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Many scenarios in the sciences and engineering require simultaneous optimization of multiple

objective functions, which are usually conflicting or competing. In such problems the Pareto front,

where none of the individual objectives can be further improved without degrading some others,

shows the tradeoff relations between the competing objectives. This paper analyzes the Pareto front

shape for the problem of quantum multi-observable control, i.e., optimizing the expectation values of

multiple observables in the same quantum system. Analytic and numerical results demonstrate that

with two commuting observables the Pareto front is a convex polygon consisting of flat segments

only, while with non-commuting observables the Pareto front includes convexly curved segments.

We also assess the capability of a weighted-sum method to continuously capture the points along

the Pareto front. Illustrative examples with realistic physical conditions are presented, including

NMR control experiments on a 1H-13C two-spin system with two commuting or non-commuting

observables.

PACS numbers: 42.50.Dv, 02.30.Yy

I. INTRODUCTION

Quantum control aims at manipulating the dynamics of quantum systems across a wide range of physi-

cal, chemical and biological applications, usually via the implementation of shaped electromagnetic fields

[1]. The objective value J , characterizing the degree that the goal of a specific application is achieved by

a control, is a function of the control resources. Theoretical analysis of the objective as a function of the

control, also known as the control landscape, has revealed many interesting properties of single-objective

quantum optimal control including optimization of pure state transitions, mixed state preparation and

unitary transformation creation [2, 3]. However, in many circumstances we need to consider more than



one criterion simultaneously for assessing the suitability of a control [4–6]. An important example is in

the discrimination of similar quantum systems, known as optimal dynamic discrimination (ODD), with

applications ranging from biological molecules [7] to homonuclear spins [8], by means of their different

dynamics when interacting with a suitably shaped pulse. Multiple ODD experiments are typically per-

formed to aid in the discrimination of the species involved to determine their concentration [9]. Another

important case of multi-objective control is time minimization while driving quantum dynamics towards

some physical objective [10–12], usually for the purpose of reducing decoherence losses in quantum com-

putation. The tradeoff between the competitive objectives of maximizing a quantum gate fidelity and

minimizing the control time has been studied in a number of contexts [13–18]. Finally, in many circum-

stances competing objectives can arise due to limited control resources (e.g. the pulse structure) with an

impact on the level of competitive control [19].

A wide variety of practical problems in many domains inherently involve the simultaneous optimization

of multiple objectives depending on the same set of variables [20]. In the situation of conflicting objectives,

generally there does not exist a single solution that simultaneously reaches the global optima of all

individual objectives. A solution is referred to as Pareto optimal, or nondominated [21], if none of the

objectives can be improved in value without degrading some of the other objective values. Originally

introduced in economics, the concept of Pareto optimality has also been applied to wide ranging physical

and engineering problems, such as the design of materials [22, 23] or sensor networks [24]. The set of

Pareto optimal solutions defines the Pareto front, which separates the feasible and infeasible regions in

the space of objective values [19].

Many efforts have been made to develop universal algorithms for determining the Pareto front [25–

28]. Regarding quantum control applications, experimental identification of the Pareto front has been

achieved with stochastic multi-objective optimization algorithms, such as the nondominated sorted ge-

netic algorithm (NSGA-II) [21, 26] and the multi-objective covariance matrix adaptation (MO-CMA)

evolutionary algorithm [29, 30], through a process of random mutation, ranking, and selection. These

strategies are generally less effective at locating the Pareto front than they are at locating an optimal

solution to single objective control problems [31]; locating the Pareto front calls for identifying a family

of controls specifying the front, thereby increasing the complexity of the task. In numerical simulations,

a variety of deterministic algorithms have been designed for approaching and tracking the Pareto front
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[17, 19, 31, 32]. These methods are based on the scalarization of a multi-objective problem, i.e., converting

the problem to one of single-objective optimization, which can be achieved by some common strategies

including (i) assigning different weights to the individual objectives and combining them into a single

objective [31, 32], and (ii) selecting one objective as primary while treating the others as constraints

[19, 33, 34].

Besides the cases described above, another important multi-objective quantum control problem con-

cerns optimizing the expectation values of multiple observable operators Om’s in the same quantum

ensemble, which is known as multi-observable control and can be viewed as a generalization of the state

preparation control landscape [2] regarding a single observable only. This circumstance may have signif-

icance in various scenarios such as selective excitation of multiple vibrational modes while suppressing

others [35], or simultaneous optimization of NMR signals corresponding to different nuclei, as discussed

in Example 1 of Sec. II B. Theoretical analysis of this problem was reported in Refs. [31, 32], and various

gradient-based deterministic algorithms for identifying and tracking the Pareto front were constructed

therein. Although the range of each individual objective Jm can be easily calculated from the initial

density matrix ρ0 and the single observable Om [2], the conflicting nature of the observables can make

the feasible region smaller than the direct product of individual objective value ranges in most cases. The

main goal of this paper is to analyze the shape of the feasible region, whose boundary forms the Pareto

front. The results provide insights into the tradeoff relations between the individual objectives associated

with different observables, and can serve as a guide for designing Pareto control experiments.

The remainder of the paper is organized as follows. Sec. II proves that for a set of mutually commuting

observables the feasible region in the objective value space must fit inside a convex polytope, and a method

is provided for determining its vertices. The analysis is illustrated by three examples with distinct physical

circumstances. In Sec. III we introduce a numerical method for identifying the Pareto front by optimizing

a weighted-sum objective function, and explain why the method is incapable of continuously capturing

the points in the Pareto front in the case of commuting observables. Sec. IV provides analytic and

numerical results of the Pareto front for two non-commuting observables in specific examples, revealing

the distinction between situations of commuting and non-commuting observables in terms of the Pareto

front shape. Nuclear magnetic resonance (NMR) control experiments performed on a two-spin system

are repored in Sec. V to demonstrate the Pareto concepts and methods described in the paper, and a
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brief conclusion is given in Sec. VI.

II. PARETO FRONT SHAPE WITH MUTUALLY COMMUTING OBSERVABLES

A. Theoretical Analysis

In a large body of quantum optimal control problems, a N -level closed quantum ensemble system is

manipulated by externally implemented control fields to optimize the expectation value of an observable

O at the target time T . The objective function J can be defined as [2]

J = Tr(ρTO) = Tr(Uρ0U
†O). (1)

The final density matrix ρT of the system is related to the initial state ρ0 by ρT = Uρ0U
†, with U being a

unitary propagator generated by the Hamiltonian involving the controls. Given ρ0 and O, the objective J

can be simply treated as a function of U in what is referred to as a kinematic analysis. For simplicity we

will assume in the following that the quantum system is fully controllable, i.e., any unitary transformation

U at time T can be produced by some admissible control fields [36, 37]. Theoretical analysis shows that

this assumption is almost surely satisfied by randomly chosen Hamiltonians [38].

As a natural generalization of (1) we seek to simultaneously optimize the expectation values of M

distinct observables, {Om}Mm=1, in the same quantum system which is assumed to be controllable as

stated above. Define a multi-objective optimization problem with a vector-valued objective function J

including the M scalar functions Jm as

J = (J1, · · · , JM )ᵀ, Jm = Tr(Uρ0U
†Om). (2)

When the observables are conflicting, no unitary propagator U can optimize all of the Jm’s simultaneously.

The vector space for J is separated into the feasible and infeasible regions by the Pareto front. This

paper will focus on the feasible region shape in two situations: either the set of observables are mutually

commuting or not. The main analytic result of the former situation is presented as follows.

Theorem 1. In the multi-observable control problem of Eq. (2), if the observables {Om}Mm=1 are

mutually commuting, then the feasible region of the objective function J fits inside a convex polytope and

includes all of its vertices and edges.
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Proof. Due to the mutual commutativity of the observables, they can be expressed as diagonal matrices

in the same appropriate basis {|j〉}Nj=1. We can further set the initial density matrix ρ0 also to be diagonal

in this basis without loss of generality, guaranteed by the assumed controllability. Let the diagonal entries

of ρ0 and Om be ρ
(j)
0 and O

(j)
m , j = 1, · · · , N , respectively.

The diagonal entries of ρT = Uρ0U
† with an arbitrary unitary matrix U are given by

ρ
(j)
T =

N∑
k=1

|Ujk|2ρ(k)0 . (3)

where Ujk is the (j, k)-th entry of U . Define a N × N matrix P by Pjk := |Ujk|2 ≥ 0, which can

be physically interpreted as the transition probability from the basis state |k〉 to |j〉 under the unitary

transformation U . We denote the vectors of diagonal entries of ρ0 and ρT as x0 and xT , e.g., x0 =

(ρ
(1)
0 , · · · , ρ(N)

0 )ᵀ. Note that for a given ρ0, xT is a linear function of P that xT = Px0. The matrix

variable P is at least subject to 2N linear equality constraints resulting from the unitarity of U such that

each row and column of P sums to unity, i.e.,

N∑
j=1

Pjk = 1, ∀k = 1, · · · , N,

N∑
k=1

Pjk = 1, ∀j = 1, · · · , N, (4)

as well as N2 linear inequality constraints:

Pjk ≥ 0, ∀j, k = 1, · · · , N. (5)

The set of all matrices satisfying (4) and (5) forms a convex polytope in RN2

, known as the Birkhoff

polytope BN , which has N ! vertices given by the permutation matrices [39]. Note that the set of P

matrices that can be physically realized by some unitary U is only a subset of BN ; nevertheless, all of its

vertices are included.

Since xT is a linear mapping of P , the feasible region of xT fits inside a convex polytope in RN whose

vertices are the permutations of x0. Each edge of this N -polytope connects two vertices that differ

by swapping two adjacent values in the sorted sequence of x0 [40], and all points on the edge can be

realized by some U . To illustrate this, consider the example of x0 = (0.5, 0.3, 0.2)ᵀ: The edge connnecting

two adjacent vertices x∗T = (0.3, 0.5, 0.2)ᵀ and x∗∗T = (0.2, 0.5, 0.3)ᵀ, parametrized as λx∗T + (1 − λ)x∗∗T
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(0 < λ < 1), can be realized by

U =


0

√
λ

√
1− λ

1 0 0

0 −
√

1− λ
√
λ

 .

Likewise, unitary matrices U corresponding to all the other edges also exist. Therefore, the feasible region

of xT includes all the vertices and edges of the N -polytope.

To analyze the feasible region of the vector objective function J in (2), we encapsulate the eigenvalues

of the M commuting observables Om into a single M × N matrix O by Omj = O
(j)
m . Thus, J can be

expressed as a function of the diagonal entries of Uρ0U
†, i.e.,

J(U) = OxT (U). (6)

Since J(U) is a linear mapping of xT (U), we know that the feasible region of the muti-observable problem

in (2) also fits inside a polytope and includes its vertices and edges. Q.E.D.

In two special cases we can draw stronger conclusions about the structure of the feasible region and

the Pareto front:

Theorem 2. In the problem of Eq. (2) with only two commuting observables, the Pareto front has the

shape of a convex polygon.

This conclusion holds because the Pareto front for two objectives is at most one dimensional, which

corresponds to the polytope edges in Theorem 1. Note that Theorem 2 does not imply that interior of

the polygon has to be filled up by the feasible region.

Theorem 3. In the problem of Eq. (2) with ρ0 being a pure state, the feasible region has the shape of

a convex polytope (including its interior).

Proof. The pure initial state can be expressed as ρ0 = |ψ0〉〈ψ0|, where |ψ0〉 is a state vector. Due to

the controllability, there exists some U that steers |ψ0〉 to an arbitrary state vector |ψ〉 =
∑N

j=1 cj |j〉,

where
∑N

j=1 |cj |2 = 1. Thus, the diagonal entries of ρT = Uρ0U
† = |ψ〉〈ψ| are given by ρ

(j)
T = |cj |2, and

only need to satisfy the constraints that
∑

j ρ
(j)
T = 1 and ρ

(j)
T ≥ 0. The feasible region of the vector xT

introduced in the proof of Theorem 1 now reduces to a polytope with N vertices (whose interior is filled

up), and the feasible region of J = OxT is a polytope as well. Q.E.D.

According to the analysis above, the individual objective values Jm at the vertices of the feasible region
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of J must satisfy the general form

Jm = Tr(Πρ0Π†Om), m = 1, · · · ,M, (7)

with Π being a permutation matrix. At the vertices, the final density matrix ρT = Πρ0Π†, which is still

diagonal, commutes with each observable Om and thus corresponds to critical points of each individual

objective Jm simultaneously [2]. Note that a point satisfying the form of Eq. (7) does not necessarily

turn out to be a vertex; it could also lie inside the polytope region or on the boundary between two

vertices.

B. Examples for commuting observables

The consequences of our analysis will be illustrated by the three examples below. The theoretically

predicted feasible regions in all examples were confirmed by the following numerical tests. Large numbers

of random unitary matrices U were generated by U = eiA, where the random Hermitian matrix A was

constructed from N2 real variables, N of them arising from Aii (1 ≤ i ≤ N), and N(N − 1)/2 from

<(Aij) and =(Aij) (1 ≤ i < j ≤ N) each. The N2 variables were independently drawn from the identical

uniform distribution in the interval [0, 2π]. The objective value vector J(U) was then calculated with the

random U and gave a feasible sampling point. All the points were found to fall within the theoretically

predicted polytope regions.

Example 1. Consider a coupled two-spin system I-S with I and S denoting two discernible spins-1/2.

We use the operators Ia and Sa (a = x, y, z) to represent the angular momenta of each spin in the

x, y, z directions, defined as Ia := (σa/2) ⊗ I2 and Sa := I2 ⊗ (σa/2), where σa is a Pauli matrix and

I2 is the 2 × 2 identity matrix. In conventional NMR experiments, the thermal equilibrium state of the

system can be well approximated by ρ0 = Iz + rSz (i.e., the traceless portion of the density matrix),

with 0 < |r| < 1 corresponding to the different gyromagnetic ratio of spins I and S [41]. For the purpose

of simultaneously optimizing the signal intensities of both spins in their corresponding NMR spectra

in a single measurement, we can consider the dual-observable optimization of Jm(U) = Tr(Uρ0U
†Om),

m = 1, 2, with O1 = Ix and O2 = Sx. By finding all the 4! = 24 permutations of the nondegenerate

ρ0 (The complexity for n-spin systems grows rapidly scaling as 2n!), we can calculate the simultaneous

critical points of J1 and J2 with Eq. (7) and thus construct the Pareto front, as plotted in Fig. 1 with
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r = 0.25. The Pareto front of this problem is an octagon with eight vetices at (J1 = ±1, J2 = ±r)

and (J1 = ±r, J2 = ±1), and the other critical points fall inside or on the boundary of the octagon.

The Pareto optimal points between two adjacent vertices are non-critical for at least one of J1 and J2,

representing situations that the two objectives may be improved individually, but not simultaneously.

When J1 reaches its global optima at ±1, the other objective J2 can only take values within the range

[−|r|, |r|], and vice versa. Further improvement of J2 can be achieved via coherence transfer [41], but the

value of J1 will inevitably deviate from its optimum at the same time; e.g., the maximization of J1 and

J2 obeys a linear tradeoff relation that J1 + J2 ≤ 1 + |r|. Experimental verification of the analysis in this

example is given in Sec. V.

Example 2. The orbitals of the electron in a hydrogen atom can be described by three quantum numbers

(ignoring electron spin), the principal quantum number n = 1, 2, · · · , the angular momentum quantum

number l = 0, 1, · · · , n−1, and the magnetic quantum number ml = −l, · · · , l. The orthonormal basis set

|n, l,ml〉 contains eigenstates of two commuting observables: (i) the orbital angular momentum squared,

L2, and (ii) the angular momentum in z direction, Lz. In units where ~ = 1, we have

L2|n, l,ml〉 = l(l + 1)|n, l,ml〉, Lz|n, l,ml〉 = ml|n, l,ml〉. (8)

Consider dual-observable optimization of O1 = L2 and O2 = Lz with a pure initial state ρ0 =

|1, 0, 0〉〈1, 0, 0|, where |1, 0, 0〉 is the atomic orbital with n = 1 and l = ml = 0. In this infinite di-

mensional Hilbert space the expectation values of both observables are unbounded from above. We

assume that the quantum bound states of the electron are fully controllable, which requires adequate po-

larization freedom of the light fields interacting with the atom. In the objective space, the feasible region

has vertices at (J1 = l(l+1), J2 = ±l), i.e., (0, 0), (2,±1), (6,±2), (12,±3), · · · , as depicted in Fig. 2. By

contrast, if we treat the electron as a classical particle, the boundary of the feasible region should simply

be the parabola 〈L2〉 = 〈Lz〉2, which is also shown in the figure. As l → ∞ which requires the electron

to have a high quantum number n (almost ionized), the slope of the quantum Pareto front will become

closer to its classical counterpart. This example shows that quantization can break the smoothness of a

Pareto front for multi-observable control, a phenomenon rooted in the fundamental distinction between

quantum and classical descriptions of the world.
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Example 3. In a four-level system, we define a three-observable optimization problem by ρ0 = |1〉〈1|

and Om = |m〉〈m|, m = 1, 2, 3. The objectives J1, J2 and J3 represent the populations of levels |1〉,

|2〉 and |3〉 at the final state ρT , respectively. The feasible region in the objective space (J1, J2, J3) is a

tetrahedron given by the inequalities

J1 + J2 + J3 ≤ 1, J1, J2, J3 ≥ 0, (9)

since the populations of each level must be non-negative. However, if we decrease the system dimension-

ality by removing the level |4〉 while leaving ρ0 and Om’s unchanged, the feasible region will possess three

vertices only and become a two-dimensional triangle given by

J1 + J2 + J3 = 1, J1, J2, J3 ≥ 0. (10)

Since a linear combination of the observables, O1 + O2 + O3, equals the identity matrix in this specific

case, the individual objectives are related by an extra equality that J1 + J2 + J3 = Tr(ρT ) = 1, resulting

in a two-dimensional feasible region in the three-dimensional objective space (see Fig. 3). From this

example we see that for the cases of mutually commuting observables, the dimensionality of the feasible

region is upper bounded by a quantity we call “effective rank” of the observable set {Om}Mm=1, defined

as (Rank{O1, · · · , OM , IN}-1) in a N -level system.

III. NUMERICAL METHODS FOR IDENTIFYING THE PARETO FRONT

Generally, the feasible region of a multi-objective problem can be generated numerically with various

Pareto optimization algorithms [31, 32]. This section will start from the derivation of a classic weighted-

sum algorithm, and then discuss its drawback when applied to the case of mutually commuting observables

as described in Sec. II.

For the multi-observable optimization problem in Eq. (2) we introduce u to represent a generic control.

The vector or function u is defined in a linear space, which generates the unitary propagator U trans-

forming the initial state ρ0 to ρT and gives the objective values Jm. For example, u could be a function

of time defined on the space L2[0, T ], serving as the control field. Denote the gradient of an individual

objective Jm with respect to u by ∇Jm, then the variation of Jm caused by δu is

δJm = ∇Jm · δu, m = 1, · · · ,M. (11)
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Suppose u∗ is a Pareto optimal control in a smooth segment of the Pareto front. Let the normal unit

vector to the Pareto front at the point u∗, pointing from the feasible to the infeasible region, be k =

(k1, · · · , kM )ᵀ. By the definition of a Pareto front, any allowed first-order variation of the objective value

vector, δJ = (δJ1, · · · , δJM )ᵀ, at u∗ must satisfy

k · δJ =

M∑
m=1

kmδJm =

(
M∑

m=1

km∇Jm

)
· δu ≤ 0, (12)

otherwise the infeasible region would be encroached. In order to guarantee Eq. (12) for any δu, the

gradients ∇Jm’s have to satisfy

M∑
m=1

km∇Jm = 0, (13)

i.e., at the Pareto front the gradients of the individual objectives are linearly dependent. This first-order

necessary condition for a Pareto optimum is well known, and it has been derived in different manners

[42, 43].

The condition enables us to scalarize the vector-valued multi-objective optimization problem (2) for

identifying its Pareto optima. Define a new objective function J as a linear weighted sum of Jm’s with

a set of weights w = (w1, · · · , wM )ᵀ,

J = w · J =

M∑
m=1

wmJm, (14)

then a Pareto optimum satisfying Eq. (13) will also have a zero gradient on J if w is parallel to k.

Therefore, a Pareto optimal point of the original problem may be located by finding the maximum of J ,

in which the Jm’s to be maximized (minimized) should be assigned positive (negative) weights. In the

framework of multi-observable control (2), J can also be viewed as the expectation value of a new single

observable O :=
∑M

m=1 wmOm,

J =

M∑
m=1

wmTr(ρTOm) = Tr

[
ρT

(
M∑

m=1

wmOm

)]
= Tr(ρTO). (15)

Intuitively, by optimizing J with continuously adjusted weights one should be capable of capturing

different Pareto optimal points and thus reconstruct the entire Pareto front. However, it turns out that for

mutually commuting observables, the Pareto front cannot be continuously sampled by this weighted-sum

method. As shown in Sec. II, the Pareto front consists of flat segments. The normal vector k points at

a constant direction within each segment, and changes abruptly across the edges of the polytope region.
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If the vector of weights w for a chosen objective function J is not parallel to the normal vector of any

flat segment, then J can only be optimized at the locations where multiple segments join together and

the normal vector is undefined. As w varies continuously, the gradient optimization trajectory of J will

converge to one of the polytope vertices for most choices of w, as experimentally demonstrated in Sec. V.

This behavior agrees with the finding that the weighted-sum method succeeds in obtaining points from

all parts of a Pareto front only when it is convex, but fails to work when it is flat or concave [44, 45], as

illustrated in Fig. 4.

IV. PARETO FRONT SHAPE WITH NON-COMMUTING OBSERVABLES

This section will discuss the Pareto front shape in the more general and complex cases involving non-

commuting observables. The theorems in Sec. II A no longer applies because the observables cannot be

simultaneously diagonalized in the same basis, and the feasible region does not have to be a polytope. No

closed-form expression for the Pareto front is found except in some special problems. However, with some

numerical methods, such as random sampling in the unitary space of U and the weighted-sum algorithm

in Eq. (15), we can still sketch the Pareto front of a particular problem. For simplicity we deal with

two non-commuting observables here, which is sufficient for the purpose of revealing the fundamental

distinction of commuting and non-commuting observables in Pareto optimization.

The Pareto front shape with non-commuting observables is first illustrated within a two-level system.

A two-observable optimization problem is defined as:

ρ0 = (I2 + σz)/2, O1 = σx, O2(θ) = cos θσx + sin θσy, (16)

where σx, σy and σz are the Pauli matrices. The observables O1 and O2 are non-commuting except when

sin θ = 0. In the circumstance of a single spin-1/2, this problem can be viewed as optimization of the

angular momenta in two distinct orientations separated by an angle θ. Note that any two-observable

problem in a two-level system can be converted to a form like Eq. (16) after some rescaling and frame

rotation. The final state ρT after the control process corresponds to a point on the Bloch sphere, so

[Tr(ρTσx)]2 + [Tr(ρTσy)]2 ≤ 1. (17)

Representing Tr(ρTσx) and Tr(ρTσy) in terms of J1 and J2 (i.e., corresponding to O1 and O2, respec-
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tively), we obtain

J2
1 − 2 cos θJ1J2 + J2

2 ≤ sin2 θ. (18)

This inequality gives a feasible region whose boundary is an ellipse in the objective space (J1, J2), the

eccentricity of which depends on θ. In the extremal cases that sin θ = 0 or cos θ = 0 the ellipse converts

to a line segment (−1 ≤ J1 ≤ 1, J2 = ±J1) or a circle (J2
1 + J2

2 = 1), respectively. The feasible region

shapes at three representative values of θ, 0, π/4 and π/2, are plotted in Fig. 5, which have been verified

numerically with random samplings of U . For such convexly curved segments as a Pareto front, the

normal vector direction changes continuously as we move on the Pareto front. This property enables

us to systematically sample the Pareto front by optimizing weighted-sum objetive functions in Eq. (15)

with varying weights, as opposed to the case of flat Pareto front segments discussed in Sec. III.

Generally in higher-dimensional quantum systems, the feasible region with two non-commuting ob-

servables cannot be simplified to a form like Eq. (18), and the Pareto front is not necessarily an ellipse.

In all the examples we numerically tested with random ρ0 and non-commuting observables, the Pareto

fronts contained convex or flat segments only, but no concave ones. In some situations the Pareto front

may even be a mixture of both flat and curved segments, and a three-level illustrative example is given

as follows:

ρ0 =


1 0 0

0 0 0

0 0 0

 , O1 =


1 0 0

0 1 0

0 0 0

 , O2 =


1 0 0

0 0 1

0 1 0

 . (19)

The Pareto front of this problem, as shown in Fig. 6, was generated by random samplings followed

by gradient optimization of weighted-sum functions in Eq. (15). It consists of two line segments, AB

and BC, and an arc
_

AC. Point B located at the global maximum of both J1 and J2 forms the only

nondifferentiable point in the Pareto front, where the normal vector changes abruptly from (0, 1)ᵀ to

(1, 0)ᵀ. To understand this behavior we recall that a Pareto optimum of the multi-observable problem

must also be a critical point of the weighted-sum function in Eq. (15) with some choice of w. The

condition is equivalent to that [2] [
ρT ,

M∑
m=1

wmOm

]
= 0, (20)
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i.e., ρT commutes with a weighted sum of the single observables for some choice of wm’s. In the two-

observable case, if a Pareto optimal ρT commutes with both O1 and O2, the coefficients w1 and w2 can

be arbitrary. Thus, the Pareto front will have no unique normal vector at that point, possibly resulting

in nondifferentiability. For commuting O1 and O2 there always exist such ρT ’s that commute with both

observables, which are responsible for the vertices of the feasible region polytope. For non-commuting

observables the existence is not guaranteed; e.g., no Hermitian matrix commutes with both σx and σy

except the identity or zero matrix. In the three-level example of Eq. (19) O1 and O2 are non-commuting;

nevertheless, there still exists an accessible ρT (i.e., ρT = ρ0) that commutes with both O1 and O2,

resulting in the nondifferentiable vertex B on the Pareto front.

V. EXPERIMENTAL DEMONSTRATIONS

In this section we demonstrate the theoretical analysis on the shape of Pareto front by 1H and 13C

NMR experiments performed on a 800 MHz spectrometer. We use 13C-labeled chloroform (13CHCl3)

as the sample, and denote the two coupled nuclei 1H and 13C as spin I and S, respectively. Two radio

frequency pulses with an equal duration of T = 5ms irradiate the sample simultaneously as the control

resources, whose carrier frequencies are resonant with 1H or 13C. The amplitudes and phases of the

control pulses are modulated in the time domain for optimally driving the dynamics of the two-spin

system in the desired manner. The detailed experimental setup is similar to that used in our previous

works [41, 46, 47].

The initial density matrix of the system is taken as ρ0 = Iz + 0.25Sz, which is proportional to the

traceless portion of the thermal equilibrium state. Two cases of multi-observable control are considered:

(i) two commuting observables, O1 = Ix and O2 = Sx (c.f., Example 1 in Sec. II B); and (ii) two

non-commuting observables, O1 = Ix and O2 = Iy. The expectation values of these observables can be

characterized by the integrated areas of the doublet peak ascribed to 1H or 13C in the corresponding

NMR spectrum of that isotope. In case (i) the signals of the two isotopes are acquired simultaneously by

the dual detectors and then processed individually, while in case (ii) the two observables, both associated

with the spin angular momentum of 1H but in two orthogonal orientations (denoted by x and y), are

successively measured by 1H NMR with identical control pulses and detector phases differing by 90◦.

13



For a control that steers the quantum system from ρ0 to ρT , the two objectives Jm = Tr(ρTOm),

m = 1, 2, directly read from the NMR spectra, are given in arbitrary units. Utilizing a gradient algorithm

and starting from the same initial control, we maximized the weighted-sum objective function

J (w1) = w1J1 + (1− w1)J2, 0 ≤ w1 ≤ 1, (21)

along its own gradient to approach the Pareto front, and attempted to locate different points on the

front by varying the weight w1 from 0 to 1. The maximum values of J1 and J2 under the experimental

condition were first determined by setting w1 to 1 or 0 and then normalized to 1, as the theoretical

maximum values of J1 or J2. The evolution of individual objective values (J1, J2) in the optimization

processes is displayed in Fig. 7.

The theoretical result for the Pareto front of case (i) is given in Fig. 1, which has eight vertices.

The trajectories in Fig. 7(a) with a relatively small weight of J1 (w1 = 0.3, 0.4) converged toward the

vertex A(J1 = 0.25, J2 = 1), the global maximum of J2 but not J1, while the trajectory with a larger

weight of J1 (w1 = 0.6) converged to another vertex B(J1 = 1, J2 = 0.25) at the global maximum of

J1. We also verified from simulation that any trajectory with 0 < w1 < 0.5 or 0.5 < w1 < 1 should also

converge to vertex A or B, respectively, since the line segment AB has a constant normal direction of

(1, 1)ᵀ. A trajectory with w1 = 0.5 could stop somewhere between A and B, in principle, because all

the points in the line segment give an identical J value, which equals its global maximum. Therefore,

the weighted-sum method will be incapable of continuously sampling the Pareto front with commuting

observables Ix and Sx. In case (ii), the feasible region is predicted to be the disc J2
1 + J2

2 ≤ 1. The five

search trajectories in Fig. 7(b) converged to different points in the Pareto front, moving gradually along

the arc from the maximum of J1 to the maximum of J2 as w1 decreases from 1 to 0. The normal vector

at each identified Pareto optimal point is roughly parallel to the vector of weights w = (w1, 1− w1)ᵀ as

expected. The collective experimental results are in agreement with our theoretical predictions on the

Pareto front shape of multi-observable optimal control with commuting and non-commuting observables,

and the effectiveness of the weighted-sum algorithm.
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VI. CONCLUSIONS

This paper deals with the generic problem of quantum multi-observable control, which seeks to simul-

taneously optimize the expectation values of M distinct and usually conflicting observables in the same

quantum ensemble with an initial state of ρ0, steered by a single unitary transformation U . The individual

objective functions are defined by Jm(U) = Tr(Uρ0U
†Om), m = 1, · · · ,M . We particularly focus on the

tradeoff relations between these competitive objectives described by the shape of Pareto front, given by

the feasible region boundary in the space of objective values. We proved that for two commuting observ-

ables, the Pareto front in the objective value space (J1, J2) has the shape of a convex polygon consisting

of flat segments. When non-commuting observables are involved, convexly curved segments will emerge

in the Pareto front while flat segments can also be present in certain cases. These conclusions on Pareto

front shapes should apply to any quantum control circumstances with unitary system dynamics. When

the full controllability condition is violated, the realized feasible region may shrink to a reachable subset.

The results here provide a new perspective for understanding multi-objective optimization in quantum

control, and reveal an interesting distinction between commuting and non-commuting observables as a

feature of quantum mechanics.

We also discussed the capability of some numerical methods in Pareto front identification, especially

the strategy of optimizing a scalar objective function defined as a linear weighted sum of the individual

objectives. With the weighted-sum method one can continuously capture the points along a convex Pareto

front segment by varying the relative weights assigned to the Jm’s, but for flat segments the optimization

search will almost always converge to a vertex of the feasible region, as demonstrated in NMR control

experiments performed on a 1H-13C two-spin system.
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FIG. 1: (Color online) The Pareto front of Example 1, a dual-observable problem defined in a two-spin system

I-S, which has the shape of an octagon. The initial density matrix is chosen as ρ0 = Iz + 0.25Sz, and the two

commuting observables are O1 = Ix and O2 = Sx. The points marked by ◦ and × are determined by permuting

the diagonal entries of ρ0 and calculating the corresponding J1 and J2 values; the former points are vertices of

the octagon while the latter ones are not.
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FIG. 2: (Color online) The Pareto front of Example 2 on manipulating the orbital angular momentum of the

electron in a hydrogen atom. A pure initial state ρ0 = |1, 0, 0〉〈1, 0, 0| is chosen, while the two commuting

observables are O1 = L2 and O2 = Lz. Both quantum and classical results of the Pareto front are provided to

show the distinction caused by quantization.
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FIG. 3: (Color online) The feasible region of Example 3, defined by ρ0 = |1〉〈1| and three mutually commuting

observables Om = |m〉〈m|, m = 1, 2, 3. If the system only has the three levels |1〉, |2〉 and |3〉, the feasible region

will be the colored triangle ABC. Once a fourth level (or more) is added in, the feasible region will be extended

to the tetrahedron OABC.
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FIG. 4: (Color online) Searching for the Pareto front by optimizing a weighted-sum objective J = w1J1 + w2J2.

The dashed lines depict level sets with constant J values at different choices of w = (w1, w2), and in optimizing

J along its own gradient we move across the level sets until stopping at a level set tangent (or nearly so, in

practice) to the feasible region boundary. In (b) where the Pareto front (solid line) is smooth and convex, the

search will stop where the normal vector (an arrow) is parallel to w, while in (a) where the Pareto front consists

of flat segments, the search will always stop at the vertex if w is aligned with any direction between the two

dashed arrows.
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FIG. 5: (Color online) The Pareto front of the two-observable problem in (16). The observables are non-commuting

except when sin θ = 0. As the parameter θ varies, the Pareto front may take on the extreme shapes of a circle,

an ellipse or a line segment.
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FIG. 6: (Color online) The Pareto front of the three-level example in Eq. (19) is a mixture of both flat and convexly

curved segments. The nondifferentiable vertex B corresponds to critical points of both individual objectives J1

and J2, and the Pareto front does not have a unique normal direction at point B.
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FIG. 7: (Color online) Experimental NMR illustrations of the theoretical Pareto principles. Dual-observable

quantum control experiment in the two-spin system of 13CHCl3 (I =1H, S =13C): the evolution of (J1, J2) during

the optimization of a weighted-sum objective function J (w1) = w1J1 + (1 − w1)J2. (a) O1 = Ix and O2 = Sx

(commuting); (b) O1 = Ix and O2 = Iy (non-commuting). The dashed lines depict a portion of the theoretical

Pareto fronts in the two cases. Red dotted and blue solid lines show optimization processes of an individual

objective (J1 or J2) and combinations of both, respectively, with each point representing an experimental iteration.
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