all the carbon atoms in a fullerene from a central point within the molecule,
as determined from icosahedral fullerene geometries optimized by Lewis et al. [5].

b DFT values of An and In from Ref. [5]. In n = 60 case, experimental values are A60 = 0.098 and I60 = 0.279 Hartree from Ref. [23].
c Within Eq. (7c), employed values κ=0.561 and C0=1.58 determined in Ref. [5].

since electron affinities are notoriously difficult to deter-
mine both computationally and experimentally.

B. Ionization Potential Formula

1. Electrostatics-like Contributions

Similarly, in order to calculate In via an electrostatic
approach, we consider a process that detaches an electron
from the radius Rn + δ in the neutral fullerene, yield-
ing a cation. Throughout this process we constrain the
conducting sphere that represents the cation to have a
net positive charge of ζ=+1. Then, using the the usual
treatments [13, 14] for an electron outside such a charged
metal sphere or particle, this model permits us to derive
an initial electrostatic formula for a fullerene ionization
potential:

Ĩn = An +
1

Rn + δ
(6a)

=
R3

n

2(Rn + δ)2((Rn + δ)2 −R2
n)

+
1

Rn + δ
. (6b)

The right-hand side of these equations only include the
first two terms on the right side of the full, accurate ion-
ization expansion Eq. (2). Thus, as is expected from the
discussion of Eq. (2) and Fig. 1 in Section I, using Eqs. (6)
to estimate In for the icosahedral fullerenes gives the re-
sults along the dotted regression line in Fig. 1, which are
much too small. They fall far below those on the solid
regression line for the accurate DFT values of In.
As stated in Section I and as is explored further be-

low, the most fundamental explanation of this energy
difference is found in the quantum mechanics that dic-
tates the unusually large gap betweem the HOMO and

LUMO energy levels of an icosahedral fullerene. Still, it
is possible to account for and correct the disagreement
between the results from Eq. (6b) and the DFT values
of In within the framework of our electrostatics-like al-
gebraic approach. To do so, we take advantage of the
fact that the electrostatics-based Eq. (4a) is seen to be
so accurate in evaluating the values of An. Thus we use
Eq. (4a) along with Eq. (1) to write:

In = An +
1

Cn
(7a)

=
R3

n

2(Rn + δ)2((Rn + δ)2 −R2
n)

+
1

Cn
(7b)

=
R3

n

2(Rn + δ)2((Rn + δ)2 −R2
n)

+
1

κRn + C0
(7c)

The last of the set of equations above follows from
Eq. (3), the highly accurate relationship for the fullerenes
observed from DFT calculations in our earlier work [5].
In Eqs. (3) and (7c), the parameter κ is the analog of
a dielectric constant in classical electrostatics, but for a
single molecule. Though it appears to be classical, it
actually is quantum mechanical in nature, as is shown
below. Parameter C0, the capacitance intercept, has no
analog in classical electrostatics. Below, we also express
it in terms of more fundamental quantum parameters.
One may evaluate Eq. (7c) using the DFT-based values

of κ=0.561 and C0=1.58 Hartree−1 for the icosahedral
fullerenes [5], along with the above-stated value for δ.
The values thus obtained for In are given in column 8 of
Table I. There, a very close match is seen between these
capacitance-corrected electrostatic values for In and the
DFT values in column 6 of the table. This calculation
illustrates the accuracy of Eq. (7c), which can be at-
tributed to the accuracies of Eq. (3) and Eq. (4a).
Since Eq. (7c) is so accurate in its estimate of In, from
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Eq. (2) it also must account accurately for the quantum
energy gap. Within the electrostatics-like framework, one
can compare Eqs. (2) and (7c) to obtain an expression
for the energy gap:

∆E(Gap)
n =

1

κRn + C0
−

1

Rn + δ
. (8)

The fact that the quantum energy gap is associated
with the difference between the final terms of Eqs. (7c)
and (6b) suggests that the electrostatics-like Eq. (7c) gen-
eralizes Eq. (6b) to embody quantum effects. These in-
clude especially effects arising because it has a nonzero
energy gap. Such effects are embodied in the fact that
κ < 1 and C0 6= 0.
Of course, in the case that κ = 1 and C0 = δ, Eq. (7c)

reduces to Eq. (6b), the electrostatics-like ionization po-
tential equation. Note, however, even in this case the
result is intrinsically quantum mechanical because the
capacitance intercept C0 is nonzero.
As implied in the previous paragraph, when one con-

siders the case where κ = 1, a comparison of Eqs. (6b)
and (7c) suggests that

C0 ≈ δ. (9)

In fact, we see that in atomic units the value C0 = 1.58
determined from capacitance scaling [5] is fairly close to
the value δ = 1.45 derived from Eq. (5) and the work
function of graphene. This further affirms the accuracy
of the development above.

2. Quantum Contribution

and Ionization Potential Formula

While Eq. (8) provides an explanation of the quantum
energy gap from within an electrostatics-like model, it
does not provide a simple, independent means for calcu-

lating ∆E
(Gap)
n . We do so here by developing a very sim-

ple quantum model that takes further advantage of the
fact that a neutral fullerene and its anion appear to be-
have much like metal quasispheres, as we found above in
the electrostatic calculation of An and as earlier investi-
gators [25] also have observed. This observation suggests
that we may treat the outermost, unpaired electron in
the LUMO on the anion as though it were a free particle
on a sphere and obeys the kinetic energy equation for a
quantum rigid rotor:

An = −εLUMO,n = tLUMO,n

=
jLUMO,n(jLUMO,n + 1)

2R2
n

. (10)

Above, from the virial theorem, the negative of the to-
tal one-electron energy for the LUMO in an n-carbon
fullerene, −εLUMO,n, is equal to its kinetic energy
tLUMO,n, while this quantity also corresponds to the elec-
tron detachment energy An, as it would for any effective

one-electron system [26]. In this last equation, jLUMO,n

is an integer angular momentum or “rotational” quantum
number.
Similarly, the fact that a neutral fullerene appears to

behave like a spherical metal shell in an image-charge
model suggests that in the next one-electron energy level
below the LUMO in kinetic energy, the HOMO for the
neutral species, the electron is mobile and obeys a free-
electron equation analogous to Eq. (10). Then, one may
calculate the HOMO-LUMO energy gap simply as:

∆E(Gap)
n =

jLUMO,n(jLUMO,n + 1)

2R2
n

−
jHOMO,n(jHOMO,n + 1)

2R2
n

. (11)

At first, this might seem like an oversimplification, since
it has been shown [15, 16] that a spherical free-electron
model does not accurately represent all the valence π-
type energy levels of an icosahedral fullerene. Further,
the energy gap we propose to calculate with a spherical
free-electron model in Eq. (11) is produced [16, 18, 20] by
the very same icosahedral symmetry breaking that simul-
taneously renders a spherical free-electron model invalid
for representing the energies of all the π-type electrons
in an icosahedral fullerene.
Our use of a spherical free-electron model is not ac-

tually a contradiction or oversimplification, though, be-
cause we do not assert here that all the π-electron en-
ergy levels can be represented via a spherical free-electron
model, as is usually done. Rather, we only assert or as-
sume that the energy of the LUMO and the energy of
separation between two of the highest levels, the HOMO
and LUMO, may be calculated from such a model. This
is consistent with earlier work [25] and observations in
our electrostatic analysis above indicating that a neutral
fullerene and its anion behave like metal quasispheres,
wherein at least one electron should be free to move
on the surface. Thus, we only apply the spherical free-
electron model in a high-energy subspace of all the π-
electron states.
In this connection, it is important to emphasize,

as well, that the quantum number j we introduce in
Eqs. (10) and (11) is not the same as the angular momen-
tum quantum number (usually written l) that appears in
standard free electron treatments [15–17] of the fullerenes
and that counts all the π-electron states. Here, j counts
only a few of the highest-energy valence π-electron states,
as is demonstrated below.
Having explained the limitations we place upon the

valence spherical free-electron model employed here, we
now proceed to account for the usual condition on the
HOMO and LUMO quantum numbers,

jLUMO,n = jHOMO,n + 1 ≡ jn + 1, (12)

where we also have simplified the notation by defining
jn ≡ jHOMO,n. Using Eq. (12), Eq. (11) may be simpli-
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fied to read

∆E(Gap)
n =

jn + 1

R2
n

. (13)

Also, Eqs. (10) and (12) may be used to show that

1

2R2
n

=
An

(jn + 1)(jn + 2)
. (14)

With the substitution of this last result in Eq. (13), after
slight rearrangement one obtains the final expression for
the energy gap, written as a very simple function of the
quantum numbers and the electron affinity:

∆E(Gap)
n =

( 2

jn + 2

)

An. (15)

Further, when inserted in Eq. (2), the preceding sim-
ple expression implies that a fullerene ionization po-
tential, including its purely quantum contribution, can
be written as a very simple function of the molecule’s
electrostatics-based electron affinity:

In =

[

1 +
( 2

jn + 2

)

]

An +
1

Rn + δ
. (16)

3. Values for the Quantum Numbers

To evaluate and test the simple expressions in Eqs. (15)
and (16), though, one must know the values for the quan-
tum numbers jn (i.e., the HOMO quantum numbers).
Fortunately, these can be determined analytically, as fol-
lows. Since we can accurately calculate the value of An

from the electrostatics-like equation (4a), we take An to
be a known quantity. Then, one can rewrite Eq. (14) in
the form of a quadratic equation in jn:

0 = (jn + 1)(jn + 2)− 2R2
nAn (17a)

= (jn)
2 + 3jn + (2− 2R2

nAn). (17b)

This equation has the real number solution

j(Real)
n = −

3

2
+

1

2

[

9 + 8(R2
nAn − 1)

]1/2

, (18)

where the solution with the negative sign in front of the
square root has been ruled out on physical grounds, be-
cause jn must be a positive number. Employing this
last equation and values from columns 2 and 5 of Ta-

ble I, real values for j
(Real)
n are obtained and shown in

Table II, along with the values of the integers closest to
them. It is these integers we take to be the actual values
of the valence quantum numbers jn for the icosahedral
fullerenes.
Substituting those integral quantum number values in

Eq. (15), along with the values of An determined from
Eq. (4a), we are able to predict values for the energy gap,

∆E
(Gap)
n that are given in Table II. It is these predicted

TABLE II. Values calculated for the HOMO-LUMO energy

gap ∆E
(Gap)
n , the valence angular momentum quantum num-

ber jn upon which it depends, and the molecular dielectric
constant κn for each n-carbon icosahedral fullerene. See text.

No. Closest
Carbon From Integer From From

Atoms Eq. (18) to j
(Real)
n Eq. (15) Eq. (22)

n j
(Real)
n jn 2/(jn + 2) ∆E

(Gap)
n κn

(Hartree)
60 1.619 2 0.500 0.049 0.44
180 4.398 4 0.333 0.042 0.49
240 5.422 5 0.286 0.037 0.51
540 9.246 9 0.182 0.026 0.56
720 11.027 11 0.154 0.023 0.58
960 13.091 13 0.133 0.020 0.58
1500 16.952 17 0.105 0.016 0.60
2160 20.822 21 0.087 0.014 0.60

values of ∆E
(Gap)
n that are used in Eq. (2) to calculate

the values of In that are presented in Table I and plotted
as the open diamonds versus 1/Rn in Fig. 1. From the
close match of these predicted values for In with the DFT
results (filled diamonds), it is seen how accurate are the
formulas derived here in Eqs. (15), (16), and (18).

4. Example of Energy Gap

and Ionization Potential Formulas for n = 60

To highlight the great simplification implicit in
Eqs. (15) and (16), it is useful to consider a specific ex-
ample. Take the case of the well-studied “buckyball,” for
which n = 60. In that case, as seen in Table II, j60 =2.
Substitution of this value for the quantum number in
Eqs. (15) and (16) gives, respectively, the HOMO-LUMO
energy gap and ionization potential for C60 simply as:

∆E
(Gap)
60 =

1

2
A60 (19)

and

I60 =
3

2
A60 +

1

R60 + δ
. (20)

This last equation is very accurate, producing a value
I60 = 0.277 Hartree that is closer to the experimental
value [23], 0.279 Hartree, than is the DFT value [5] of
0.283 Hartree. This further illustrates the accuracy of
the analytic results in Sections II B 2 and II B 3, as well
as the likely accuracy of the free-electron assumptions
that were made to derive them.

III. ANALYSIS

OF THE MOLECULAR CAPACITANCES

In a series of prior investigations [5–9], it has been
demonstrated empirically that the quantum capacitances



7

of atoms and molecules scale linearly with their effec-
tive radii, in accordance with two-parameter relations
much like Eq. (3). However, in that earlier work no first-
principles equations were presented to explain or predict
the nature and the values of the two fundamental scaling
parameters κ and C0.
Above, in Eq. (9), we now have provided such a first-

principles explanation for the capacitance intercept C0,
at least in the case of the icosahedral fullerenes. In this
section, we build upon that to explain, as well, the nature
of the molecular dielectric constant κ. In addition, we
show here that the molecular capacitance Cn consists of
two contributions, one of which is essentially electrostatic
and quasi-classical, while the other is strictly quantum
mechanical in origin.

A. Evaluation of the Molecular Dielectric Constant

κ in Terms of the Quantum Numbers

From the development in Section II, we have an ac-
curate expression, Eq. (8), for the fullerene’s HOMO-
LUMO energy gap from an electrostatic point of view
and another, Eq. (15), from a quantum mechanical point
of view. The former involves the molecular dielectric con-
stant κ, while the latter is given in terms of the quantum
number jn. These two expressions may be used to ex-
pand κ in terms of jn. To do so, first let us eliminate

∆E
(Gap)
n between them:

1

κRn + δ
≈

( 2

jn

)

An +
1

Rn + δ
, (21)

where we have used Eq. (9) to substitute δ for C0, which
makes the relation above only approximate. This last
equation may be rearranged to yield:

κn ≈
1

Rn

[

jn(Rn + δ)

2An(Rn + δ) + jn

]

−
δ

Rn
(22)

The dependence of this equation upon the quantum num-
ber jn suggests an explanation for the discretization or
“quantization” seen [6] in the values of κ for other spher-
ical quantum systems, notably atoms.
Of course, the dielectric constant should be just that,

a constant, for all n as it was determined to be in our
prior work [5]. However, because of the n-dependence of
the right-hand side of Eq. (22) it has been necessary to
add a subscript n to κ on the left side of the equation,
suggesting it has a similar dependence on n. This judg-
ment is borne out by the variation seen in κn when the
equation is evaluated, as it is in the rightmost column of
Table II.
Consistent with our prior analysis [5] of κ via poly-

nomial expansions of the detachment energies about
(1/Rn) = 0, one way to eliminate the n-dependence in
the expansion here of the dielectric constant is to con-
sider it in the limit as Rn becomes very large. In that
limit Eq. (18) becomes

j(Real)
n ≈ Rn(2An)

1/2, (23)

so that the limiting form of Eq. (21) becomes

1

κRn
≈

(2An)
1/2

Rn
+

1

Rn
. (24)

In addition, from Eq. (4b) with Rn very large, we have
An = 1/4δ, as is also implicit in Eq. (5).
When one substitutes this limiting expression for An

in the limiting relation Eq. (24) and solves for κ, then
applies the value δ = 1.45 Bohr from Eq. (5), the results
are

κ ≈
1

1 + (1/2δ)1/2
= 0.63, (25)

in the limit of very large Rn. This limiting value of
κ is consistent with the progression of values for κn

seen in Table II. Also, the limiting value agrees to one
decimal place (i.e., κ ≈ 0.6) with the value κ = 0.56
determined from prior regression analysis [5] of DFT-
determined quantum capacitances, which is encouraging.
Even so, it would be more appropriate to compare

the value of κ from our theoretical analysis above to
the value arising from a different linear regression upon
capacitances versus fullerene radii. That would be one
in which the capacitances are not calculated from DFT
detachment energies, but from the accurate detachment
energies that are determined from the theoretical equa-
tions (4a) and (16) derived here. To do so, we use in
Eq. (1) the values of An and In from columns 5 and 9,
respectively, of Table I. When the resulting theoretical
values of Cn are plotted versus the corresponding values
of Rn from column 2 of the table, the regression equa-
tion is Cn = 0.628Rn + 1.315, with R2 = 0.9995. That
is, from the detailed regression analysis using the theo-
retical capacitances we obtain the result κ = 0.628. This
agrees precisely with the limiting result of Eq. (25) and
constitutes an even more persuasive demonstration of the
accuracy of the limiting analysis above.
In considering the estimates of κ from the regressions,

though, it is noteworthy that the capacitance expansions
1/(In − An) can have small denominators. Hence, they
will be sensitive to even very small differences or errors
in the theoretical estimates of In and An, as will the
resulting slope of their regression line versus Rn. For this
reason, we take as a considerable success the agreement of
our theoretical estimate of slope κ with the DFT estimate
to one decimal place, κ=0.6.

B. Two Capacitances Connected in Series

The authors have observed that many investigators
present formulas and calculations of capacitances for
atomic and molecular scale quantum systems, or clus-
ters of such systems. Often, though, other works do not
clarify or show an awareness of which portion of the ca-
pacitance is being estimated. Thus, here, we wish to use
the results given above to show explicitly that the total
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capacitance of such a quantum system actually consists
of two capacitances that are effectively connected in se-
ries.
First, we observe that the total capacitance calculated

above in terms of Eq. (3) and which appears in the de-
nominator in Eq. (7c) differs from the capacitance

C(ES)
n = Rn + δ (26)

that prior investigators [11, 19] have identified as being
associated with the electrostatic (ES) energy for charg-

ing a small metal particle. In terms of C
(ES)
n , the usual,

more nearly classical estimate of the ionization potential
Ĩn, in Eq. (6), may be restated:

Ĩn = An +
1

C
(ES)
n

, (27)

in analogy with Eq. (7a). Additionally, taking account of
the difference ∆In between an accurate value of In and
Ĩn, we define the capacitance associated with this energy
difference due to quantum (Q) effects:

C(Q)
n =

1

∆In
≡

1

In − Ĩn
(28)

Then, using Eqs. (27) and (28) within the definition
Eq. (1), we can show that the total quantum capacitance

Cn may viewed as consisting of two capacitances, C
(ES)
n

and C
(Q)
n , that combine according to the series capaci-

tance combination relation [27]:

Cn =
1

(Ĩn −An) + (In − Ĩn)
(29a)

=
1

1/C
(ES)
n + 1/C

(Q)
n

. (29b)

Thus, as asserted above, the total quantum capacitance
Cn effectively consists of two component capacitances, an
electrostatic contribution to the total capacitance and a
quantum contribution that are effectively connected in
series.
Further, it is shown in preceding sections of this work

that the quantum contribution for the fullerenes is di-
rectly related to the HOMO-LUMO quantum energy gap

∆E
(Gap)
n , since for these molecules (In − Ĩn) = ∆E

(Gap)
n

and

C(Q)
n =

1

∆E
(Gap)
n

. (30)

from Eqs. (28), (2), and (6a). This finding is consistent
with that of Luo et al. [19].

For a true metal particle, ∆E
(Gap)
n is very small (i.e.,

effectively zero) so In − Ĩn is usually very small, as well.
Thus, this quantum contribution to total capacitance Cn

can be negligible. However, for an atom or molecule,
even a conductive one, the HOMO-LUMO gap usually is
significant, as it is for the fullerenes. In such cases, purely
classical estimates of the capacitance are not accurate.

IV. DISCUSSION:

OPEN-SHELL ICOSAHEDRAL FULLERENES

As noted in the Introduction, the icosahedral fullerenes
to which our electrostatics-based theory has been ap-
plied above have the chemical formula C60k. These pos-
sess closed-shell neutral states [2]. However, the essential
ideas of the analysis also can be applied to other icosa-
hedral fullerenes having the chemical formula C60k+20.
We accomplish this by recognizing that these other
icosahedral fullerene structures have open-shell neutral
states [2].
Unlike the situation described in Sections I and II for

closed-shell species, an additional electron still can be
placed in the energy level of the HOMO when that elec-
tron is added to an open-shell neutral fullerene to form its
anion. Thus, a large energy gap of the sort diagrammed
in Fig. 1 will not be present to add to the energy sep-
arating In and An in the open-shell species. That is,

∆E
(Gap)
n ≈ 0. Thus, from Eq. (2), we expect that:

In −An ≈ 1/(Rn + δ). (31)

Then, from the definition, Eq. (1), the capacitance of the

open-shell species should be approximated by C
(ES)
n , in

accordance with Eq. (26).
Though few results on the detachment energies and

dimensions of these open-shell fullerenes are available in
the literature, the preceding proposition can be tested
numerically in the case of the open-shell icosahedral
fullerene C320. From Lewis et al. [5], we have the DFT
results A320=0.1543 Hartree, I320=0.2107 Hartree, and
C320 =17.72 Hartree−1 for a C320 structure with an av-
erage radius R320 = 15.19 Bohr. By comparison, sub-
stitution of this value for R320 in Eq. (26) gives the ca-
pacitance 16.64 Hartree−1. This electrostatics-based cal-
culation only underestimates the DFT result for C320 by
6.1 percent, lending credence to the approximate analysis
immediately above.
Further confirmation comes from using the value above

for R320 in Eq. (4a) and then employing Eq. (2) with

∆E
(Gap)
n =0, which produce the electrostatics-based ap-

proximations A320 = 0.1371 Hartree and I320 = 0.1972
Hartree, respectively. These only underestimate the cor-
responding DFT values by 11.1 and 6.4 percent. Over-
all, the electrostatics-based results for the open-shell C320

system do not correspond as closely to the DFT values as
do those in Table I and Fig. 1 for the closed-shell icosahe-
dral fullerenes, but they do suggest that the essential ele-
ments of the analysis here apply, at least approximately,
to both types of icosahedral fullerenes.

V. SUMMARY AND CONCLUSIONS

To summarize, in this paper we have derived two sim-
ple analytic formulas, Eqs. (4a) and (16), that evaluate
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with great accuracy the electron affinities An and ioniza-
tion potentials In for n-carbon, closed-shell icosahedral
fullerenes, as is illustrated in Fig. 1. This is notable be-
cause the accurate determination of such electron detach-
ment energies usually requires long, computationally in-
tensive quantum mechanical calculations using complex
computer codes and also because the formula for An is
derived using a fundamentally classical electrostatic ap-
proach.

Even more notable is that, although the larger ion-
ization potentials are more frequently and easily cal-
culated in conventional quantum theoretical and quan-
tum computational approaches, here we find the smaller,
electrostatically-derived electron affinities to be in a cer-
tain way more fundamental. This is because, through
Eqs. (2) and (15), the fullerenes’ ionization potentials
may be expressed in Eq. (16) as a simple function of
their electron affinities, their dimensions, and a rotational
quantum number jn for the highest occupied molecular
orbital. Further, the value of this quantum number may
be determined analytically via Eq. (18) for each fullerene
and is also seen to be a function of the electron affinity
and the dimensions of the molecule.

It is pointed out, though, that despite the classical
derivation of the electron affinity formula Eq. (4a), it also
is quantum mechanical in nature because of the incorpo-
ration in it of a quantum length parameter δ. The value
of δ is constant for all the icosahedral fullerenes and de-
termined via Eqs. (4b) and (5) from the work function of
graphene (i.e., essentially a fullerene with n=∞). Thus,
the quantum effects that are embodied in δ, along with
the fullerenes’ dimensions, dictate the values of An and
are shown here also to dictate those for In.

Another unique aspect of the calculation of the electron
detachment energies here is the isolation of all the many-
electron contributions to In and An in quasi-classical
terms arising in the electrostatic image charge formula,
Eq. (4a). This takes advantage of effects embodied in
the quantum length adjustment parameter δ so that the
energies are parsed with the only explicitly quantum me-

chanical terms, those within ∆E
(Gap)
n , accounting just

for one-electron kinetic energies.

Here, as well, the analytic formulas for In and An are

applied to resolve a long standing question concerning the
molecular quantum capacitance. Specifically, from these
formulas and the definition of the quantum capacitance
in Eq. (1), analytic equations are derived to determine
from first principles the fundamental slope and intercept
parameters, κ and C0, that govern linear scaling of the
quantum capacitance through Eq. (3). In a series of pa-
pers [5–9], these scaling parameters had been evaluated
empirically and shown to have discrete or “quantized”
values, but the underlying physics and rationale for these
properties had not been revealed until now.
Despite this overall quantization, it also is shown above

that the parsing of In into a sum of two primarily classi-
cal electrostatic contributions and a primarily quantum
contribution, as described in Eq. (2), similarly parses the
total capacitance of a fullerene into a classical component
and a quantum component. These two component capac-
itances are shown in Eq. (29b) to be effectively connected
in series to produce the total capacitance of a fullerene
as calculated via Eq. (1).
Even more generally interesting is the way in which In

and An are shown to be coupled in Eq. (16). This is a
step toward a more general understanding of the way in
which the energy of an (N+1)-electron system or that
of an (N−1)-electron system are determined directly by
the structure of the corresponding N -electron system.
In future investigations, the authors hope to explore

the extent to which the insights gained here and enu-
merated above can be applied to nanoscale and quantum
systems other than fullerenes. In addition, as pointed
out in the introduction, since there are increasing efforts
to make industrial use of nanoscale carbon particles, it
will be of interest to see how the present work can inform
their applications.
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