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Aaronson and Arkhipov showed that predicting or reproducing the measurement statistics of a
general linear optics circuit with a single Fock-state input is a classically hard problem. Here we show
that this problem, known as boson sampling, is as hard as simulating the short time evolution of a
large but simple spin model with long-range XY interactions. The conditions for this equivalence
are the same for efficient boson sampling, namely having small number of photons (excitations)
as compared to the number of modes (spins). This mapping allows efficient implementations of
boson sampling in small quantum computers and simulators and sheds light on the complexity of
time-evolution with critical spin models.

I. INTRODUCTION

Boson sampling requires (i) an optical circuit with M
modes, randomly sampled from the Haar measure; (ii) an
input state with N �M photons, with at most one pho-
ton per mode; (iii) photon counters at the output ports
that post-select events with at most one photon per port.
Under these conditions, the probability distribution for
any configuration n ∈ ZM2 p(n1, n2 . . . nM ) = |γn|2, is
proportional to the permanent of a complex matrix whose
computation is #-P hard. This result, combined with
some reasonable conjectures [1], implies that the output
statistics of linear optics circuits with nonclassical inputs
cannot be simulated efficiently using classical computers,
and likely involves an exponential overhead of resources.
More recently, boson sampling has been generalized to
consider other input states [2, 3], extensions to Fourier
sampling [4] or trapped ion implementations [5]. Bo-
son sampling has also been related to practical problems,
such as homomorfic encryption of quantum information
[6], the prediction of molecular spectra [7] and quantum
metrology [8]. Finally, there are other quantum models,
such as circuits of commuting quantum gates [9] which
also establish potential limits of what can be classically
simulated.

The aim of this work is to establish a link between
quantum complexity theory and quantum simulation,
connecting the boson sampling problem to a broad fam-
ily of spin Hamiltonians that appear naturally in different
contexts, from trapped ions [10] to superconducting cir-
cuits [11]. More precisely, we prove that boson sampling
is equivalent to a many-body problem with spins that
interact through a long-range, XY coupling and evolve
for a very short time, of the order of a single hopping or
spin-swap event. The model involves two sets of M input
and output spins

H =

M∑
i,j=1

σ+
out,jRjiσ

−
in,i + H.c., (1)

joined by the (unitary) matrix R. We show that the time
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FIG. 1. (a) A setup that consists of beam splitters and free
propagation implements boson sampling if the input state has
a fixed number of single photons on each port (red wiggles).
(b) We can regard those photons as arising from the sponta-
neous emission of two-level systems onto the circuit (up spins),
which after propagation map onto other two-level systems at
the end, via the unitary matrix R.

evolution of an initial state that has only N excited in-
put spins approximates the wavefunction of the boson
sampling problem after a finite time t = π/2. All errors
in this mapping can be assimilated to bunching of exci-
tations in the optical circuit, and the mapping succeeds
whenever boson sampling actually does.

Where does the intuition for Hamiltonian (1) come
from? The main idea is the fact that the XY spin model
with N excitations in a dilute regime N �M , has a very
small probability of collision between quasiparticles. As
we will show below, this spin model (1) thus behaves as
a linear circuit for noninteracting bosons. The second
idea, and the particular choice of Hamiltonian parame-
ters, arise from a Hamiltonian interpretation of a boson-
sampling circuit where two-level systems σin,j and σout,j
act as the photon emitters and photon detectors [cf. Fig.
1b]. Building on earlier works with qubits in photonic
waveguides [12–14] one can show [11] that a boson sam-
pling circuit implements a coherent, photon-mediated in-
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teraction of the form (1). The combination of these two
ideas provides us with a new physical problem that has
the same complexity as boson sampling, but which can
be mapped to the dynamics of state-of-the art quantum
simulator experiments and small quantum computers.

The paper is structured as follows. In Sect. II we intro-
duce a Hamiltonian formulation for the boson sampling
problem, and compute the time evolution of an arbitrary
multi-photon Fock state under this Hamiltonian. In par-
ticular, we show that the evolution of the boson sampling
state for a certain time t yields the final state that one
would expect at the output of a photonic network. In
Sect. III, we formally establish a mapping betwen boson
sampling and spin sampling, i.e the problem of sampling
from the output distribution of a spin register undergo-
ing long-range XY interactions. We give tight bounds
for the error norm and variation distance between the
evolution of the spin model and a boson sampling emula-
tor, concluding that simulating the evolution of the spin
model for short times is as hard as boson sampling itself.
Finally, in Sect. IV we discuss the implications of this for-
mal results in different fields, from quantum simulation,
where we can now argue about the quantum advantage
of implementing certain simulation in the lab, to quan-
tum complexity theory. In particular, the main conclu-
sion of this work is the possibility of establishing formal
links between quantum simulation of relevant Condensed
Matter Physics models, and rigorous results from com-
plexity theory. We expect that this work will be followed
by others establishing similar links, that consolidate the
interest and hardness of quantum simulation problems.

II. THE BOSON SAMPLING HAMILTONIAN

The core idea in this work is to relate mathematically
the boson sampling setup to other problems which are
framed as evolution under a quantum Hamiltonian. We
begin by establishing the analogy between boson sam-
pling and linear Hamiltonians with bosons, leaving for
III the relation between this problem and strongly inter-
acting hard-core bosonic systems and spin models (1).

Let R be a unitary transformation implemented by the
linear circuit in Fig. 1a. R is randomly sampled from
U(M) according to the Haar measure. We can associate
to this unitary a linear Hamiltonian[15]

HBS =

M∑
i,j=1

(b†jRjiai + H.c.) +

M∑
j=1

ω(b†jbj + a†jaj). (2)

that couples input and output bosonic modes, a and b, of
the boson sampling problem. Evolution with this Hamil-
tonian, |φ(t)〉 = e−iHt |φ(0)〉, transforms the initial state
of boson sampling

|φ(0)〉 = a†1 · · · a†N |vac〉 , (3)

into the output of a boson sampling problem with N

excitations

|φ(π/2)〉 = (−i)N
N∏
i=1

∑
j

R∗jib
†
j |vac〉 . (4)

The bosonic distribution in the output modes is given by

permanents |γn|2 = | 〈vac|b†n1

1 · · · b†nM

M |φ(π/2)〉 |2, ni ∈
{0, 1}, and it is conjecture to be classically hard to sim-
ulate.

A. Proof

In order to establish the link between boson sampling
and evolution with Hamiltonian (2), we introduce new
orthogonal modes

c†j =

M∑
i=1

Rjia
†
i . (5)

These modes satisfy the appropriate commutation re-
lations, [cm, c

†
n] =

∑
iR
∗
miRni = (R†R)m,n = δn,m.

They also diagonalize the previous Hamiltonian, which
becomes a sum of beam-splitter models

HBS =
∑
j

[
b†jcj + c†jbj + ω(b†jbj + c†jcj)

]
. (6)

Dynamics under HBS involves a swap of excitations from
the normal modes ci into the output modes bi. After a
time t = π/2 the initial state (3) is transformed into (4).

Let prove this statement for an initial state with N �
M excitations (3). We write down the Heisenberg equa-
tions for operators evolving as O(t) = e−iHtOeiHt

ḃ†j = −i[H, b†j ] = −iωb†j − ic†j , (7)

ċ†j = −iωc†j − ib†j , (8)

which have as solutions

b†j(t) = e−iωt
[
cos(t)b†j(0)− i sin(t)c†j(0)

]
, (9)

c†j(t) = e−iωt
[
cos(t)c†j(0)− i sin(t)b†j(0)

]
. (10)

Inverting the relation (5), we recover

eiωta†k(t) =
∑

R∗jkc
†
j(t) (11)

= cos(t)a†k(0)− i sin(t)R∗jkb
†
j(0),

where we assume summation over repeated indices. Dy-
namics under Hamiltonian (6) is coherently transferring
population from the a to the b modes, as in

|φ(t)〉 = e−iωNt
N∏
k=1

(
cos(t)a†k − i sin(t)R∗jkb

†
j

)
|0〉 . (12)

At time t = π/2 all population is transferred



3

|φ(π/2)〉 =

N∏
k=1

a†k(π/2) |0〉 , (13)

with

a†k(π/2) = (−i)e−iωNπ/2
M∑
j=1

R∗jkb
†
j . (14)

This is the outcome anticipated in Eq. (4).

B. Intermediate states

While the output state at t = π/2 is trivially related
to the boson sampling problem, it is also true that |φ(t)〉
may be regarded at other times as a coherent superposi-
tion of different boson-sampling instances, |ξBS,n〉 where
only n ∈ {0, 1 . . . , N} bosons participate in the M out-
put modes, while N−n ∈ {N,N−1 . . . , 0} remain in the
input modes. In other words, we have

|φ(t)〉 = e−iωNt
N∑
n=0

(
N

n

)1/2

cos(t)N−n sin(t)n |ξBS,n〉 ,

(15)
with normalized states

|ξBS,n〉 ∝
∑
{k,j}

a†k1(π/2) · · · a†kn(π/2)× (16)

× a†j1(0) · · · a†jN−n
(0) |0〉,

These states consists of N−n excitations that stay in the
input modes (aj(0)) and n excitations that have been
fully transferred to ak(π/2), which are linear combina-
tions of the bk(0) modes. In other words

|φ(t)〉 =

N∑
n=0

cos(t)n sin(t)N−n |ξn,M 〉 , (17)

|ξn,M 〉 ∝
∑
π

c†π1
· · · c†πn

a†πn+1
· · · a†πN

|0〉 .

Each of these instances |ξBS,n〉 is similar to the instances
(4), even if they involve a smaller number of particles.
Let us now remember that for boson sampling to be “ef-
ficient” in the sense of implementable, the number N has
to be small enough so that the fraction of states with two
or more bosons remains small —otherwise most experi-
ments would have to be postselected out—. Interestingly,
from Ref. [17] we know that when that condition is satis-
fied for N particles in M modes, it is also satisfied for all
n ≤ N . This implies that the full wavefunction |φ(t)〉 has
the bunching statistics of efficiently sampled boson sam-
pling problems. This in in sharp contrast with actual
intermediate states in a random interferometer, which
may contain a lot of bunching before the bosons exit the

circuit, and it is due to the fact that the model that we
use to recreate the BS output states, H, does not de-
scribe those intermediate stages, where the dynamics of
individual beam-splitters matters.

Finally, let us remark that the intermediate states
|φ(t)〉 generated by the toy Hamiltonian HBS are not
related to the intermediate wavefunctions in a linear op-
tics circuit. Optical circuits composed of beam splitters
and phase shifters will in general lead to intermediate
states which are highly bunched and highly entangled,
bearing little resemblance to the mathematical construct
(12) above.

III. FROM BS TO HARD-CORE BOSONS

Once we have established the equivalent between bo-
son sampling and time evolution of harmonic models,
we are now going to relate this problem to a family
of strongly correlated models called “hard-core bosons”
(HCB), where particles are not allowed to coexist on the
same mode. We will show that, under the conditions for
boson sampling to be hard both the output state of the
boson sampling problem (4), as well as the intermediate
sates (12), are very close to the HCB limit where there
is at most exactly one boson per mode. This “closeness”
will be established on mathematical grounds by compar-
ing the error that we make in replacing |φ(t)〉 with a
different state |ψ(t)〉 that results from evolving a HCB
state using a HCB version of (2).

A. Dilute limit

As mentioned above, hard-core bosons are strongly in-
teracting particles with an exclusion principle that pre-
vents them to coexist in the same mode. This means
that, unlike linear models, HCB can be described using a
finite Hilbert space where each degree of freedom is either
empty or occupied, C2 = lin{|0〉 , |1〉}. Formally, a hard-
core boson problem (HCB) is assimilated to a spin model,
denoting by |↓〉 ∼ |0〉 and σ+ |↓〉 = |↑〉 ∼ |1〉 the empty
and unoccupied sites. Motion of particles between sites,
such as (2), is described by a Hamiltonian of the form
(1), where the hopping term σ+

out,iσ
−
in,jRij ∼ b†ajRij is

only active when the destination mode i is unoccupied.
The rules of boson sampling [1] demand that we work

with a small number of particles in a large number of
modes, N � M . This means that the final state of the
linear problem (4) only contains a small probability of
two or more bosons accumulating in the same mode. The
probability of these coincidences is exactly equal to the
probability that during post-selection we have to discard
the output of the BS circuit. The set of those events
where two or more bosons accumulate can be grouped
into the error state |ε〉 as explained in Fig. 2

|φ〉 = Q |φ〉+ |ε〉 . (18)
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FIG. 2. The distance between the full bosonic state, |φ(t)〉
and the state approximated with spins, |ψ(t)〉, is covered by
two error vectors: one |δ〉 that lives in the hard-core boson
space (red dashed), and another one that covers the distance
between the projected state Q |φ(t)〉 and the full boson state,
|φ〉 (black dashed).

Here Q |φ〉 is the projection onto states with zero or one
boson per site. It is therefore a wavefunction that fits in
the HCB Hilbert space. The error |ε〉, on the other hand,
only contains bunched states that live outside that space.
For the errors |ε〉 to be eliminated in post-selection while
maintaining the efficiency of the sampling, the number
of modes must be larger than the number of excitations.
The suspected ratio [1] at which sampling becomes effi-
cient is M ' N2[16], with bounds being tested theoreti-
cally and experimentally [17, 18].

B. Spin sampling

The assumption of “diluteness” of excitations, which is
needed for the experimental sampling of bosons, not only
ensures that we have a small probability of boson bunch-
ing at the end of the beam-splitter dynamics, but also
at all times. More precisely, the probability of bunching
of particles in the state |φ(t)〉, estimated by the vector
norm-2 ‖Qφ(t)‖22, roughly grows in time and is bounded
by the final post-selection success probability [cf. App.
A]. In other words, boson sampling dynamics is efficient
only when it samples states with at most one boson per
mode, the so called hard-core-boson (HCB) subspace or
the spin space. In this situation one would expect that
the models (1) and (2) become equivalent, with the soft-
boson corrections becoming negligible.

Continuing with this line of thought, we now study
how well the dynamics of the full bosonic system can be
approximated by the hard-core boson model (1). We re-
gard the spin Hamiltonian as the projection of the full bo-
son sampling model onto the hard-core-boson subspace,
H = QHBSQ. We will show that the boson-sampling dy-
namics is reproduced by the spin model at short times,
with an error that grows with excitation density, and
which is bounded by ‖ε‖2.

Let us assume that |ψ〉 is a hard-core boson state that
initially coincides with the starting distribution of the
boson sampling problem, |ψ(0)〉 = σ+

in,1 · · ·σ+
in,N |0〉 ∼

|φ(0)〉 = a†1 · · · a†N |0〉. This state evolves with the spin
model as i∂t |ψ〉 = QHBSQ |ψ〉 . We define the sampling
error which is made by working with spins as

|δ〉 = Q |φ〉 − |ψ〉 . (19)

A formal solution for this error is

|δ(t)〉 = −i
∫ t

0

e−iQHBSQ(t−τ)QHBS |ε(τ)〉dτ. (20)

As detailed in App. B, bounds for the different terms in
this integral provide us with the core result:

‖δ(t)‖2 ≤ t×O
(
N2

√
M

)
, (21)

which states that the error probability at t = π/2 is neg-
ligible when N ∼ O(M1/4). In the same appendix we
also show numerical evidence that this bound can be at
least improved to N ∼ O(M1/3). Moreover, in App. C
we show that the same bounds apply for the variation
distance between the probability distributions associated
to the quantum states Q |φ〉 and |ψ〉, the measure used
by Aaronson and Arkhipov in Ref. [1].

Equation (20) shows that the errors due to using a spin
model for boson sampling feed from bunching events in
the original problem, |δ〉 ∝ |ε〉, which are prevented by
the HCB condition. For times short enough, these er-
rors amount to excitations being “back-scattered” to the
“in” spins. This means that sampling errors can be effi-
ciently postselected in any given realization of these ex-
periments, rejecting measurement outcomes where there
contain less than N excitations in the σ+

out,j spins. In
this case, what we characterized as an error becomes a
postselection success probability, Pok = 1− ‖δ‖2.

C. Spin model bounds

We will now sketch the physical intuition used in deriv-
ing Eq. (20), leaving the more technical details for App.
B. We start with the Schrödinger equation for the sepa-
ration between the HCB and BS models

i∂t |δ〉 = QHBSQ |δ〉+QHBS |ε〉 . (22)

As explained above, it shows that the errors in approx-
imating the boson sampling with spins result from the
accumulation of processes that, through a single applica-
tion of HBS , undo a pair of bosons from ε, taking this
vector into the hard-core boson sector.

We now bound the maximum error probability as an
integral of two norms. For that we realize that out of ε,
QHBS cancels all terms that have more than one mode



5

with double occupation. Thus, we can derive an inequal-
ity using the operator spectral norms

ε1/2 = ‖δ‖2 ≤
∫ t

0

‖QHBSP1bpair‖2‖P1bpair |ε(τ)〉 ‖2dτ,

(23)
where Q is a projector onto HCB states with N particles
and P1bpair is a projector onto the states with N − 2 iso-
lated bosons and 1 pair of b bosons on the same site. As
explained in the supplementary material [19], the value
‖P1bpair |ε(τ)〉 ‖22 = ‖P1bpair |φ(τ)〉 ‖22 is the probability
of finding a single bunched pair in the full bosonic state.
Combining a similar bound by Arkhipov [17] with the
actual structure of the evolved state, we find

‖P1bpair |ε(τ)〉 ‖2 ≤ O
(

N√
M

)
, (24)

which works provided that N = O(M3/4). We have
also shown [cf. App. B] that the operator norm
‖QHBSP1bpair‖2 is strictly smaller than the maximum
kinetic energy of N bosons in the original model, HBS ,
so that

‖QHBSP1bpair‖2 ≤ N. (25)

Combining both bounds we finally end up with (21).
The proof also gives us a qualitative understanding

of the nature of the errors introduced by the hard-core
boson approximation, |δ〉. From the integral we gather
that these errors take the rare events in which two bosons
are bunched in |ε〉 and return those bosons back to the

input modes, a†j . This suggests that errors in the spin

or hard-core boson model |δ〉 can be recognized as spin
excitations that have not been able to transition from the
input modes, σin, to the output modes, σout.

IV. OUTLOOK AND DISCUSSION

The relation between boson sampling and spin mod-
els allows us to draw some interesting conclusions in a
variety of fields, from quantum simulation to quantum
complexity theory, including existing and possible future
experiments. Let us now discuss some of these ideas and
close with a recapitulation of the main ideas in this work.

A. Quantum simulation and computation

We can use a quantum simulator with spins to imple-
ment spin sampling. As a concrete application, let us
assume that we have a quantum simulator that imple-
ments the Ising model with arbitrary connectivity and
coupling to a transverse magnetic field. We partition the
set of 2M spins into two subsets

HIsing =

M∑
i,j=1

Ji,jσ
x
out,iσ

x
in,j +B

M∑
j=1

(
σzout,j + σzin,j

)
.

(26)

In the limit of very large transverse magnetic field, |B| �
‖J‖2, the evolution of the spin model under this Hamil-
tonian is effectively described by the XY Hamiltonian
(1), up to a constant term proportional to the number
of excitations. The coupling matrix is Ji,j = Jj,i =
Rij , (i, j = 1, . . . ,M) and can represent any random or-
thogonal transformation.

The interaction HIsing is a possible component of uni-
versal quantum computation, because it allows imple-
menting a universal two-qubit gates between separate
pairs of qubits or spins. However, in our protocol we
only require the implementation of a single instance of
such random static couplings for a time t ∼ O(‖J‖−1)
which only allows the implementation of one such gates.
This is incomparably simpler than combining multiple
applications of those couplings in a real algorithm with
error correction.

The Ising interaction (26) is already present in trapped
ions quantum simulators with phonon-mediated interac-
tions [20], a setup which has been repeatedly demon-
strated in experiments [21–23], even for frustrated models
[24, 25], extremely large 2D crystals [26], and in partic-
ular in the XY limit that we just sketched [10]. While
current experiments have only explored a subset of inter-
actions with uniform spatial dependencies, random ion-
ion interactions such as the Jij above can be recovered
from simple time-dependent controls of the forces that
implement the phonon-mediated ion-ion coupling [27].

Another suitable platform for this kind of experiments
is the D-Wave machine or equivalent superconducting
processors with long-range tunable interactions [28–30].
These devices can now randomly sample J from a set
of unitaries over a graph that is a subset of the avail-
able connectivity graph. Since the number of spins is
very large, with over 900 good-quality qubits available,
we expect that those simulations would surpass the com-
plexity of the sampling problems that can be modeled in
state-of-the art linear optics circuits.

Our formal results also suggest an efficient implemen-
tation of boson sampling in a general purpose quan-
tum computer using the following algorithm: (i) Pre-
pare a quantum register with M + M qubits, encoding
the input and output spins, in the first and last N posi-
tions, respectively. (ii) Initialize the register to the state
|ψ(0)〉 = |11, . . . , 1N , 0N+1, . . . , 02M 〉 . (iii) Implement the
unitary U = exp(−iHπ/2), where H is given by (1).
(iv) Measure the quantum register. Post-selected experi-
ments where the N first qubits are at zero, recording the
resulting state of the output qubits to estimate the sam-
pling probability. For this remember that the relation
between |ψ〉 and |φ〉 implies that the sampling probabil-
ity

p(n1, . . . , nM ) = | 〈01, . . . , 0N , n1, . . . , nM |ψ(π/2)〉 |2,
(27)

is the same one as the one from boson sampling, mod-
ulo the errors introduced by δ. It is worth mentioning
that while a general purpose quantum computer might
implement boson sampling via the Schwinger represen-
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tation of bosons, this would require larger number of
qubit resources, and a greater complexity in implement-
ing beam-splitting operations, while our spin sampling
problem requires a smaller Hilbert space, and has a nat-
ural implementation on a small quantum computer.

In general, the spin-sampling simulator will have sim-
ilar sources of error as a boson sampling device: dephas-
ing, losses and callibration errors in the interactions. The
latter source of errors only has an algebraic contribu-
tion, but the former could exponentially damage the sam-
pler. Here is where the use of quantum simulators in the
spin case can provide significant advantages. Take the
trapped ion implementation as an example. The encod-
ing of excitations using atomic ground states means losses
can be irrelevant. Moreover, working in a subspace with
a fixed number of excitations also implies that the de-
vice is less sensitive to global dephasing. Both properties
have been demonstrated in Ref. [10], an experiment that
probes evolution times that are longer than our Jt = π/2
requirement. Note, however, that both the spin-sampling
and boson-sampling problems still have open questions
regarding the verification or validation of the final distri-
butions, but this question lays beyond the scope of this
work.

B. Complexity theory

Our mapping of boson sampling to spin evolution
shows that classically simulating the dynamics of long-
range interacting spin models at short times is as hard
as the classical simulation of boson sampling. More pre-
cisely, if spin sampling could be simulated in a classical
computer, then we could approximate the boson sam-
pling solution with precision poly(N2/

√
M), which would

imply a collapse of the polynomial hierarchy [1].
This idea connects to earlier results that relate the dif-

ficulty of classically simulating time-evolution due to very
fast entanglement growth [31, 32]. It also does not con-
tradict the fact that free fermionic problems can be ef-
ficiently sampled because model (1) only maps to free
fermions for a subclass of tridiagonal matrices R.

There are other remarks to be done about our work
and its place in the existing literature. First of all, it can
be argued that spins or qubits are the underlying compo-
nents of a quantum computer whose computation will in
general amount to evolution with an effective Hamilto-
nian. This argument is bogus in that the resulting Hamil-
tonian will, in general, not be physically implementable,
involving interactions to an arbitrary number of spins and
distance. Moreover, even if certain models such 1 are uni-
versal and may encode quantum computations [33, 34],
the timescales of our result amount to a single hopping
event, which is scarcely the time to implement a single
quantum gate and not an arguably complex computation.

Finally, while at least one work has established connec-
tions between the collapse of the polynomial hierarchy
and spin models [9], that works builds on the conjecture

that the complex partition function of a spin model is
already in #-P, and thus time-evolution of those spin
models is hard to be approximated, which is instead the
conclusion of this work.

C. Conclusions

Summing up, we have demonstrated that boson sam-
pling can also be efficiently implemented using spins or
qubits interacting through a rather straightforward XY
Hamiltonian. We have thus established a family of prob-
lems that are efficiently simulatable in a quantum com-
puter but not on a classical one. Our map opens the
door to demonstrating quantum supremacy using small
quantum simulators of spin models, of which we have
offered two examples: trapped ions and superconduct-
ing circuits. Interestingly, the connection between boson
sampling and spin Hamiltonian simulation hints that the
difficulties found in developing certification methods for
boson sampling may be also present in the validation of
ordinary spin model simulators.
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Appendix A: Bunching bounds

If we want Boson Sampling to be efficient, we need to
impose that the number of bunching events in |φ(π/2)〉
remains small with increasing problem size. Such prop-
erty is guaranteed on average by the random unitaries
U sampled with the Haar measure, as explained by
Arkhipov and Kuperberg in the boson-birthday paradox
paper [17]. Below we will use the fact that the number
of bunching events in |φ(π/2)〉 = |ξBS,N 〉 indeed upper-
bounds the number of bunches in each of its constituents,
|ξBS,n≤N 〉, and use this idea to draw conclusions on the
distance between the true Boson Sampling problem and
the HCB spin model.

We cannot sufficiently stress the fact that the number
of bunching events in |φ(t)〉 is not related to the num-
ber of bunching events in the intermediate stages of a
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linear optics circuit. In order to implement a boson sam-
pler one has to combine beam splitters that at differ-
ent stages of the circuit cause the accumulation of the
bosons. However, while those intermediate states in the
construct are essential to reach the final Boson Sampling
states, |ξBS,n〉, none of those intermediate states belongs
to the family of states at the output of the circuit, |ξBS,n〉,
which must have a low bunching probability (and which
do, as shown by Ref. [17]).

For the purposes of bounding the error from the spin-
sampling model, we need to bound the part of the er-
ror |ε〉 that contains a single pair of bosons on the
same site, on top of a background of singly occupied
and empty states. We have labeled that component
‖P1pairε‖22. However, as discussed in Ref. [17], bounding
that probability is harder than bounding the probabil-
ity pHCB(N,M) of having no bunching event in a state
with N bosons in M modes, distributed according to the
random matrices Rji. This probability is

pHCB(N,M) =

N∏
a=0

M − a
M + a

' e−N2/M (A1)

for dilute systems N = O(M3/4). We now use (i) that
the state |φ(t)〉 in Eq. (12) is made of a superposition of
states with n = 0, 1, . . . N bosons distributed through the
M modes, (ii) that due to the randomness of R, each of
these components shares the same statistical properties
of the boson-sampling states [17], (iii) the probability dis-
tribution pHCB(N,M) is monotonously decreasing with
N . Using Eq. (15) and this idea we arrive at

‖Qφ(t)‖22 '
N∑
n=0

(
N

n

)
cos(t)2(N−n) sin(t)2npHCB(n,M)

≥
N∑
n=0

(
N

n

)
cos(t)2(N−n) sin(t)2npHCB(N,M)

= (cos(t)2 + sin(t)2)NpHCB(N,M)

= pHCB(N,M). (A2)

Using the fact that Q |φ〉 and |ε〉 are orthogonal and thus
‖φ‖22 = ‖Qφ‖22 +‖ε‖22, we can find a very loose bound for
the error probability of single bunching events

‖P1bpairε‖22 ≤ ‖ε(t)‖22 ≤ 1− pHCB(N,M). (A3)

Note that this bound can be translated into an upper
bound of O(N2/M) using the fact that the exponential
falls faster than 1−N2/M .

Appendix B: HCB operator bound

In addition to bounding the error vector, we also need
to bound the norm of an operator that brings back pop-
ulation from the error subspace into the hard-core-boson
subspace. Because ‖P1bpairε‖2 is already rather small, we

FIG. 3. Numerical estimates of the norm ‖QHBSP1bpair‖2 as
a function of the number of bosonic modes, M , for different
number of excitations, N .

can afford a loose bound for the operator ‖QHBSP1bpair‖,
which is the other part of the integral. The argument is
basically as follows. First, we notice that all operators
in the product, Q,HBS and P1bpair, commute with the
total number of particles, which in our problem is exactly
N . We can thus study the restrictions of these operators
to this sector, which we denote as PNOPN for each op-
erator, where PN is the projector onto the space with N
particles. We then realize that ‖AB‖2 ≤ ‖A‖2‖B‖2 and
since the projectors have norm 1,

‖QHBSP1bpair‖2 = ‖QPNHBSPNP1bpair‖2 (B1)

≤ ‖Q‖2‖PNHBSPN‖2‖P1bpair‖2
= ‖PNHBSPN‖2

Notice now that PNHBSPN is just the Hamiltonian of N
free bosons, without hard-core restrictions of any kind.
In other words, it is the restriction of

HBS =
∑
k

(b†kck + H.c.) (B2)

to a situation where
∑
k c
†
kck + b†kbk = N . We intro-

duce superposition modes, αk± = (ck ± bk)/
√

2, and
diagonalize

HBS =
∑
k

(α†k+αk+ − α
†
k−αk−), (B3)

where the constraint is the same
∑
k α
†
k+αk++α†k−αk− =

N . Since the largest eigenvalues (in modulus) are ob-
tained by filling N of these normal modes with the same
frequency sign, we have

‖QHBSP1bpair‖2 ≤ ‖PNHBSPN‖2 = N. (B4)

Note that this proof does not make use of any prop-
erties of H such as the fact that it is built from random
matrices. As explained in the body of the letter, if we
sample QHBSP1bpair randomly with the Haar measure
and average the resulting norms, the bound seems closer
to O(

√
N).
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We have strong evidence that this bound can be sig-
nificantly improved using the properties of random ma-
trices Rij and the structure of QHBSε. In particu-
lar, we have numerical evidence that the average norm
over the Haar measure is ‖QHBSP1bpair‖2 ∝ O(N1/2),
which improves the requirement for efficient spin sam-
pling N ∼ O(M1/3). Fig. 3 shows the average and stan-
dard deviation of the operator norm obtained by sam-
pling random bosonic circuits with N = 2 − 6 particles
in M = 7 − 60 modes, creating random unitaries ac-
cording to the Haar measure and estimating the norm of
the operator QHBSP1bpair with a sparse singular value
solver. Note how, despite the moderate sample size (200
random matrices for each size) the standard deviation is
extremely small, indicating the low probability of large
errors and the efficiency of the sampling.

Appendix C: Variation distance

Throughout this manuscript, we have found bounds
according to the 2-norm, in contrast to Aaronson and
Arkhipov’s work, whose results are expressed in terms of
the variation distance between probability distributions
(this is, 1-norm). However, our proof above can be writ-
ten in a similar was as the one given by Aaronson and
Arkhipov’s, that is

|p1 − p2|1 :=
∑
n

|p1(n)− p2(n)|, (C1)

which represents total difference between probabilities for
all configurations n = (n1, . . . , nM ) of the occupations at
the output ports. In our model, the probability distribu-
tion associated to boson sampling would be

p1(n) = |〈n|φ(t)〉|2 =: |φ(n)|2, (C2)

where if we focus on events with ni ∈ {0, 1}, we can
replace φ with Qφ. The corresponding probability for
the spin model would be

p2(n) = |〈n|ψ(t)〉|2 =: |ψ(n)|2, (C3)

Using the above expressions for the probability distri-
butions, we can write down the following identities for
the total variation distance (C1).∑

n

|p1(n)− p2(n)| =
∑
n

||ψ(n)|2 − |φ(n)|2|

=
∑
n

|ψ∗(n)ψ(n)− φ∗(n)φ(n)| (C4)

=
1

2

∑
n

|[〈ψ(n) + φ(n)|δ(n)〉+ 〈δ(n)|ψ(n) + φ(n)〉]|,

where |δ(n)〉 = |ψ(n)− φ(n)〉. Hence, it follows that∑
n ||ψ(n)|2 − |φ(n)|2| =

∑
n

|Re(〈ψ(n) + φ(n)|δ(n)〉)|

=
∑
n

|Re(2φ∗(n)δ(n) + δ∗(n)δ(n)|

≤ 2
∑
n

|φ(n)||δ(n)|+
∑
n

|δ(n)|2 (C5)

≤ 2

(∑
n

|φ(n)|2
)1/2(∑

n

|δ(n)|2
)1/2

+ ‖δ‖22

= 2‖φ‖2‖δ‖2 + ‖δ‖22,

Since the boson sampling wavefunction is normalized,
‖φ‖2 = 1, and ‖δ‖2 ≤ 1 we finally get the next tight
bound for the variation distance

|p1 − p2| ≤ 3‖δ‖2 = O
(
N2

√
M

)
. (C6)
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