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Quantum annealing is guaranteed to find the ground state of optimization problems provided it
operates in the adiabatic limit. Recent work [Phys. Rev. X 6, 031010 (2016)] has found that for
some barrier tunneling problems, quantum annealing can be run much faster than is adiabatically
required. Specifically, an n-qubit optimization problem was presented for which a non-adiabatic, or
diabatic, annealing algorithm requires only constant runtime, while an adiabatic annealing algorithm
requires a runtime polynomial in n.

Here we show that this non-adiabatic speedup is a direct result of a specific symmetry in the
studied problem. In the more general case, no such non-adiabatic speedup occurs and we show
why the special case achieves this speedup compared to the general case. We also prove that the
adiabatic annealing algorithm has a necessary and sufficient runtime that is quadratically better
than the standard quantum adiabatic condition suggests. We conclude with an observation about
the required precision in timing for the diabatic algorithm.

I. INTRODUCTION

Recent work in quantum adiabatic optimization [1] has
focused on a class of Hamming-symmetric problems that
exhibits extremely strong non-adiabatic speedups over
a slower adiabatic approach. Numerical evidence pre-
sented by Muthukrishnan, Albash, and Lidar [2] shows
that for several barrier tunneling problems on n qubits,
a well-calibrated constant time evolution of the quantum
annealing Hamiltonian is sufficient. Thus, this algorithm
significantly improves upon the slower adiabatic evolu-
tion of the Hamiltonian, which could take polynomial or
even exponential time in n. Muthukrishnan et al. at-
tribute this speedup to a diabatic cascade in which the
ground state is quickly depopulated in favor of higher ex-
cited states and then repopulated right at the end of the
diabatic evolution.
Usually the sufficient run time of quantum adiabatic

optimization is estimated using the standard adiabatic
condition. This condition says that adiabaticity is en-
sured if the running time grows as

τ ≫ max
s∈[0,1]

∥

∥

∥

∂Ĥ(s)

∂s

∥

∥

∥
/g(s)2, (1)

for the spectral gap g(s). More accurate versions of this
condition have been proven [3], but all of them depend

linearly on the matrix norm of Ĥ(s) or its derivatives
with respect to s divided by a low degree polynomial
function of the gap g(s).
The condition in Eq. 1 is merely a sufficient condi-

tion, and it is possible to have adiabatic evolutions with
shorter running times than Eq. 1 describes. Furthermore
it is also possible to have a non-adiabatic evolution that
succeeds in solving the optimization problem at hand.
It is such a non-adiabatic speedup that is described by
Muthukrishnan et al. [2].

A non-adiabatic speedup is obviously significant for
near-term quantum computers where quantum anneal-
ing is a potential application. Kong and Crosson [4]
have studied these diabatic transitions, and more recently
the current authors presented complementary findings
[5]. These recent results indicate that this non-adiabatic
speedup can provide an alternate and efficient way of
solving an important class of Hamming-symmetric bar-
rier tunneling problems that are being used as toy models
[2, 4, 6–11] to study the more general properties of quan-
tum annealing in the presence of a barrier.
Here we present results that indicate that even slightly

more generalized versions of symmetric barrier tunneling
problems do not exhibit this fast non-adiabatic speedup.
The base Hamiltonian used to study this class of prob-
lems exists in a Hilbert space of n qubits and is given
by

Ĥ(s) = −(1− s)

n
∑

i=1

σ(i)
x + s

[

n
∑

i=1

σ(i)
z + b

(

n
∑

i=1

σ(i)
z

)]

,

(2)
where b(h) is some localized barrier or perturbation and
s = t/τ is a normalized time variable representing the
linear progression of time, t, from t = 0 to the algorithm
stopping time τ . Current numerical evidence [2] suggests
that the non-adiabatic speedup exists for many classes,
shapes, and sizes of localized barriers b(h). This article
generalizes the problem slightly (ignoring b(h) for the
moment):

Ĥ(s) = −(1− s)

n
∑

i=1

σ(i)
x + sµ

n
∑

i=1

σ(i)
z , (3)

by introducing a positive slope parameter µ and we
find that for the generic case µ 6= 1, the non-adiabatic
speedup no longer exists. We call µ a slope as it re-
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FIG. 1: The single qubit success probability, p1, as a function
of the total runtime for several µ values. The blue, dashed,
µ = 1 line corresponds to the model that has been studied
in previous articles. Notice that the µ = 1 curve has several
special properties, including that it goes to p1 = 1 at finite τ ,
resulting in the non-adiabatic speedup noted in other papers.
The µ 6= 1 curves do not exhibit this p1 = 1 behavior.

lates linearly the energy of the system with the Hamming

weight
∑

i σ
(i)
z of the n qubits.

Since this Hamiltonian describes a simple toy model,
it is unlikely that a physical system will exhibit the ex-
act µ = 1 behavior, leading us to the conclusion that for
realizable problems, this diabatic speedup will not exist.
In this article, we will focus on the b(h) = 0 case since
it decouples all the qubits, allowing us to extract infor-
mation about the system by studying the evolution of a
single qubit Hamiltonian. Since µ 6= 1 disrupts the non-
adiabatic speedup even in this b(h) = 0 case, we fully
expect similar disruption to occur for more complicated
barriers and perturbations.

II. OPTIMAL RUNTIME

We first need to define our criteria for an optimal run-
time. If an algorithm on n qubits runs for time τ and
has a probability of success of pn(τ) at the end of that
time, its expected running time is τ/pn(τ), and the op-
timal running time is the τn that minimizes τ/pn(τ) for
n qubits. In our case, we have n independent qubits,
each of which has a probability of success of p1, hence
pn = pn1 , which is where the n dependence comes into
the minimization.
In the µ = 1 case, p1 goes to 1 for finite τ , as seen

in Fig. 1, meaning that pn = 1 at this value, leading to
the non-adiabatic speedup noted in other studies. Fig. 1
also shows µ = 0.5 and µ = 2 curves. Note that for these
curves the success probability does not achieve p1 = 1
at finite τ . Similar plots can be obtained for other µ 6=
1 and, as we note below, this failure to reach p1 = 1
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FIG. 2: Optimal expected running time of quantum anneal-
ing, τn/pn(τn), as a function of n for different µ values. Unlike
the µ = 1 case, τn increases with n for these µ values. lines
through the data are power law fits of the form τn = Anr, and
the fitted r values in the order µ = (0.6, 0.8, 1.2, 1.4, 1.6) are
(0.48, 0.51, 0.49, 0.48, 0.46), all close to 1/2. A scaling power
of 1/2 is consistent with the adiabatic scaling of the µ = 1 case
as found in [2] and our results below while being quadratically
faster than the sufficient adiabatic condition.

for finite τ , ultimately leads to the breaking of the non-
adiabatic speedup. Therefore, this speedup is restricted
to the special case of µ = 1.

Muthukrishnan et al. [2] note that for µ = 1 the opti-
mal running time decreases asymptotically to a constant
in the case with a barrier because pn increases for fixed
τ at the optimal running time. Our decoupled model
does not exhibit this behavior because the success prob-
ability is pn = 1 independent of n. Therefore, in the
barrier cases, the success probability for µ = 1 seems to
be approaching its value in the no barrier case.

To demonstrate the lack of a non-adiabatic speedup
in the µ 6= 1 cases, consider Fig. 2, which shows the
optimal expected runtime, τn/pn(τn), as a function of
n. All of the µ curves shown are increasing, meaning
that the running time increases with n, and there is no
non-adiabatic algorithm that runs in constant time. The
fitted curves are to power laws of the form τn = Anp,
and all of the fitted p values are close to 1/2, indicating
a running time of O(

√
n).

It should be noted that the non-adiabatic speedup
could be reinstated by modifying the driver Hamiltonian,
Ĥ0, by multiplying it by µ as well. However, this kind of
fine-tuning of the driver Hamiltonian to match up with
the properties of the final Hamiltonian implies a large
amount of knowledge about the final problem that would
not be known in a realistic setting. The lack of robust-
ness in our system to changes in µ could be viewed al-
ternatively as a lack of robustness in the fine-tuning of
the driver Hamiltonian. The examples of Muthukrish-
nan et al. [2] show that a fine-tuned driver Hamiltonian
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FIG. 3: A single qubit success probability curve as a function
of total runtime τ for µ = 1.5 with upper and lower envelopes
shown. These envelopes were obtained by first extracting all
the local minima (maxima) and doing a power law fit of the
form p1 = 1− cτ−q. The first two minima and maxima were
excluded from this fit and others since they tend to be more
abnormal. In this case, the upper envelope has a fitted q =
1.998 and the lower envelope has a fitted q = 1.996, both of
which are extremely close to the 2 we use in the text.

can solve these problems non-adiabatically, but our work
shows that this speedup does not allow for a general algo-
rithm but only specific algorithms tailored to the problem
at hand.

III. SINGLE QUBIT SUCCESS PROBABILITY

We can extract the
√
n running time behavior from the

curves in Fig. 1 as well because the qubits in our problem
are completely decoupled. For sufficiently large running
times τ , the curves of the single qubit success probability
p1 as a function of τ shown in Fig. 1 are bounded above
and below by envelopes of the form

1− cℓ(µ)

τq
< p1 < 1− cu(µ)

τq
, (4)

with constants cℓ(µ) and cu(µ). This relationship is ex-
tracted by performing numerical fits to the minima and
maxima in curves like those seen in Fig. 3, and for all
our fits to different µ data, q is close to 2. Note that
cu(1) = 0, which, as we will see, is one of the main rea-
sons why the µ = 1 diabatic speedup can occur.
Muthukrishnan et al. [2] showed that the lower enve-

lope with cℓ(µ) guarantees that the worst case running-
time for the µ = 1 case scales as O(

√
n). We will employ

their method to show that a relationship such as Eq. 4
provides both the necessary and sufficient condition for
the running time. Muthukrishnan et al. also apply meth-
ods created by Boixo and Somma [12] to show that at
least Ω(n1/2) is necessary for adiabatic evolution.

If for n qubits a total success probability of p is desired
from the algorithm, then Eq. 4 tells us that

(

1− cℓ(µ)

τq

)n

≤ p ≤
(

1− cu(µ)

τq

)n

. (5)

We can manipulate this inequality, performing an ex-
pansion for small c∗(µ)/τ

q since τ will be large. The
result of these manipulations gives us a relationship be-
tween the running time and n:

(

cu(µ)

ln 1/p
n

)1/q

≤ τ ≤
(

cℓ(µ)

ln 1/p
n

)1/q

. (6)

Therefore, since q = 2 in our cases, having a running
time that scales as

√
n is both a necessary and sufficient

condition to reaching a desired probability. Note that
when µ = 1, cu(1) = 0, so one side is no longer bounded,
leading to the possibility of a non-adiabatic speedup.
In the Hamming weight problem, the gap is constant

with n, and all matrix norms of the Hamiltonian and
its derivatives will depend linearly on n. Therefore, the
adiabatic condition, Eq. 1, would predict O(n) scaling;
whereas, our results indicate that a faster O(

√
n) running

time is sufficient. This result was shown in [2] for µ = 1,
and our results indicate that this quadratic speedup holds
for general slopes µ.
While the standard adiabatic condition overestimates

the running time, there are other derivations that ap-
ply to our problem more specifically and that provide a
stricter bound that matches our results. Jansen, Ruskai,
and Seiler [3] showed that for fixed Hamiltonians Ĥ0 and

Ĥ1 with time evolution Ĥ(t) = (1− t/τ)Ĥ0 + t/τĤ1, the
success probability p of remaining in the ground state
throughout 0 ≤ t ≤ τ is bounded by

p = 1−O(τ−2). (7)

If we take this to be the probability of success for a sin-
gle qubit case, our results in Eqs. 5 and 6 imply that
τ ∈ O(

√
n) is sufficient for an adiabatic evolution. This

shows that the result from Jansen et al. provides a stricter
sufficient condition than the standard adiabatic condition
for our optimization problem with decoupled qubits.
In Fig. 4 we plot the coefficients cu(µ) and cℓ(µ) ob-

tained from numerical fits. The fits used to obtain these
values are akin to those shown in Fig. 3, making us con-
fident in the 1/τ2 scaling of the error. Notice that as we
approach the special case µ = 1 we see that cu(µ) → 0
and observe that around µ = 1 the coefficient cu(µ)
stays close to zero. Hence for µ approximately (but not
exactly) 1, the non-adiabatic speedup will persists for
a large range of n until the adiabatic running time of
O(

√
n) is required again at very large n.

IV. SCALING OF TRUE ADIABATIC RUN

TIME

All of our work so far has shown that the optimal run-
ning time of this algorithm is O(

√
n), but this does not
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FIG. 4: The curves like the one in Fig. 3 are bounded above
and below by curves of the form 1−c/τ 2. We show the values
of c for the upper, cu, and lower, cℓ, bounding functions as
obtained from numerical fits. These coefficients are a function
of µ, and all of the fits used to obtain this data were good
quality. In the main text, we show that these bounding curves
directly lead to a O(

√
n) running time for the algorithm in

all cases except the µ = 1 case where cu(1) = 0.

imply that the optimal running time results from adia-
batic evolution. If we look at the occupancy of the energy
states for these optimal runs, we in fact see the ground
state being depopulated during the s evolution. There-
fore, a remaining question to ask is whether this behavior
also holds if we require the system to stay within a cer-
tain range of its ground state for the entire s ∈ [0, 1]
evolution.
In Fig. 5, we show the time, τ , needed to ensure that

the system has at least a 75% chance of being mea-
sured in its ground state for the entire s ∈ [0, 1] evolu-
tion. All of these curves exhibit power law relationships,
τ = Bnr, with fitted r = (0.497, 0.502, 0.501, 0.500) for
µ = (0.5, 1.0, 1.5, 2.0) respectively. A similar plot can be
obtained if a stricter cutoff than 75% is used.
Fig. 5 shows that the runtime relationships we observe

are in fact indicative of how adiabatic evolution behaves
as well. Therefore, we are led to the conclusion that for
general µ 6= 1, the runtime τ ∈ Θ(

√
n) is both necessary

and sufficient to ensure finding the true ground state.
The µ = 1 case remains a special case that goes against
this rule, allowing for an extreme speedup to a constant
running time.

V. WIDTH OF NON-ADIABATIC SUCCESS

PEAK

Our last goal will be to understand the width of the
success probability spike of p1 in the unperturbed, µ =
1 case when it reaches the optimal p1 = 1. We will
show that this narrowness implies that to be successful
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FIG. 5: These plots shows the runtime, τ , needed to ensure
that state of the system is at least 75% in the ground state
over the entire s evolution. This growth of τ with n comes
closest to a true adiabatic evolution, and we can see that the
τ ∈ O(

√
n) behavior holds even in this case. Power law fits to

these data sets show that the exponent for these curves, in the
order µ = (0.5, 1.0, 1.5, 2.0), are (0.497, 0.502, 0.501, 0.500).
Therefore, the quadratic speedup we see over the sufficient
adiabatic condition is a property of adiabatic evolution in
this system, not the specific τ/pn criteria we used.
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FIG. 6: The width of the non-adiabatic success probability
peak in the curve of pn vs. τ is shown as a function of n.
This problem tunnels through a binomial barrier of width and
height ∝ n0.3. The width of the peaks in success probability
are extracted by performing a Gaussian fit to the top of the
peak and extracting the width of the fitted Gaussian. The
width is modeled well by the curve w = An−p where A =
13.97 and p = 0.467. This width scaling with n is close to
the width scaling of n−1/2 extracted analytically for the no
barrier case.
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for large n, one has to be very precise in using the right
running time τ .
We know that there is a critical runtime τc such that

p1 = 1 for a single qubit. For run times close to this τc,
the probability of success can be modeled by

p1 = 1− δ = 1− k(τ − τc)
2, δ ≪ 1, (8)

where |τ − τc| is the required stopping precision of the
algorithm.
Scaling the system to n qubits, the probability of suc-

cess is pn = pn1 since the qubits are uncoupled in the
unperturbed case:

pn =
(

1− k(τ − τc)
2
)n ≈ 1− nk(τ − τc)

2. (9)

If we want the probability of failure to be less than ε, we
must have that

1− ε < 1− kn(τ − τc)
2 ⇒ |τ − τc| < (ε/kn)1/2. (10)

Thus, maintaining the same success probability as n in-
creases requires the acceptable imprecision |τ − τc| to
shrink according to n−1/2. Note that this

√
n width scal-

ing behavior is independent and unrelated to the adia-
batic scaling of run time.
We have run simulations using binomial shaped bar-

riers to get a sense of this width scaling when a barrier
is present. For µ = 1, we find that the narrowing of the
spiked success probability pn around the critical τc run-
ning time is close to n−1/2. In Fig. 6, we show the width
of the probability peak as a function of n for a binomial
barrier with height and width proportional to n0.3. This
width is extracted by looking at the non-adiabatic opti-
mal success probability peak and doing a Gaussian fit to
the data close to the peak. This fit can ignore the fact
that the peak is not directly at pn = 1 and allows us to
extract an approximation of the width of the peak.
The widths for the barrier case in Fig. 6 are well mod-

eled by the curve w = An−p, with a fitted value of
p = 0.467. This fitted exponent is close to what our
analytics for the no barrier case predict. Other barrier
shapes and sizes exhibit similar scaling in the width of
their non-adiabatic success probability peak.

VI. CONCLUSION

While the µ = 1 case does exhibit a surprising non-
adiabatic speedup that could potentially be exploited,
this diabatic speedup is not a general feature of this class
of quantum annealing problems. Even small changes to
µ are enough to alter the evolution and eliminate the
speedup.

This non-adiabatic speedup had also been noted in the
semi-classical limit of the Hamming-symmetric tunneling
problem in a classical method called Spin Vector Dynam-
ics [2]. We performed simple simulations of Spin Vector
Dynamics for no barrier and µ 6= 1, and observed the
same breaking of the non-adiabatic speedup seen in quan-
tum annealing. Therefore, the non-adiabatic speedup
does not survive in either the classical or quantum set-
tings.

In addition, we show that even in the µ = 1 case, the
non-adiabatic speedup requires inverse polynomial pre-
cision in the runtime to achieve the speedup. Thus, it
is difficult to hit the speedup if it exists. However, even
in the adiabatic setting, this problem shows

√
n running

time which is better than the linear running time pre-
dicted by the adiabatic condition.

The Hamming-symmetric qubit problem has been well
studied explicitly because it is simple enough to admit
analytic work. The fact that simple changes can be made
to this system to eliminate an atypical non-adiabatic
speedup shows the robustness of this toy model. A small
change to the model is enough to bring the model in line
with what should be expected of most physical systems.
Running these algorithms adiabatically remains the best
and only option to achieve success in general.
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