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We analyze the operation of a four-qubit Bacon-Shor code with simultaneous continuous mea-
surement of non-commuting gauge operators. The error syndrome in this case is monitored via
time-averaged cross-correlators of the output signals. We find the logical error rate for several mod-
els of decoherence, and also find the termination rate for this quantum error detecting code. The
code operation is comparable to that based on projective measurements when the collapse timescale
due to continuous measurements is an order of magnitude less than the time period between the
projective measurements. An advantage of the continuous-measurement implementation is the ab-
sence of time-dependence in the code operation, with passive continuous monitoring of the error
syndrome.

I. INTRODUCTION

Quantum error correction (QEC) is a necessary pro-
cedure in a practical quantum computer operation [1–
4]. Besides standard stabilizer codes [3], much attention
has been recently given to surface codes [5–7] because of
their relatively high fault-tolerant threshold without the
need of concatenation, and also because the measured
operators involve only four neighboring qubits. Signifi-
cant attention has also been paid recently to Bacon-Shor
codes [8–10], where measured operators involve only two
qubits, which simplifies implementation [11]. There has
been a significant experimental progress toward practical
QEC [11–17], including experiments with superconduct-
ing qubits [18–23].

While most of the QEC codes are based on repetitive
projective measurement of multi-qubit operators, contin-
uous QEC has also been analyzed theoretically [24–32].
The general idea in most of these proposals is to monitor
multi-qubit operators continuously and apply a continu-
ously changing feedback Hamiltonian to the qubits. It is
expected that such continuous error correction can out-
perform traditional QEC; however, there are significant
challenges, including computationally expensive tracking
of the state and the fact that the feedback Hamiltonian
necessarily contains fluctuations caused by the output
noise of continuous detectors. Therefore, while contin-
uous quantum feedback [33, 34] is already available for
superconducting qubits [35, 36], it is still unclear in which
manner it can be useful for practical QEC.

A natural way of employing continuous measurement
in stabilizer codes is using it only for continuous monitor-
ing of the error syndrome, while error correction is still
applied in a traditional discrete way after the syndrome
indicates that a certain error has occurred (the actual
error correction can be postponed until the end of the
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procedure, after tracked accumulation of several errors
[10, 28, 37]; performance comparison with the continu-
ous feedback is still an important subject). This man-
ner of operation can also be applied to surface codes
[7] in principle, since all measured operators commute
with each other. However, it is not immediately clear
if continuous measurement can or cannot be used in the
Bacon-Shor codes, which necessarily need measurement
of non-commuting two-qubit operators [38]. This is the
question, which we analyze in this paper for the simplest
four-qubit Bacon-Shor code.

Simultaneous measurement of non-commuting observ-
ables has been discussed long ago [39–48]; however, a
theory for the qubit evolution due to continuous non-
commuting measurements has been developed relatively
recently [49], and the first such experiment with a super-
conducting qubit has been realized only in the past year
[50]. Note that in this experiment the physical qubit was
under constant Rabi rotation, so that simultaneous mea-
surement of non-commuting observables was realized for
an effective qubit in the rotating frame. There are no ex-
periments yet on simultaneous continuous measurement
of non-commuting two-qubit operators; however, qubit
entanglement due to continuous measurement of two-
qubit operators [51] has already been well demonstrated
with superconducting qubits in various setups [52–54].
In this paper we assume simultaneous continuous mea-
surement of non-commuting two-qubit operators without
discussing possible experimental ways of realizing such a
measurement (which may rely on the rotating frame as
in Ref. [50]).

The main question of this paper is whether and how
continuous measurement can be used in the operation
of the Bacon-Shor code, which by construction relies on
non-commuting two-qubit operators. We will consider
the simplest Bacon-Shor code, which contains four qubits
and needs measurement of four (gauge) operators: X1X2,
X3X4, Z1Z3, and Z2Z4 (out of six pairs of these opera-
tors, four are non-commuting). The standard operation
cycle of this code consists of two steps: simultaneous pro-
jective measurement of commuting operator pairs X1X2
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and X3X4, and then the second pair: Z1Z3 and Z2Z4. In
contrast, in our case all four operators are measured at
the same time continuously. The error syndrome in this
case is monitored using time-averaged cross-correlators
of the noisy output signals, so that an error is indicated
by crossing a certain threshold. It is interesting that
the evolution analysis is similar to the analysis of con-
tinuous non-commuting measurement of a single qubit
[49, 50, 55]. Our main result is that the operation of
the four-qubit Bacon-Shor code with continuous mea-
surement is indeed possible and similar to the standard
operation with projective measurement. The advantage,
however, is an absence of time-dependence in the proce-
dure, with a passive steady-state monitoring of the error
syndrome.

Note that the considered four-qubit Bacon-Shor code
is a quantum error detecting code, while the smallest
Bacon-Shor code for error correction contains nine qubits
(not considered here). Therefore, so far our results are
valid only for quantum error detection. While we antici-
pate that the QEC results for the nine-qubit (and higher)
Bacon-Shor codes with continuous measurement are sim-
ilar to the results presented here, this will require a sep-
arate analysis.

An operation of a usual quantum error detecting or
correcting code (we consider only quantum memory for
one logical qubit) assumes encoding a logical qubit into
several physical qubits, keeping it for a relatively long
time in the presence of decoherence, and then decoding
it back into a logical qubit. We do not consider fault-
tolerant schemes in which logical operations are applied
without decoding. For simplicity, encoding and decoding
are assumed to be perfect, so that we can focus on storage
of quantum information only. In QEC the decoded logical
qubit should always be “handed back”; however, an er-
ror detecting code has also an option of not returning the
logical qubit: the procedure is terminated when an error
is detected, since it cannot be corrected. Therefore, while
the main performance characteristic for a QEC code is
the probability of a logical error or the corresponding log-
ical error rate, a quantum error detecting code is charac-
terized by two main parameters. The first parameter is
the success probability (probability that the procedure is
not terminated) or the corresponding success probability
decay rate [37] (the rate of detected errors). For brevity
we will call this rate the termination rate. The second
parameter for a quantum error detecting code is the log-
ical error probability (or the corresponding rate) condi-
tioned on the absence of detected errors [37]. We will
use the terminology of logical error rate, often omitting
the word “conditional”. The termination rate is usually
larger than the rate of errors in physical qubits (because
the code is supposed to terminate operation when an
error occurs), and it can be significantly larger due to
“false alarms”, when an error is indicated even though it
actually did not occur. In this paper we calculate the log-
ical error rate and the termination rate for the four-qubit
Bacon-Shor code with continuous measurement and com-
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FIG. 1: The four-qubit Bacon-Shor code contains four phys-
ical qubits (shown by circles) and is based on measurement
of four operators (dashed lines): X1X2, X3X4, Z1Z3, and
Z2Z4, called gauge operators. In the conventional code op-
eration they are measured in two steps, thus separating non-
commuting pairs (Fig. 2), while in this paper we also analyze
the case when all four operators are measured at the same
time continuously.

pare them with those for the conventional code operation
with projective measurements.

The paper in organized in the following way. In Sec. II
we consider the conventional four-qubit Bacon-Shor code
operated with projective measurements. We start with
a discussion of the protocol (Sec. II A) and its operation
without errors (Sec. II B), then discuss classification of
single-qubit and two-qubit errors (Sec. II C), and then
calculate the logical error rates and the termination rate
for several models of decoherence (Sec. II D). The four-
qubit Bacon-Shor code with continuous measurements is
analyzed in Sec. III. We start with an overview of the
mathematical approach and results (Sec. III A). Then
in more detail we analyze the evolution due to continu-
ous measurement for a general state (Sec. III B), without
errors (Sec. III C), and within error subspaces (III D).
The mapping due to single-qubit errors is discussed in
Sec. III E, followed by calculation of logical error rates
in Sec. III F. The false alarm rate and response time
are analyzed in Sec. III H. Numerical results of Monte
Carlo simulations are presented in Sec. III I. Compari-
son between the operations with projective and continu-
ous measurements is discussed in Sec. III J. Section IV
gives the conclusions.

II. FOUR-QUBIT BACON-SHOR CODE WITH
PROJECTIVE MEASUREMENTS

A. System, protocol, and code space

The four-qubit Bacon-Shor code contains four physical
qubits, labeled 1–4 in Fig. 1, and its conventional opera-
tion is based on projective measurement of four two-qubit
operators (gauge generators [8, 9]), for which we will in-
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FIG. 2: One cycle of the code operation with projective mea-
surement of gauge operators: at step 1 the operators Z1Z3 and
Z2Z4 are measured instantaneously, and at step 2 the oper-
ators X1X2 and X3X4 are measured (also instantaneously).
The duration of each timestep is ∆t, so the cycle duration is
2∆t. In the absence of errors, product of two measurement
results (±1) at each step is +1.

terchangeably use the following notations:

X1X2 = X12 = G1, X3X4 = X34 = G2,

Z1Z3 = Z13 = G3, Z2Z4 = Z24 = G4,
(1)

where X = σx and Z = σz are the Pauli matrices (sim-
ilarly Y = σy) and indices of the Pauli operators indi-
cate qubit numbering. Since the operators in the first
and second lines of Eq. (1) do not commute with each
other, they are measured sequentially. We will consider
the version of the protocol shown in Fig. 2, in which each
cycle of the protocol consists of two timesteps. The first
time step of duration ∆t ends with instantaneous pro-
jective measurement of the operators Z13 and Z24, and
the second timestep of the same duration ∆t ends with
measurement of operators X12 and X34. (In principle,
duration of one of the timesteps can be almost zero, but
we use ∆t for both of them, as more realistic for an ex-
periment.) Note that [X12, X34] = [Z13, Z24] = 0 and
{X12, Z13} = {X12, Z24} = {X34, Z13} = {X34, Z24} =
0, where [·, ·] denotes commutator and {·, ·} denotes an-
ticommutator (these anticommutators are zero because
the pairs contain exactly one common qubit). Also note
that each of the four Pauli operators (1) has eigenvalues
±1, which correspond to the measurement results.

The group generated by the measured gauge operators
Gk [Eq. (1), k = 1, 2, 3, 4] has an Abelian subgroup (sta-
bilizer), whose every element also commutes with every
Gk, with generators

Xall = X1X2X3X4 = X12X34,

Zall = Z1Z2Z3Z4 = Z13Z24.
(2)

These operators have eigenvalues ±1, corresponding to
parities of measurement results of X-type and Z-type
operators in Eq. (1). The step-1 measurements (Fig.
2) project a 16-dimensional four-qubit state onto a 4-
dimensional subspace belonging to one of the two 8-
dimensional eigenspaces of Zall, while the step-2 mea-
surements similarly collapse the state into eigenspaces
of Xall. Since [Gk, Xall] = [Gk, Zall] = [Xall, Zall] = 0

and measurement of an operator Gk collapses four-qubit
state with the projection operator (11 ± Gk)/2 (± cor-
responds to the measurement result), an eigenstate of
operators Xall and Zall remains an eigenstate with the
same eigenvalue after Gk measurement (even though it
changes the state). Therefore, after one cycle of the pro-
cedure (Fig. 2), any initial state is collapsed into one
of four eigenspaces of operators Xall and Zall, and then
remains in this eigenspace forever in the absence of deco-
herence. As already mentioned, operators Xall and Zall

are called the stabilizer generators of the code, while the
measured operators Gk are called gauge generators [8, 9].

Different eigenvalues of operators Xall and Zall divide
16-dimensional Hilbert space of four qubits into four or-
thogonal 4-dimensional subspaces. As usual, we choose
the code space Q0 (“good” subspace) as the eigenspace
with eigenvalues Xall = +1 and Zall = +1 (we use this
short though non-rigorous notation for eigenvalues). For
any state in the code space, the product of outcomes of
X12 and X34 measurements is +1, and the product of
Z13 and Z24 outcomes is also +1. The subspace with
eigenvalues Xall = −1 and Zall = +1 is denoted as QZ
(this notation refers to the Z-error in a physical qubit,
as discussed below). For any state in QZ , the product
of outcomes of X12 and X34 measurements is −1, while
for Z13 and Z24 the product is still +1. Similarly, QX
denotes the subspace with eigenvalues Xall = +1 and
Zall = −1, and subspace QY has eigenvalues Xall = −1
and Zall = −1. The subspaces QX , QY , and QZ are the
“error” subspaces; the product of −1 for measurement
outcomes at any step indicates an error.

Let us introduce the following orthonormal basis for
the 4-dimensional code space Q0:

|φ1〉 = (|0000〉+ |1111〉) /
√

2, (3)

|φ2〉 = (|1100〉+ |0011〉) /
√

2, (4)

|φ3〉 = (|1010〉+ |0101〉) /
√

2, (5)

|φ4〉 = (|0110〉+ |1001〉) /
√

2. (6)

It is easy to see that Zall = +1 for all these vectors since
the number of ones (and zeros) in each component is
even. To check that Xall = +1, we see that for each |φj〉
(j = 1–4) the two components in the superposition are
complementary to each other, and the relative sign be-
tween the components is positive. The subspace QZ is
spanned by the basis {Z1|φj〉} (equivalently, Z2, Z3 or
Z4 could be used, but we use Z1). Similarly, the sub-
space QX is spanned by {X1|φj〉} and QY is spanned by
{Y1|φj〉}.

The initial state (encoded logical qubit) is always in the
subspace Q0, and without decoherence it would remain
in Q0 forever, so that the measurement outcomes at each
step are either “++” or “−−”, with the product of +1
always. The outcomes “+−” or “−+” (with the product
of −1) indicate an error. Since the four-qubit Bacon-Shor
code is only an error detecting code, it cannot correct
the error, and the procedure is terminated immediately
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after the product of −1 is obtained. Only in the case
when the product of +1 was obtained for all measurement
steps during M � 1 cycles (total operation duration of
T = 2M∆t), the quantum information is considered as
preserved and decoded back into a logical qubit to be
“handed back”.

B. Operation without errors

The code space Q0 is 4-dimensional, but it is used to
encode only one (2-dimensional) logical qubit. This is
the usual feature of the subsystem codes [10]. It is easy
to see why additional dimensionality is needed in our
case. After step-1 measurement, the four-qubit state can
either contain a superposition of basis vectors |φ1〉 and
|φ3〉 from Eqs. (3)–(6) (if the measurement outcome is
“++”) or a superposition of |φ2〉 and |φ4〉 (if the mea-
surement outcome is “−−”), but not a superposition of
all four basis vectors. Moreover, if the outcome “++” is
obtained, then one cycle later (with non-commuting step-
2 measurement in between) the outcome will be “++” or
“−−” with equal probabilities. This additional degree of
freedom (gauge) consumes two additional dimensions.

Let us encode the logical qubit

|ψ〉L = α |0〉L + β |1〉L = |α, β〉L (7)

so that after step-1 measurement (Z13 and Z24), one of
the following entangled four-qubit states can be obtained:

|z+〉 = α |φ1〉+ β |φ3〉, (8)

|z−〉 = α |φ2〉+ β |φ4〉, (9)

where |z+〉 corresponds to the outcome “++” and |z−〉
corresponds to “−−”. Then after step-2 measurement
(X13 and X24) the two possible collapsed states are

|x+〉 = α
|φ1〉+ |φ2〉√

2
+ β
|φ3〉+ |φ4〉√

2
, (10)

|x−〉 = α
|φ1〉 − |φ2〉√

2
+ β
|φ3〉 − |φ4〉√

2
, (11)

with |x+〉 corresponding to the outcome “++” and |x−〉
corresponding to “−−”. Then after step-1 measurement
the produced state is again given either by Eq. (8) or Eq.
(9), and the cycle repeats forever (assuming the absence
of decoherence).

An encoding operation can be realized using a unitary,
transforming the four-qubit state |ψ〉L|0〉|0〉|0〉 into |z+〉.
For example, this can be done with the encoding unitary
(Fig. 3)

Uenc = CNOT21 CNOT13 CNOT24 CNOT23H2, (12)

|z+〉 = Uenc (|ψ〉L|0〉|0〉|0〉), (13)

where indices are the qubit numbers, for CNOTij the first
index is the control (the second is the target), and H de-
notes Hadamard. Eventual decoding can be done, for ex-
ample, by applying the reversed unitary transformation

|ψL〉 •

|0〉 H • • •

|0〉

|0〉

FIG. 3: Encoding circuit, which produces the state |z+〉 from
the state |ψ〉L|0〉|0〉|0〉. Decoding can be done by running the
same circuit backwards after step-1 measurement with the
outcome “++”.

U†enc after step-1 measurement with the outcome “++”,
while for the outcome “−−” we at first additionally apply
operation X1X2, which transforms |z−〉 into |z+〉.

Note that the states |z+〉 and |z−〉 are orthogonal to
each other (as well as the states |x+〉 and |x−〉) and

|x±〉 =
|z+〉 ± |z−〉√

2
, |z±〉 =

|x+〉 ± |x−〉√
2

. (14)

Therefore all these four states belong to a 2-dimensional
subspace (so-called gauge qubit), and the 4-dimensional
subspace Q0 consists of such 2-dimensional subspaces,
which are different for different logical qubit states (or-
thogonal to each other if logical qubit states are orthog-
onal).

C. Error classification

While the actual physical source of errors is a gradual
decoherence, it is possible to think about it in terms of
(possibly correlated) discrete X, Y , and Z errors ran-
domly applied to the physical qubits [4, 56]. For sim-
plicity we assume no correlation, and we also assume
sufficiently small error rate, so that single-qubit errors
are dominating, the two-qubit errors are next in the hi-
erarchy, and so on. A two-qubit error is realized when
two independent errors occur in different qubits within
the same timestep ∆t (or sometimes within 2∆t); the
rate of these errors will be discussed later, while in this
section we essentially assume two errors occurring at the
same time. We do not consider three-qubit errors be-
cause they are much less probable than two-qubit errors,
and the important characteristics of the code are mainly
determined by single-qubit and two-qubit errors. Note
that we consider errors in the quantum channel setting,
which assumes that projective measurements are ideal
[57].

Details of the error classification are given in the Ap-
pendix. Here we only briefly discuss the results.

There are 12 possible single-qubit errors: Xi, Yi, and
Zi, with i =1–4 labeling physical qubits. All these 12
types of errors are detectable by the code, since the op-
erator Xi (with any i) applied to a state within the sub-
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space Q0, moves it to the subspace QX , the operators
Zi move a state from Q0 to QZ , and the errors Yi move
a state to QY . The error syndromes are the following:
(i) Xi errors produce negative parity of outcomes (“+−”
or “−+”) at step-1 measurements, while producing usual
positive parity (“++” or “−−”) at step-2 measurements,
(ii) Zi errors produce positive parity at step-1 measure-
ments and negative parity at step-2 measurements, (iii)
Yi errors produce negative parities for both step-1 and
step-2 measurements.

There are 54 two-qubit error combinations, which can
be classified in the following way:

Harmless: X1X2, X3X4, Z1Z3, Z2Z4, (15)

Logical X error: X1X3, X1X4, X2X3, X2X4,

Y1Y3, Y2Y4, (16)

Logical Y error: Y1Y4, Y2Y3, (17)

Logical Z error: Z1Z2, Z3Z4, Z2Z3, Z1Z4,

Y1Y2, Y3Y4, (18)

Detectable: XiYj , XiZj , YiZj , i 6= j. (19)

More details are given in the Appendix.

D. Termination and logical error rates

In this section we consider several models of decoher-
ence and calculate the termination and the logical error
rates for the four-qubit Bacon-Shor code with projective
measurements.

1. Uncorrelated Markovian errors

Let us consider first the usual model of errors, which
assumes random Markovian errors of X, Y , and Z types
in each qubit, without correlations between the qubits.
The rates of these 12 single-qubit errors may be all differ-

ent and are denoted as Γ
(X)
i , Γ

(Y )
i , and Γ

(Z)
i , with index i

denoting the qubit. We assume Γ
(X,Y,Z)
i ∆t� 1, so that

single-qubit errors are dominating, followed by two-qubit
errors, and so on.

Note that physical decoherence produces mixed states,
characterized by density matrices, while in this model
an initially pure state remains pure, so it is sufficient
to operate with wavefunctions for any given sequence
of discrete errors. The averaging over these sequences,
however, produces mixed states, corresponding to actual
decoherence, so that the approach of discrete errors is
essentially unraveling of physical decoherence. In gen-
eral, if decoherence can be described as an evolution of
the density matrix ρ with the standard Lindblad form,
involving single-qubit error operators Ei (E denotes a

type of the process),

ρ̇ =
∑

i,E
Γ

(E)
i L[Ei]ρ, (20)

L[A]ρ ≡ AρA† − 1

2
(A†Aρ+ ρA†A), (21)

then it can be replaced (unravelled) with the follow-
ing “jump/no-jump” evolution (see, e.g., [58, 59]). The
“jumps” with Kraus operators Ei are randomly applied

with the rates Γ
(E)
i Tr(E†iEiρ) (the state is normalized

after each jump), while the “no-jump” evolution (essen-
tially the quantum Bayesian update) for a short time δt is

described by the Kraus operator 11−∑i,E Γ
(E)
i δtE†iEi/2

(the state requires normalization after the no-jump evo-
lution as well). For the model considered in this section,
E = X, Y , and Z, i.e., the error operators are of the

Pauli-matrix type. In this case E†iEi = 11; therefore the
jump rates do not depend on the state and are equal to

Γ
(E)
i , while the no-jump evolution is trivial, so that we

do not need to consider it explicitly.
Any single-qubit error is detected at the next or

second-next measurement step and the procedure is ter-
minated, unless another single-qubit error occurs before
the detection and returns the state into subspace Q0

(leading to a non-detectable two-qubit error). Neglecting
the non-detectable two-qubit (and higher-order) errors,
the termination rate γterm is the sum of all single-qubit
error rates,

γterm =
∑

i

[
Γ

(X)
i + Γ

(Y )
i + Γ

(Z)
i

]
. (22)

Note that the non-detectable two-qubit errors slightly de-
crease the termination rate, with the relative correction
to Eq. (22) on the order of γterm∆t � 1. The probabil-
ity that the procedure is not terminated until the end of
the operation of duration T is the “success” (“survival”)
probability

Psuccess = exp(−γtermT ). (23)

If two errors occur sufficiently close in time and the
second error returns the state back to the subspace Q0,
then the procedure does not detect any error. However,
as discussed in Appendix, it is possible that the state
changes significantly, so that the logical qubit acquires
X, Y or Z error. To find the rate of logical X-errors, we
use the combinations in Eq. (16) and notice that a com-
bination XiXj will not be detected if both errors occur
within the same cycle 2∆t between neighboring step-1
measurements (Z13 and Z24). The corresponding rate is
then 2∆tΓiΓj . The YiYj combinations in Eq. (16) will be
undetected only if both errors occur within the half-cycle
∆t between the neighboring measurements. The corre-
sponding rate is ∆tΓiΓj . Summing over all scenarios, we
obtain the rate of logical X-error,

γX = ∆t
[
2(Γ

(X)
1 + Γ

(X)
2 )(Γ

(X)
3 + Γ

(X)
4 )

+Γ
(Y )
1 Γ

(Y )
3 + Γ

(Y )
2 Γ

(Y )
4

]
. (24)
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Similarly, for logical Y -error we use combinations in Eq.
(17) and obtain the rate

γY = ∆t
[
Γ

(Y )
1 Γ

(Y )
4 + Γ

(Y )
2 Γ

(Y )
3

]
. (25)

For the rate of logical Z-error we use Eq. (18) and obtain

γZ = ∆t
[
2(Γ

(Z)
1 + Γ

(Z)
3 )(Γ

(Z)
2 + Γ

(Z)
4 )

+Γ
(Y )
1 Γ

(Y )
2 + Γ

(Y )
3 Γ

(Y )
4

]
. (26)

If all single-qubit rates are equal, Γ
(X)
i = Γ

(Y )
i =

Γ
(Z)
i = Γd/3 (depolarizing channel [56]), then

γX = γZ =
10

9
Γ2

d∆t, γY =
2

9
Γ2

d∆t. (27)

Let us introduce the total logical error rate (condi-
tioned on no errors detected [37])

γL = γX + γY + γZ . (28)

For the depolarizing channel with Γ
(X)
i = Γ

(Y )
i = Γ

(Z)
i =

Γd/3, we have

γL =
22

9
Γ2

d ∆t, (29)

which is much smaller than the error rate Γd without
encoding if Γd∆t� 1.

Note that the logical error rates are proportional to
the time ∆t between the measurements (while γterm does
not depend on ∆t). This is as it should be expected
for a code with the logical errors caused by two-qubit
errors. The operation of the code improves with smaller
∆t, whose choice therefore should be based on technical
(experimental) limitations.

2. Pure dephasing

The results of the previous section can be readily ap-
plied to analyze the effects of pure dephasing of physical
qubits. Let us denote the rate of pure dephasing of ith
qubit as Γϕ,i and assume no other sources of decoher-
ence. Effect of pure dephasing is equivalent to random

Z-jumps with the rate Γ
(Z)
i = Γϕ,i/2 (e.g., [59]). There-

fore, we can use Eqs. (22)–(26) to obtain the termination
and logical error rates,

γterm =
∑

i
Γϕ,i/2, (30)

γX = 0, γY = 0, (31)

γZ = ∆t (Γϕ,1 + Γϕ,3)(Γϕ,2 + Γϕ,4)/2. (32)

In particular, in the case of equal dephasing in all four
qubits, Γϕ,i = Γϕ, we obtain the total logical error rate
(with no detected errors)

γL = γZ = 2 Γ2
ϕ ∆t, (33)

which can be compared with the logical error rate Γϕ/2
without encoding.

3. Energy relaxation

Now let us discuss the model of zero-temperature en-
ergy relaxation (amplitude damping), |1〉 → |0〉, relevant
to superconducting qubits. We assume uncorrelated en-
ergy relaxation of ith qubit with the rate µi ≡ 1/T1,i �
(∆t)−1.

This decoherence can be unraveled as “jump/no-jump”
process (e.g., [58, 59]), consisting of random “jumps”
caused by application of lowering Kraus operators σ−,i
with the rates µiTr(σ+,iσ−,iρ) and “no-jump” evolution
with Kraus operator 11 −∑i(µi δt/2)σ+,iσ−,i for an in-
finitesimal duration δt with no jumps. Here σ−,j =

σ†+,j = (Xj + ıYj)/2 (this definition assumes the state |0〉
to be at the top and |1〉 at the bottom of a spinor), and
instead of the four-qubit density matrix ρ, we can think in
terms of a wavefunction. Note that σ+,iσ−,i = (11−Zi)/2.

Let us start with jump processes (as discussed later,
the no-jump processes do not affect the termination and
logical error rates). Since the states (8)–(11) contain
equal superpositions of |0〉 and |1〉 for each qubit, the
“jump” rate in ith qubit is µi/2. A single-qubit jump is
necessarily detected since the resulting state is a super-
position of states in subspaces QX and QY . Therefore,
the termination rate is

γterm =
∑

i
µi/2, (34)

independently of the logical state.
A logical error may occur when two jumps in differ-

ent qubits occur within the same half-cycle ∆t or in the
neighboring half-cycles. If the jumps in qubits i and j
occur within the same ∆t, then a legitimate wavefunc-
tion (8)–(11) is multiplied by (Xi + ıYi)(Xj + ıYj)/4
(squared norm is proportional to probability). Since
the combinations XiYj are detectable, we are left with
(XiXj − YiYj)/4, which lead to logical errors, as dis-
cussed in Sec. II C. We need to be careful in applying
Eqs. (15)–(18) to these combinations because of superpo-
sition of states produced by (XiXj − YiYj)/4 and there-
fore possible interference effects. However, for most of
the qubit pairs there is no interference because XiXj

and YiYj produce states in different subspaces corre-
sponding to different logical states (see Appendix). Only
for the qubit pair 1 and 3 (and complementary pair 2
and 4) the states may interfere: combinations X1X3

and Y1Y3 both produce logical X-error. By applying
(X1X3 − Y1Y3)/4 to the states |z±〉, we find transfor-
mations |z+〉 → (2/4)|z+〉α↔β , |z−〉 → 0, so the in-
terference occurs, but its effect disappears after aver-
aging over states |z±〉. Similarly, this operator pro-

duces transformations |x+〉 → (
√

2/4)|z+〉α↔β , |x−〉 →
(
√

2/4)|z+〉α↔β , which correspond to the same probabil-
ities, as without interference. Thus, interference between
terms XiXj and YiYj in producing logical errors is not
important, and we can simply use Eqs. (15)–(18) to calcu-
late probabilities of logical errors. For example, for qubits
1 and 2, the probability to have two jumps within ∆t
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is (µ1∆t/2)(µ2∆t/2), and this produces logical Z-error
with probability 1/4 and no error (harmless combination)
with probability 1/4 (with probability 1/2 the error will
be detected). This produces a rate µ1µ2∆t/16 of logi-
cal Z-error. As another example, for qubits 1 and 3, the
probability of two jumps within ∆t is (µ1∆t/2)(µ3∆t/2),
leading to logical X-error with probability 2/4, thus pro-
ducing the rate µ1µ3∆t/8. Calculation of rates for other
qubit pairs is similar.

If the jumps in qubits i and j occur in neighboring
half-cycles ∆t separated by step-1 measurements (Z13

and Z24), then the error will necessarily be detected.
However, if the half-cycles are separated by step-2 mea-
surements (X12 and X34), then in the case of no error
detected, the term XiXj/4 survives and may lead to log-
ical error. We need to add these logical error rates to the
rates due to both jumps occurring within the same ∆t.
Thus, we obtain the following rates of the logical errors,

γX =
∆t

16
(3µ1µ3 + 2µ1µ4 + 3µ2µ4 + 2µ2µ3), (35)

γY =
∆t

16
(µ1µ4 + µ2µ3), (36)

γZ =
∆t

16
(µ1µ2 + µ3µ4). (37)

Note that these rates coincide with the results (24)–

(26) if we use Γ
(X)
i = Γ

(Y )
i = µi/4 and Γ

(Z)
i = 0.

This similarity follows from unimportance of the dis-
cussed above interference between the effects of the
terms XiXj/4 and YiYj/4. However, the superposition
XiXj/4−YiYj/4 produces non-zero off-diagonal elements
of the quantum process (tomography) matrix χ [4, 60] for
the logical qubit. In particular, the relaxation jumps in
qubits 1 and 2 (or 3 and 4) within the same ∆t contribute
to both Z-error and harmless process, thus leading to the
contribution χIZ/T = (1/16)(µ1µ2 + µ3µ4)∆t, where T
is the total duration of the process and we define χ as
the conditional process matrix, selecting only the realiza-
tions with no detected errors. Other qubit pairs do not
contribute to the off-diagonal elements of χ after averag-
ing over states |z±〉 and |x±〉 [it is easier to analyze these
contributions by using considered later approach of Eq.
(65) and Fig. 4 and averaging over the gauge qubit state].
Note that by definition χXX/T = γX , χY Y /T = γY , and
χZZ/T = γZ (neglecting “initial decoherence” [61]).

Now let us discuss effect of the no-jump evolution, cor-
responding to the Kraus operator 11− δt∑i µi(11−Zi)/4
for infinitesimal δt. The product of these operators
within the cycle time 2∆t between step-2 measurements
(X12 and X34), produces the Kraus operator (to second
order) 11− (∆t/2)

∑
i µi(11−Zi)+(∆t/2)2

∑
i<j µiµj(1−

Zi)(1− Zj) + (∆t)2/8
∑
i µ

2
i (1− Zi)2. Hence, the step-2

measurements will detect Z-error with probability (in the
leading order) (∆t/2)2(

∑
i µi)

2, which is proportional to
(∆t)2 and therefore can be neglected in calculation of
the termination rate (34). When no error is detected,
the state self-corrects by eliminating terms Zi from the
Kraus operator; however, the product-terms ZiZj are

not eliminated, they accumulate for the whole dura-
tion T of the process as (T∆t/8)

∑
i<j µiµjZiZj . This

leads to logical Z-error [see Eq. (18)] with probability
T 2(∆t/8)2(µ1µ2 + µ3µ4)2 [the terms with combinations
µ1µ4 and µ2µ3 do not contribute because of averaging
over the gauge qubit states, as can be understood by us-
ing Eq. (65) and Fig. 4]. This is a “coherent” error [59],
which scales as T 2 with time and therefore cannot be
characterized by a rate. However, it is easy to check that
for a typical duration of the code operation, T ∼ µ−1

i ,
this error is still much smaller than the errors accumu-
lated with the rates (35)–(37). Therefore, the logical er-
rors due to no-jump process can be neglected. We can
also check that combinations of no-jump terms Zi with
single-jump operators (Xj + ıYj)/2 always produce de-
tectable errors and therefore do not contribute to logical
errors.

Even though logical errors due to no-jump evolution
can be neglected, the coherent Z-error produces the con-
tribution χIZ/T = (∆t/8)(µ1µ2 + µ3µ4) to off-diagonal
element of the logical quantum process matrix χ. Com-
bining it with the discussed above contribution from the
double-jump processes, we obtain (assuming no detected
errors)

χIZ = χZI =
3

16
(µ1µ2 + µ3µ4)T∆t = 3χZZ . (38)

We have checked numerically Eqs. (35)–(38) and found
a very good agreement. In numerical calculations we used
Lindblad-form evolution of the 4-qubit density matrix
due to energy relaxation of qubits and also used projec-
tors onto the corresponding subspaces to simulate step-1
and step-2 measurements with results “++” or “−−”.
The two projectors were added incoherently to take into
account both measurement results; for a step-1 mea-
surement we used projector ρafter = ΠG34

++ ρbeforeΠG34
++ +

ΠG34
−− ρbeforeΠG34

−− , where ΠG34
++ = (11 + G3)(11 + G4)/4,

ΠG34
−− = (11 − G3)(11 − G4)/4, while ρbefore and ρafter

are the density matrices before and after a step-1 mea-
surement. Similar procedure with projectors ΠG12

++ =

(11 + G1)(11 + G2)/4 and ΠG12
−− = (11 − G1)(11 − G2)/4

was used for a step-2 measurement. The process matrix
χ as a function of the number of cycles was calculated us-
ing four initial logic states. We checked that the survival
(success) probability is practically the same for all initial
states [also checking the probability decay rate (34)] and
then normalized the trace-non-preserving χ to find the
process matrix conditioned on the absence of detected er-
rors. We checked that the diagonal elements χXX , χY Y ,
and χZZ of the trace-preserving χ are given by the rates
(35)–(37) multiplied by the total duration T of the pro-
cess, and the only non-zero off-diagonal element is given
by Eq. (38). In a similar way we numerically analyzed
the case of pure dephasing; we checked Eqs. (30)–(32)
and also checked the absence of non-zero off-diagonal el-
ements of the process matrix χ.
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III. FOUR-QUBIT BACON-SHOR CODE WITH
CONTINUOUS MEASUREMENTS

Now let us consider the four-qubit Bacon-Shor code,
in which the sequential projective measurement of four
gauge operators Gk (Fig. 2) is replaced with their simul-
taneous continuous measurement. We will first discuss
the approach to this problem and results qualitatively,
and then present the detailed analysis.

A. Overview

Each measured gauge operator Gk [Eq. (1)] has eigen-
values ±1, which divide the 16-dimensional Hilbert space
into two 8-dimensional subspaces, so that the measure-
ment of Gk distinguishes these two subspaces. In this
sense continuous measurement ofGk is similar to continu-
ous measurement of a qubit (two subspaces instead of two
states), and we can use many previously obtained results
for continuous measurement of a qubit. We will mainly
use the quantum Bayesian formalism [62–64], which is es-
sentially equivalent to the theory of quantum trajectories
[65–67].

Using this formalism, we will show that in the absence
of errors, continuous measurement of four gauge opera-
tors Gk leads to the four-qubit state evolution

|ψ(t)〉 = a(t) |z+〉+ b(t) |z−〉, (39)

where a(t) and b(t) are (in general complex) numbers
with condition |a|2 + |b|2 = 1, and states |z±〉 are given
by Eqs. (8) and (9). Thus, continuous measurement
of the gauge operators causes evolution of the “gauge
qubit” |a, b〉g , while not disturbing the logical qubit
|α, β〉L, which determines the basis states |z±〉. The
typical timescale of the gauge qubit evolution is com-
parable to the collapse timescale τm (so-called “mea-
surement time”[63]), corresponding to Gk measurements
(τ−1

m characterizes measurement strength, and we assume
equal strength for all four measurement channels). Note
that strictly speaking the result (39) is valid only when
ideal (quantum-limited) detectors are used for Gk mea-
surement, while for non-ideal detectors the state should
instead be described as an evolving density matrix of the
gauge qubit. However, with a logical trick discussed later,
it is still possible to use wavefunctions to understand the
code operation, while quantitative analysis can be done
either using wavefunctions or density matrices.

In the 2-dimensional subspace spanned by |z+〉 and
|z−〉, measurement of the operator G3 = Z13 is sim-
ply Z-measurement of the effective (gauge) qubit, for
which |0〉g = |z+〉 and |1〉g = |z−〉. Similarly, measure-
ment of G4 = Z24 is also a Z-measurement of the same
gauge qubit. In contrast, measurement of G1 = X12 (or
G2 = X34) measures X-component of the gauge qubit
(39). Thus, simultaneous continuous measurement of
four operators Gk is simply a continuous measurement

of Z and X components of the gauge qubit (two Z-
measurements and two X-measurements). The theory of
such simultaneous X and Z measurement of a qubit has
been developed in Ref. [49], and it was experimentally re-
alized in Ref. [50]. In particular, in the absence of phase
backaction from measurement and for equal strength of
all measurements, the state (39) evolves as in the stan-
dard diffusion along the great circle of the Bloch sphere
with real a and b.

Note that sequential projective measurement of gauge
operators Gk leads to state jumps between |z±〉 and |x±〉
[see Eq. (14)], while continuous measurement of Gk re-
places jumps with continuous evolution; otherwise the
state evolution in both cases is similar. However, an im-
portant difference is that in the projective case the mea-
surement results are ±1, i.e., discrete, while continuous
measurement of operatorsGk produces four noisy signals:
IX12(t), IX34(t), IZ13(t), and IZ24(t) (here the subscripts
indicate the measured operators). The positive parity of
the projective measurement results, X12X34 = +1 and
Z13Z24 = +1, in this case is replaced with positive cross-
correlators for the noisy signals: 〈IX12(t) IX34(t)〉 = +1
and 〈IZ13(t) IZ24(t)〉 = +1. Thus, analysis of the Bacon-
Shor code operation with continuous measurements sig-
nificantly relies on the results for signal correlators in
continuous qubit measurement [55, 68, 69].

A single-qubit error Xi moves the four-qubit state
from the subspace Q0 to the orthogonal subspace QX
(see Sec. II A). Any state in this subspace has neg-
ative Z-correlator, 〈IZ13(t) IZ24(t)〉 = −1, while X-
correlator is still positive, 〈IX12(t) IX34(t)〉 = +1. Sim-
ilarly, a Zi error moves the state from Q0 to QZ , for
which 〈IX12(t) IX34(t)〉 = −1 and 〈IZ13(t) IZ24(t)〉 = +1,
and finally a Yi error moves to the subspace QY , in
which both correlators are negative, 〈IX12(t) IX34(t)〉 =
〈IZ13(t) IZ24(t)〉 = −1. Thus, the cross-correlators for
the output signals allow us to detect errors. Unfortu-
nately, the products of noisy signals are very noisy, and
therefore monitoring of a cross-correlator in real time is
not easy. We will construct approximate cross-correlators
C12(t) and C34(t) via double-integration in time of the
corresponding pairs of the output signals (the indices here
correspond to numbering of operators Gk, see Eqs. (80)–
(83) for exact definition). The integration kernel will be
characterized by two time scales: parameter τc for the
integration over time difference in the two channels and
much longer parameter Tc for integration over the mean
time. The parameter τc can be optimized, while the pa-
rameter Tc affects a trade-off between the noisiness of the
approximate correlators (C12 and C34) and their average
time of response, TR, to jumps of the actual correlators
from +1 to −1. A short Tc makes C12 and C34 too noisy
and therefore they will often cross zero or another thresh-
old, erroneously indicating an error (false alarm). On the
other hand, a long Tc makes C12 and C34 too slow, so that
they report an error with a long delay TR after it actually
occurred, thus increasing the probability of logical error,
as discussed below.
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A logical error may occur when the second single-qubit
error moves the four-qubit state back to the subspace Q0

before the approximate cross-correlators C12 and C34 re-
port an error. An example of evolution leading to a log-
ical error is illustrated by solid-line arrows in Fig. 4; an-
other example is illustrated by dashed-line arrows. The
thick-line circle illustrates evolution of the gauge qubit
within the code space Q0 – see Eq. (39). An error Xi

in ith qubit occurring at time t1 instantaneously moves
the state to the subspace QX , and the state then contin-
ues to evolve due to measurement (errors X3 or X4 lead
to evolution within a 2-dimensional subspace, which is
different from the subspace after errors X1 or X2). Simi-
larly, errors Yi would move the state from Q0 to QY , and
Zi errors move from Q0 to QZ , with generally different
2-dimensional subspaces for different i. (Figure 4 will be
discussed in more detail later.) Even though the states
in error subspaces QX,Y,Z are distinguishable from legit-
imate states in Q0 via cross-correlators, the error will be
reported only after (on average) the response time TR.
Therefore, if the second error occurs at time t2 within
the range t1 < t2 < t1 + TR and moves the state back
to Q0, then both errors will likely remain undetected.
(Various combinations of the two errors at times t1 and
t2 lead to various logical errors, which correspond to the
classification in Sec. II C.)

As a result, the rate of logical errors is proportional
to the response time TR, leading to formulas somewhat
similar to Eqs. (24)–(26) for the projective case, with ∆t
replaced by TR. We will see that TR is comparable to the
correlator integration time Tc, which is typically chosen
an order of magnitude larger than the collapse timescale
τm. Thus, the operation characteristics of the Bacon-
Shor code with continuous and projective measurements
are generally similar to each other when τm is comparable
to 10−1∆t.

Encoding of the logical qubit can still be done using
the gate operations Uenc in Eq. (12) and Fig. 3, producing
the state |z+〉. For the decoding, we can stop continuous
measurement of X12 and X34, so that after several τm we
have essentially measured Z13 and Z24 projectively, and
after that the decoding is the same as for the projective-
measurement case (applying either U†enc or U†encX1X2).

In the following sections we present derivations and
quantitative results for what was discussed in this
overview.

B. General evolution due to measurement

It is easy to understand physics of evolution due to
continuous measurement using the quantum Bayesian ap-
proach [62, 63, 70]. For simplicity let us start with mea-
suring only one gauge operator Gk by an ideal (quantum-
limited) detector and use the wavefunction language. An
arbitrary four-qubit wavefunction at time t can be rep-
resented as

|ψ(t)〉 = c+|ψ+〉+ c−|ψ−〉, (40)

subspace Q 0 Q X QY Q Z

X1,

X2(XG)

Z1,

Z3 (ZG)

Z2,

Z4 (ZG)

Y1

Y3 (-ZG)

Y2 (-XG)

|,L

|,L

|-,L

|,-L

XL

XLZL

ZL

X1

X3

Z4

Z1

basis |j  X1|j  Y1|j Z1|j 

X3,

X4(XG)

Y4 
(-XGZG)

FIG. 4: State evolution and errors with continuous measure-
ment. Thick-line circle illustrates diffusive evolution of the le-
gitimate state [Eq. (39)] within 2-dimensional subspace of the
gauge qubit due to measurement. The 12 single-qubit errors
move the legitimate state to 8 other 2-dimensional subspaces
in QX , QY , and QZ with the mapping described by Eq. (65)
– see operators written inside the circles, the corresponding
gauge qubit operations are in parentheses. If the second er-
ror occurs before the first error is detected (i.e., within the
response time TR), it may move the state back to Q0, so that
both errors remain undetected (dotted line separates Q0 from
error subspaces). Depending on a combination of the two er-
rors, the logical qubit |α, β〉L may be affected by logical errors
XL, YL, or ZL. The solid-line arrows illustrate a scenario of
errors X1 and X3, leading to logical error XL; the dashed-line
arrows correspond to errors Z4 and Z1, leading to ZL.

where |ψ±〉 are the normalized components belonging
to the subspaces with eigenvalues ±1 (i.e., Gk|ψ±〉 =
±|ψ±〉), and c± are complex coefficients, |c+|2+|c−|2 = 1.
The (inverse) measurement strength can be characterized
by time τk needed to distinguish the states in the two
subspaces with signal-to-noise ratio of 1 (the standard
though misleading name for τk is “measurement time”;
we will also use notation τm when all measurements have
equal strength). The detector (one-channel) output Ik(t)
is assumed to contain white noise (Markovian case), and
we also assume that the state evolves only due to (quan-
tum non-demolition) measurement of Gk. Then the nor-
malized output signal Īk averaged over time δt between
t and t + δt obviously has the probability distribution
consisting of two Gaussians,

P (Īk) = |c+|2P+(Īk) + |c−|2P−(Īk), (41)

P±(Īk) =
1√

2πD
exp[−(Īk ∓ 1)2/2D], D =

τk
δt
, (42)

Īk =
1

δt

∫ t+δt

t

Ik(t′) dt′. (43)

Note that the Gaussians are centered at ±1, which are
the average signals (eigenvalues) for states |ψ±〉, and the
variance D decreases with a longer averaging time δt.

The simplest model of the evolution due to mea-
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surement with a particular result Īk includes only the
quantum Bayesian update (purely quantum or “informa-
tional” backaction [64]),

|ψ(t+δt)〉 =

√
P+(Īk) c+|ψ+〉+

√
P−(Īk) c−|ψ−〉

Norm
, (44)

which is consistent with the classical Bayes rule for prob-
abilities (see derivation in [62]).

A somewhat extended model [63, 64] also includes
“classical” phase backaction,

|ψ(t+ δt)〉 =

[
exp[−i(Kk Īk + εk) δt]

√
P−(Īk) c−|ψ−〉

+
√
P+(Īk) c+|ψ+〉

]
/Norm, (45)

where coefficient Kk characterizes the phase backaction
proportional to the output signal, and εk is the effec-
tive energy shift between the subspaces due to measure-
ment. The phase backaction, for example, is important in
phase-sensitive circuit QED measurement [64, 71] when
a non-optimal quadrature is amplified.

While Eqs. (41)–(45) describe the main physics of the
continuous measurement of Gk operators (in the Marko-
vian case), we often need to apply a few additional techni-
cal steps [62, 63]. First, we can easily convert Eqs. (41)–
(45) into the language of density matrix, viewing it as
a mixture of wavefunctions. Second, we generalize these
equations to a non-ideal detector [72] by adding a classi-
cal noise at the output and a noise causing decoherence
between the subspaces (with a possible correlation be-
tween them). Averaging over these noises (which cannot
be separately monitored by an observer) leads to deco-
herence. Third, we can convert the description (41)–(45)
with finite δt into a differential form (infinitesimal δt).
Note that for measurement of only one operator (with
no other evolution), δt can be arbitrarily long; however,
when we simultaneously measure non-commuting observ-
ables, δt should be short, so that the state change due to
other evolution within δt can be neglected.

For infinitesimal δt, Eqs. (41) and (42) can be replaced
with the single Gaussian with shifted center,

P (Īk) = (2πD)−1/2 exp{−[Īk − Tr(Gkρ)]2/2D}, (46)

and therefore the output signal Ik(t) can be written as

Ik(t) = Tr[Gkρ(t)] +
√
τk ξk(t), (47)

where ρ(t) is the four-qubit density matrix and ξk(t) is
the white noise with correlator

〈ξk(t) ξk′(t
′)〉 = δkk′δ(t− t′), (48)

i.e., integral of ξk is the Wiener process, and there is no
correlation between noises in different detectors. Note
that Eq. (47) remains valid for a non-ideal detector be-
cause τk is defined via the total noise (this is the distin-
guishability time for an observer).

When converting the evolution equations (44) or (45)
into the differential form, it is necessary to pay attention
to the definition of the derivative [63], since we are deal-
ing with noise, and equations are nonlinear. The most
widely used definitions are [73] ḟ(t) = lim∆t→0[f(t +
∆t/2) − f(t − ∆t/2)]/∆t (so-called Stratonovich form)

and ḟ(t) = lim∆t→0[f(t + ∆t) − f(t)]/∆t (so-called Itô
form). The Stratonovich form is more physically intu-
itive since it preserves the usual calculus; the Itô form
modifies the usual calculus (requiring Itô calculus), but
makes averaging easy.

In this way from Eq. (45) we can derive the following
evolution equation in the Itô form:

ρ̇ =
i

2
(Kk
√
τk ξk + εk) [Gk, ρ] +

Γk
2

(GkρGk − ρ)

+
ξk

2
√
τk

(Gkρ+ ρGk − 2ρTr[Gkρ]) , (49)

where the noise ξk(t) is the same as in Eq. (47), the mea-

sured observable is Hermitian, G†k = Gk, with G†kGk = 11

(if G†kGk 6= 11, then the last term on the first line
should be replaced with the Lindblad form), and the
effective ensemble dephasing Γk satisfies inequality [63]
Γk ≥ 1/2τk + K2

kτk/2 (the notation Γk should not be

confused with the previous notation Γ
(X,Y,Z)
i for the er-

ror rates). Note that Eq. (49) can also be derived using
the theory of quantum trajectories [65–67].

When several (non-commuting) gauge operators Gk
are continuously measured at the same time, the density
matrix evolution (49) due to each measurement should
be simply added up [49] (this relates to the fact that
infinitesimal evolutions essentially commute with each
other). Also adding the Lindblad evolution (20) de-
scribed by error operators Ei, we obtain the overall evo-
lution (in the Itô form)

ρ̇ =
∑

k

[
i

2
(Kk
√
τk ξk + εk) [Gk, ρ] +

Γk
2

(GkρGk − ρ)

+
ξk

2
√
τk

(Gkρ+ ρGk − 2ρTr[Gkρ])

]
+
∑

i,E
Γ

(E)
i L[Ei]ρ. (50)

The quantum efficiency of each detector can be defined
in two ways [63, 72]:

ηk =
1

2Γkτk
, η̃k =

1 +K2
kτ

2
k

2Γkτk
, ηk ≤ η̃k ≤ 1. (51)

The first definition relates ensemble decoherence with
the rate of distinguishing the subspaces, while the sec-
ond definition compares ensemble decoherence with its
information-related part, including the phase backaction.

If all detectors are ideal in the sense η̃k = 1, then the
evolution (50) can also be described with a wavefunction
(if initial state is pure and decoherence L[Ei] is unrav-
eled in the “jump/no-jump” way), i.e., the measurement
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evolution description (45) with small δt is fully sufficient.
When detectors are non-ideal, sometimes it is also pos-
sible to work with wavefunctions, which greatly simplify
analysis, in the following way. A non-ideal detector can
be thought of as an ideal detector with an uncorrelated
extra noise at the output [72], so that Eq. (47) contains
an extra (classical) noise term, while Eq. (50) is gov-
erned only by the quantum part of the noise, with τk
corresponding to the ideal part of the detector. Separa-
tion of the output noise into the quantum and classical
part is not possible for an observer, but we may pretend
that it is possible for a “Supreme Being”, who, there-
fore, can monitor the wavefunction evolution. Thus, we
can use predictions for ideal detectors, while remember-
ing about extra noise at the output. This logical trick
(which is somewhat similar to the idea of evolution un-
raveling) will be quite useful in our analysis.

For numerical simulations in full 16-dimensional
Hilbert space, it is sufficient to use evolution equation
(50) and Eq. (47) for the output signal (in practice, in-
stead of working with Wiener processes, it is usually
better to use explicit quantum Bayesian procedure [62]).
However, these Monte Carlo simulations are numerically
expensive and also not quite suitable to obtain analyti-
cal results. For analytics it is easier to discuss separate
evolutions in the four subspaces Q0,X,Y,Z , with jumps be-
tween them caused by single-qubit errors. This is what
we will do next.

C. Evolution without errors

Let us prepare initial encoded state |z+〉 [Eq. (8)] and
start continuous measurement of four gauge operators
Gk, assuming no evolution due to environment (only due
to measurement). First, let us show that the four-qubit
state remains within the subspace spanned by |z+〉 and
|z−〉. This can be shown using either Eq. (45) or Eq.
(50). For the proof using Eq. (50), note that all operators
Gk applied to |z+〉 or |z−〉, produce states within the
subspace spanned by |z±〉. Therefore, if the four-qubit
state ρ is within the subspace generated by |z±〉 (i.e.
spanned by |z+〉〈z+|, |z−〉〈z−|, |z+〉〈z−|, and |z−〉〈z+
|), then the right-hand side of Eq. (50) is also within
this subspace, so that the state remains in this subspace
during the evolution due to measurement.

It is also instructive to use Eq. (45) assuming ideal de-
tectors and show explicitly that the evolving state is de-
scribed by the wavefunction (39) (additional output noise
of non-ideal detectors can be added later). For measure-
ment of operator G3 = Z13 or G4 = Z24 and quantum
state |ψ〉 = a |z+〉 + b |z−〉 [Eq. (39)], the eigenvectors
|ψ±〉 in Eq. (40) are simply |z±〉. Then the evolution (45)
changes coefficients a and b, still preserving the form (39).
For measurement of operator G1 = X12 or G2 = X34, the
eigenvectors |ψ±〉 in Eq. (40) are |x±〉, which are linear
combinations of |z±〉 [Eq. (14)]. Therefore, the evolution
(45) still keeps the state within the 2-dimensional sub-

space (39). So, measurement of all gauge operators only
changes the gauge qubit |a, b〉g in Eq. (39), while not af-
fecting the logical qubit |α, β〉L, which defines the basis
|z±〉. Detector non-ideality leads to an imperfect knowl-
edge of a and b for an observer (while they are perfectly
known to the “Supreme Being”), therefore, for an ob-
server the gauge qubit states (39) are mixed, producing
density matrix ρg for the gauge qubit, while the logical
qubit |α, β〉L is not disturbed.

It is easy to see that within the gauge qubit subspace
spanned by |z+〉 and |z−〉, continuous measurement of
G3 and G4 is the usual Z-measurement of the gauge
qubit, while G1 and G2 correspond to continuous X-
measurement of the gauge qubit. Therefore, we have si-
multaneous X and Z measurement of a qubit, which was
described theoretically in Ref. [49] and realized experi-
mentally in Ref. [50]. Using results of [49] and adding
the phase backaction, from Eq. (50) we obtain the fol-
lowing explicit equations for the evolution of the Bloch-
sphere components of the gauge qubit density matrix
ρg = (11 + xgσx + ygσy + zgσz)/2 (in Itô form):

ẋg = (1− x2
g)

(
ξ1√
τ1

+
ξ2√
τ2

)
+ (K3τ3yg − xgzg)

ξ3√
τ3

+ (K4τ4yg − xgzg)
ξ4√
τ4
− (Γ3 + Γ4)xg + (ε3 + ε4)yg,

(52)

ẏg = (K1τ1zg − xgyg)
ξ1√
τ1

+ (K2τ2zg − xgyg)
ξ2√
τ2

− (K3τ3xg + ygzg)
ξ3√
τ3
− (K4τ4xg + ygzg)

ξ4√
τ4

−(Γ1 + Γ2 + Γ3 + Γ4)yg − (ε3 + ε4)xg + (ε1 + ε2)zg,

(53)

żg = (1− z2
g)

(
ξ3√
τ3

+
ξ4√
τ4

)
− (K1τ1yg + xgzg)

ξ1√
τ1

− (K2τ2yg + xgzg)
ξ2√
τ2
− (Γ1 + Γ2)zg − (ε1 + ε2)yg,

(54)

while the measurement output signals are

I1 = IX12 = xg +
√
τ1 ξ1, I2 = IX34 = xg +

√
τ2 ξ2, (55)

I3 = IZ13 = zg +
√
τ3 ξ3, I4 = IZ24 = zg +

√
τ4 ξ4. (56)

Note that in deriving Eqs. (52)–(56) we assumed that
the four-qubit state is fully in the subspace Q0, and in
the basis of four vectors |φj〉 [Eqs. (3)–(6)] the density
matrix is a direct product of the logical and gauge qubit
states, i.e.,

ρQ = ρL⊗ρg =

(
1+zL

2 × ρg xL−iyL
2 × ρg

xL+iyL
2 × ρg 1−zL

2 × ρg

)
4×4

, (57)

where xL, yL, zL are components of the logical qubit state
ρL. The measurement does not affect the logical qubit
state, ẋL = ẏL = żL = 0.
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We will mostly consider the special case when there
is no phase backaction and all four measurements have
equal measurement strength and corresponding ensemble
dephasing,

τk = τm, Γk = Γm, Kk = 0, εk = 0, k = 1, . . . 4. (58)

In this case the evolution equations (52)–(54) simplify,

ẋg = (1− x2
g)
ξ1 + ξ2√

τm
− xgzg

ξ3 + ξ4√
τm
− 2Γmxg, (59)

ẏg = −xgyg
ξ1 + ξ2√

τm
− ygzg

ξ3 + ξ4√
τm
− 4Γmyg, (60)

żg = (1− z2
g)
ξ3 + ξ4√

τm
− xgzg

ξ1 + ξ2√
τm
− 2Γmzg. (61)

We see that the component yg exponentially decreases
towards zero on the timescale of (4Γm)−1, while in the
xz-plane the evolution is isotropic (this can be seen by
considering linear combinations of xg and zg). In partic-
ular, in the ideal case when Γm = 1/2τm and the initial
state is |z+〉, the evolution can be described by a sim-
ple uniform diffusion of the wavefunction (39) along the
great circle of the Bloch sphere [49, 50], so that coeffi-
cients a(t) and b(t) in Eq. (39) are real. In a non-ideal
case, Γm > 1/2τm, the evolution can still be viewed in
this way for the “Supreme Being”, as discussed above.

For non-equal strength of four measurements, evolu-
tion of the gauge qubit state is the diffusion with the
state-dependent diffusion coefficient and also the drift
along the Bloch sphere. In the presence of phase backac-
tion, the coefficients a and b in Eq. (39) are necessarily
complex, so the whole Bloch sphere is involved in evolu-
tion. This complicates the analysis, but general picture
remains the same: measurement causes continuous evo-
lution of the gauge qubit, without disturbing the logical
qubit.

D. Measurement evolution within error subspaces

Suppose the error X1 has occurred. Immediately af-
ter this error, the four-qubit state still has the form (57)
with the same gauge and logical qubit states, but with
the basis vectors |φj〉 [Eqs. (3)–(6)] replaced with X1|φj〉.
In other words, the 4×4 matrix (57) moves to the differ-
ent block of the full 16 × 16 matrix. After that, the
continuous measurement of gauge operators Gk again
leads to an evolution of the gauge qubit state without
affecting the logical qubit. The only difference compared
with the previous section is that in the basis of vectors
X1|φj〉, the operator G3 = Z13 has the opposite eigen-
value, Z13(X1|φj〉) = −(X1|φj〉), while eigenvalues for
other three gauge operators are still +1. This means
that G3 now measures the gauge qubit along −Z axis
instead of Z axis.

Therefore, evolution equations (52)–(56) should be
changed within the error subspaceQX , in particular, now

Tr[G3ρ] = −zg. If we write the output signal I3(t) as
I3 = −zg +

√
τ3 ξ3 instead of Eq. (56), then we also need

to replace ξ3 with −ξ3 in Eqs. (52)–(54). However, it is
easier to flip the sign in the definition of ξ3, so that

I3 = IZ13 = −(zg +
√
τ3 ξ3), (62)

then the evolution equations (52)–(54) do not change.
This mapping can be interpreted as being due to the
transformation X1G3X1 = −G3 (somewhat similar to
the Heisenberg picture, in which the error-mapping ρ→
EiρEi is instead applied to the measured operators).

Thus, for a four-qubit state in the error subspace QX
(still assuming a direct product of the gauge and logical
qubit states), the dynamics due to continuous measure-
ment is the same as in the subspace Q0, except Eq. (62)
for the signal I3(t) replaces Eq. (56).

A similar reasoning shows that after an error Z1, the
dynamics due to measurement in the subspace QZ in the
basis Z1|φj〉 is still described by Eqs. (52)–(56), except
now

I1 = IX12 = −(xg +
√
τ1 ξ1). (63)

Finally, after an error Y1, the dynamics in the subspace
QY in the basis Y1|φj〉 is still described by Eqs. (52)–(56)
with the change for both I1 and I3,

I1 = −(xg +
√
τ1 ξ1), I3 = −(zg +

√
τ3 ξ3). (64)

Note that we intentionally considered only errors
in the first qubit (X1, Y1, Z1) because we use the
16-dimensional Hilbert space basis consisting of |φj〉,
X1|φj〉, Y1|φj〉, and Z1|φj〉. The mapping between the
states due to errors in other qubits will be considered
next, while the evolution in the error subspaces due to
measurement after these errors is the same as already
discussed.

E. Mapping between subspaces due to single-qubit
errors

As discussed above, an error X1 occurring at time t,
by definition does not change the logical and gauge qubit
states, ρg(t + 0) = ρg(t − 0), ρL(t + 0) = ρL(t − 0), and
only moves the four-qubit state from Q0 to QX . To an-
alyze the effect of the error X2 (instead of X1), we com-
pare it with the effect of X1. It is easy to see that X2

acting on the basis |φj〉 produces the same states as X1

with additional exchange: |φ1〉 ↔ |φ2〉 and |φ3〉 ↔ |φ4〉.
Therefore, X2 acting on a state (39) produces the same
state as X1, but with exchanged gauge qubit coefficients,
a↔ b. Consequently, for a more general initial state (57),
the application of X2 produces the same state as applica-
tion of X1 and additional X-operator for the gauge qubit
state, which we denote as XG.

Thus, we associate effect of error X2 (acting on a state
within Q0) with the error X1 and gauge-qubit operation
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XG. In a similar way we find that X3 acts on the basis
|φj〉 as X1 with additional exchange |φ1〉 ↔ |φ3〉 and
|φ2〉 ↔ |φ4〉, therefore acting on the state (39) as X1

with exchange α ↔ β. Thus, effect of error X3 is the
same as for the error X1 and logical-qubit X-operation,
which we denote as XL. Similarly, we find that X4 is
equivalent to X1 with additional operations XGXL on
both gauge and logical qubits.

Similarly, we can find the effect of the errors Zi com-
paring them with Z1, and effect of the errors Yi in com-
parison with Y1. The result is the following correspon-
dence:

X2 ↔ X1 ×XG, X3 ↔ X1 ×XL, X4 ↔ X1 ×XGXL,

Z2 ↔ Z1 × ZL, Z3 ↔ Z1 × ZG, Z4 ↔ Z1 × ZGZL,

Y2 ↔ Y1 × (−XGZL), Y3 ↔ Y1 × (−ZGXL),

Y4 ↔ Y1 × (−XGZGXLZL). (65)

This mapping is illustrated in Fig. 4. Note that if a
state of the direct-product form (57) is returned from
an error subspace to Q0 by another single-qubit error,
then the same correspondence applies, as can be easily
shown using relations Xi = X1XiX1, Yi = Y1YiY1, and
Zi = Z1ZiZ1.

F. Logical two-qubit errors

1. Uncorrelated Markovian errors

We can now discuss the mechanism of logical errors,
using the model of uncorrelated Markovian single-qubit
errors introduced in Sec. II D 1. As an example, let us
assume that the first single-qubit error in the procedure
is X1 and it occurs at time t1 (this error is indicated by
the upper solid-line arrow in Fig. 4). The state evolution
between t = 0 (preparation of the state |z+〉) and t1 is
evolution of the gauge qubit (illustrated by the thick-line
circle in Fig. 4), without change of the logical qubit state.
The error X1 moves the state from Q0 to QX without
change of the logical and gauge qubit states, and after
that the gauge qubit continues to evolve (not affecting
the logical qubit). Monitoring of time-integrated correla-
tors constructed from the output signals Ik(t) (discussed
later) is supposed to report that the error has occurred;
however, it takes some time to find this out, so that the
error is reported (on average) at time t = t1 + TR, where
the average response time TR will be calculated later.
If another single-qubit error, for example X3, occurs at
time t2 within the interval [t1, t1 + TR] and moves the
state back to Q0, then the error will (most likely) not be
reported, since after t2 the correlators are normal again.
The state is returned to Q0, but it is not returned to the
proper 2-dimensional subspace (see Fig. 4) because X3

error applied XL operation to the logical qubit, as fol-
lows from Eq. (65) (two X1 errors cancel out each other,
and there is also an unimportant gauge qubit evolution

between t1 and t2). Thus a logical X-error is produced
[note the X1X3 combination in Eq. (16)].

To analyze the effect of different combinations of
single-qubit errors, we can use the correspondence rela-
tions (65). The Xi error moves the legitimate state to one
of two subspaces inQX , either with or without XL opera-
tion (see two circles in the second column in Fig. 4), while
possible application of XG is not important. Similarly,
Zi error moves the legitimate state to QZ either with or
without ZL (two circles in Fig. 4) while possible XG op-
eration is not important. The errors Yi move the state
from Q0 to four different subspaces [see Eq. (65) and Fig.
4]. If the second error (occurring at t2) does not bring the
state to Q0, then an error will be detected; therefore, we
are interested only in error combinations returning the
state back to Q0. There are harmless combinations (i.e.,
X1X1, X1X2, etc.), which do not produce logical errors,
and there are combinations producing three types of log-
ical errors (see four circles in the left column in Fig. 4).
The logical errors illustrated in Fig. 4 are X-error due
to X1 and X3 (solid-line arrows) and also Z-error due
to Z4 and Z1 (dashed-line arrows). Since the evolution
of the gauge qubit due to single-qubit errors and due to
measurement between t1 and t2 is not important for us,
the logical error combinations obtained from Eq. (65) are
the same as those discussed in Sec. II C. Note that the
combinations of two errors occurring in the same qubit
are either harmless or detectable.

The rates of logical X, Y , and Z errors can be obtained
by calculating the probability of the second error occur-
ring within the response time TR after the first error,
and summing over the error combinations. It is impor-
tant that in our discussed later construction of averaged
correlators, the response time TR is the same for detect-
ing states in all error subspaces (QX , QY , QZ). In this
case the calculation of logical error rates (assuming no
detected errors) gives

γX = 2TR

[
(Γ

(X)
1 + Γ

(X)
2 )(Γ

(X)
3 + Γ

(X)
4 )

+Γ
(Y )
1 Γ

(Y )
3 + Γ

(Y )
2 Γ

(Y )
4

]
. (66)

γY = 2TR

[
Γ

(Y )
1 Γ

(Y )
4 + Γ

(Y )
2 Γ

(Y )
3

]
, (67)

γZ = 2TR

[
(Γ

(Z)
1 + Γ

(Z)
3 )(Γ

(Z)
2 + Γ

(Z)
4 )

+Γ
(Y )
1 Γ

(Y )
2 + Γ

(Y )
3 Γ

(Y )
4

]
, (68)

where Γ
(X)
i , Γ

(Y )
i , Γ

(Z)
i are the rates of single-qubit er-

rors (see Sec. II D 1) and the factor of 2 is due to dif-
ferent sequences of the two errors. In general, the re-
sponse times may be different for different error sub-
spaces (TR,X , TR,Y , TR,Z); in this case each product of
error rates in Eqs. (66)–(68) should be multiplied by the
corresponding response time.

In particular, for the depolarizing channel with Γ
(X)
i =
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Γ
(Y )
i = Γ

(Z)
i = Γd/3 we have

γX = γZ =
4

3
Γ2

dTR, γY =
4

9
Γ2

dTR, (69)

so that the total logical error rate (with no detected er-
rors) is

γL =
28

9
Γ2

dTR. (70)

Note that Eqs. (66)–(70) are similar to the results (24)–
(29) for projective measurements if the half-cycle time ∆t
is replaced with the response time TR. The similarity is
not exact because of different “effective response times”
for Yi errors compared with Xi and Zi errors in the pro-
jective case, while in the continuous case all response
times are the same.

2. Pure dephasing

Following the logic used in Sec. II D 2, we can apply
Eqs. (66)–(68) to the case of pure dephasing of physical

qubits with rates Γϕ,i by using the correspondence Γ
(Z)
i =

Γϕ,i/2. This gives the logical error rates

γX = 0, γY = 0, (71)

γZ = TR (Γϕ,1 + Γϕ,3)(Γϕ,2 + Γϕ,4)/2, (72)

in the case when no errors are detected by the procedure.
For equal dephasing in all qubits, Γϕ,i = Γϕ, we have

γL = γZ = 2Γ2
ϕTR, (73)

which corresponds to Eq. (33) with ∆t replaced with TR.

3. Energy relaxation

Following the logic of Sec. II D 3, let us analyze the
effect of energy relaxation in the physical qubits at zero
temperature (amplitude damping) with rates µi ≡ 1/T1,i.
The “no-jump” evolution with the Kraus operator 11 −∑
i(µi δt/2)σ+,iσ−,i = 11− δt∑i µi(11−Zi)/4 for a short

duration δt produces detectable Zi errors with the rate
on the order of µ2

i /Γm, where Γm is the dephasing due to
measurement. These errors can be neglected in compari-
son with “jump” errors, since we assume µi � Γm. With
no detected Zi-errors, measurement process self-corrects
the state disturbed by the “no-jump” evolution. There-
fore, in the leading order we can completely neglect the
“no-jump” evolution (see discussion in Sec. II D 3).

The “jumps” (energy relaxation events) due to opera-
tors σ−,j = (Xi + ıYi)/2 with rates µiTr(σ+,iσ−,iρ) lead
to detectable errors, unless the second energy relaxation
event occurs within the response time TR, leading to a
logical error. The state evolution between the jumps
can be described by general equation (50), but it can-
not be easily described by Eqs. (52)–(54) because these

equations assume a direct product of gauge and logic
qubits within only one error subspace, while the operator
(Xi+ ıYi)/2 produces a superposition between subspaces
QX and QY . Most importantly, since measurement dis-
tinguishes between these subspaces, the state will be
gradually collapsed into one of them within the timescale
comparable to τm. Therefore, coherence between the two
subspaces necessarily decays with a time constant compa-
rable to τm (one more reason for the decay of ensemble-
averaged coherence is the difference between the gauge
qubit evolutions within the two subspaces for the same
output signal). Since the time difference between the two
relaxation events is typically comparable to TR and since
in our case (as will be discussed later) TR is an order
of magnitude larger than τm, we can neglect coherence
between the subspaces.

After neglecting coherence between the subspaces, the
calculation of the logical error rates is simple: the logical
errors are due to independent two-qubit errors XjXi and
YjYi, occurring within TR. Using the probability rate
µi/2 of the first jump in ith qubit, probability µjTR/2
of the second jump in jth qubit within time TR, and
probability 1/4 each for the combinationsXjXi and YjYi,
we obtain the logical error rates

γX =
TR

8
[(µ1 + µ2)(µ3 + µ4) + µ1µ3 + µ2µ4] , (74)

γY =
TR

8
(µ1µ4 + µ2µ3), (75)

γZ =
TR

8
[µ1µ2 + µ3µ4] , (76)

where the error combinations come from Eqs. (16)–(18)
or from Eq. (65). Note that in Eq. (74) we show the
products µ1µ3 and µ2µ4 twice to emphasize similarity
with Eq. (66).

The corresponding total logical error rate (with no de-
tected errors) is

γL =
TR
8

[2(µ1 + µ2)(µ3 + µ4) + µ1µ2 + µ3µ4] . (77)

G. Cross-correlators

We have found the rate of logical errors for a given
response time TR, but we have not calculated TR yet.
We have also not calculated the termination rate. More-
over, we have not yet discussed quantitatively how we
can monitor the error syndrome.

As discussed in Sec. III A, the general idea is that in
the subspace Q0 and for the direct-product state (57),
the operators G1 = X12 and G2 = X34 both measure X-
component of the gauge qubit; therefore the correspond-
ing noisy outputs I1(t) and I2(t) should be positively
correlated. Similarly, for a state within Q0 the outputs
I3(t) = IZ13(t) and I4(t) = IZ24(t) are also positively
correlated. However, for a direct-product state within
subspace QX , the operator G3 = Z13 measures the gauge
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qubit along axis −Z, while G4 = Z24 measures it along
Z-axis; therefore, the noisy outputs I3(t) and I4(t) should
be negatively correlated. Similarly, within QZ the out-
puts I1(t) and I2(t) should be negatively correlated, while
withinQY both pairs of the output signals should be neg-
atively correlated. By monitoring the cross-correlations,
we can determine the subspace, i.e. obtain the error syn-
drome. [The condition (57) is actually not necessary for
distinguishing these subspaces.]

It is important to note that even though within Q0

the output signals I1 and I2 are given by Eq. (55)
with the common term xg, their same-time correlator
is 〈I1(t) I2(t+ 0)〉 = 1 [68], and not the naively expected
value x2

g. This is because the output noise ξ1 affects the
state due to quantum backaction [the first term in Eq.
(52)], leading to 〈√τ1 ξ1(t)xg(t+ 0)〉 = 1− x2

g(t) [68], so
that sum of the two terms in the correlator is always 1.
Similarly, all positive correlators (at the same time t) are
+1 and all negative correlators are −1. For non-equal
times, the correlators 〈Ik(t1) Ik′(t2)〉 for the correspond-
ing pairs decrease with increasing |t1 − t2| exponentially
with the timescale of the gauge qubit evolution. In par-
ticular, in the uniform case (58), from Eqs. (59)–(61) and
(55)–(56) we find

〈I1(t1) I2(t2)〉 = 〈I3(t1) I4(t2)〉 = exp(−2Γm|t1 − t2|).
(78)

This formula can be easily derived in the same way as
in Ref. [68] by noticing from Eqs. (59)–(61) that the
ensemble-averaged evolution of the gauge qubit is

ẋg = −2Γmxg, ẏg = −4Γmyg, żg = −2Γmzg, (79)

so that the X-correlator 〈I1(t1) I2(t2)〉 and the Z-
correlator 〈I3(t1) I4(t2)〉 should both decay in time with
the rate 2Γm.

In the error subspaces the positive cross-correlators
have the same value exp(−2Γm|t1 − t2|), while the neg-
ative cross-correlators are − exp(−2Γm|t1 − t2|). The
cross-correlators for signals measuring orthogonal com-
ponents of the gauge qubit vanish in all the subspaces,
〈I1(t1) I3(t2)〉 = 〈I1(t1) I4(t2)〉 = 〈I2(t1) I3(t2)〉 =
〈I2(t1) I4(t2)〉 = 0.

The correlators in Eq. (78) assume ensemble averaging,
while we need to monitor the error syndrome in real time
from a single realization. The main problem is that the
product of noisy outputs is very noisy, so we necessarily
need to smoothen out the monitored correlators by time-
averaging. For that we use a double-integration with the
bilinear form

Ckk̄(t) =

∫∫ t

−∞
K(t− t1, t− t2) Ik(t1)Ik̄(t2) dt1dt2, (80)

where notation kk̄ means the channel pairs 12 or 34 and
the integration kernel K is symmetric. Instead of the
general form (80), it is better to think in terms of integra-
tion over the time difference |t2 − t1| and the mean time
(t1+t2)/2. Obviously, the integral over |t2−t1| should be

limited to the range |t2− t1| . Γ−1
m , where the correlator

(78) is still significant (so that we do not pick up un-
necessary noise). The integration over (t1 + t2)/2 should
be sufficiently long so that the result is not too noisy,
but on the other hand a very long integration makes the
response time TR too long.

We have considered two such constructions for the
monitored time-integrated correlators,

Cr
kk̄(t) =

1

T r
c

∫ t

t−T r
c

C̃kk̄(t′) dt′, (81)

Ce
kk̄(t) =

1

T e
c

∫ t

−∞
C̃kk̄(t′) e−(t−t′)/T e

c dt′, (82)

C̃kk̄(t) =
1

2τc

∫ t

−∞
[Ik(t)Ik̄(t′) + Ik(t′)Ik̄(t)]

× e−(t−t′)/τc dt′, (83)

so that the first (inner) integration (83) is always expo-
nential with the time constant τc (comparable to Γ−1

m ),
while the second (outer) integration is either with the
rectangular kernel of duration T r

c or exponential with the
time constant T e

c (the time constants T r,e
c are at least an

order of magnitude longer than Γ−1
m ). As will be seen

later, the integration with exponential weight (82) pro-
vides a better operation of the code than integration with
the rectangular weight (81) for typical parameters; how-
ever, asymptotically the rectangular integration is better.

From now on, we always assume the case without phase
backaction and with equal parameters (τm, Γm) for all
four measurement channels, Eq. (58), while the quan-
tum efficiency η = (2Γmτm)−1 is arbitrary. (It is still
rather simple to consider different measurement parame-
ters though formulas become much longer; however, tak-
ing into account phase backaction significantly compli-
cates the analysis.) Using Eq. (78), it is easy to find

average values for C̃kk̄(t) in the subspace Q0,

〈C̃12(t)〉 = 〈C̃34(t)〉 = 〈C̃kk̄(t)〉 =
1

1 + 2Γmτc
. (84)

In the error subspaces this result for cross-correlators is
replaced with ±1/(1+2Γmτc), depending on the subspace
and pair correlation in the same way as discussed above.
The average values for Cr

kk̄
(t) and Ce

kk̄
(t) are the same

as for C̃kk̄(t).

To calculate the noise of Cr,e

kk̄
(t), we first calculate the

time-correlation function for C̃kk̄(t). Using the two-time
correlators as in Eq. (78), four-time correlators [74]

〈Ik(t1) Ik̄(t2) Ik(t3) Ik̄(t4)〉 = e2Γm(t1−t2)e2Γm(t3−t4)

(85)
for t1 < t2 < t3 < t4, and singularities 〈Ik(t) Ik(t′)〉 =
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τmδ(t− t′) at t ≈ t′, after some algebra we obtain

〈C̃kk̄(t1) C̃kk̄(t2)〉 − 〈C̃kk̄(t)〉2 = e−(2Γm+1/τc)|t1−t2|

×
[

2Γmτc
(1 + 2Γmτc)2

+
τm
4τc

+
τm
2τc

1

1 + 2Γmτc

]
+
τm
2
δ(t1 − t2)

(
τm
2τc

+
1

1 + 2Γmτc

)
. (86)

We see that this correlator decays exponentially with the
time constant (2Γm + 1/τc)−1. If the second integra-
tion in Eqs. (81) and (82) is over a much longer period,

T r,e
c � (2Γm)−1, then the fluctuating part of C̃kk̄(t) can

be approximately replaced with white noise, which has
the same spectral density as the low-frequency spectral
density of C̃kk̄(t). Therefore, we can use approximation

C̃kk̄(t) ≈ 〈C̃kk̄〉+A ξ̃c(t), (87)

where the white noise ξ̃c(t) satisfies Eq. (48) and

A2 =

∫ ∞
−∞

(
〈C̃kk̄(0) C̃kk̄(t)〉 − 〈C̃kk̄〉2

)
dt (88)

=
τ2
m

4τc
+

2τm(1 + Γmτc)

(1 + 2Γmτc)2
+

4Γmτ
2
c

(1 + 2Γmτc)3
. (89)

This approximation significantly simplifies analysis of
noise properties of the monitored integrated correlators
Cr,e

kk̄
(t). Note, however, that we neglected possible non-

Gaussian contribution to the noise of C̃kk̄. As will be dis-
cussed in Sec. III I, numerical simulation shows that the
non-Gaussian contribution to the noise slightly changes
the obtained below results for the false alarm rate.

Within the approximation (87)–(89), we see that inde-
pendently of the integration kernel of Cr,e

kk̄
, we can opti-

mize the signal-to-noise ratio of C̃kk̄ by minimizing the

ratio A2/〈C̃kk̄〉2 over τc. This leads to the following equa-
tion for the optimal value τc,opt:

8ηs3(s+2)+4s2(1+s)2+η−1(s4+2s3−2s−1) = 0, (90)

where s = 2Γmτc,opt. Substituting this optimal value into

Eqs. (84) and (89), we find the optimized 〈C̃kk̄〉 and A
in Eq. (87).

In particular, in the case of ideal detectors, η = 1, the
optimal value is τc,opt = 0.342/2Γm = 0.342 τm, corre-

sponding to the average signal 〈C̃kk̄〉 = 0.745 and noise
power A2 = 2.13 τm. In the case when η = 0.5, we ob-
tain τc,opt = 0.494/2Γm = 0.247 τm, 〈C̃kk̄〉 = 0.670, and
A2 = 2.20 τm.

H. False alarm rate and response time

Having optimized τc, let us now discuss the behavior of
the monitored integrated cross-correlators Cr,e

kk̄
(t). Their

average values within the subspace Q0 do not depend on
the integration time T r,e

c ,

〈Cr
kk̄〉 = 〈Ce

kk̄〉 = 〈C̃kk̄〉, (91)

while after a single-qubit error moves the state to an error
subspace, the average value for one or both monitored
pairs (12 and 34) flips its sign. This error can be detected
by observing that the value of a cross-correlator becomes
smaller than normal. The most natural criterion for the
error detection is crossing of a certain threshold,

Cr,e

kk̄
(t) < (1−Θ)〈C̃kk̄〉. (92)

The symmetric threshold corresponds to Θ = 1; however,
in principle any value within the range 0 < Θ < 2 can be
used for the threshold.

Even without the actual error, the monitored cor-
relator Cr,e

kk̄
(t) can become smaller than the threshold

(1 − Θ)〈C̃kk̄〉 due to a big fluctuation. This will be in-
terpreted as an error, and the algorithm will terminate.
This will increase the termination rate γterm by the rate
γf.al. of such “false alarms” in each monitored correlator;
for example in the model of independent single-qubit er-
rors (Sec. III F 1) the termination rate will be

γterm = 2γf.al. +
∑

i

[
Γ

(X)
i + Γ

(Y )
i + Γ

(Z)
i

]
, (93)

where the second term is the rate of actual single-qubit
errors and the false alarm rate is doubled because of two
monitored correlators with equal and independent noises.
Let us now calculate the false alarm rate γf.al. for one
monitored correlator.

It is easy to find the probability distribution P (C) for
the correlators Cr,e

kk̄
(t) (within Q0) using the white-noise

approximation (87),

P (C) =
1√

2πDr,e
c

e−(C−〈C〉)2/2Dr,e
c , (94)

Dr
c =

A2

T r
c

, De
c =

A2

2T e
c

, (95)

where for brevity we omitted unnecessary subscripts and
superscripts and used 〈C〉 = 〈C̃〉. The variance Dr

c or De
c

of the Gaussian distribution has been calculated as the in-
tegral of the variances within the shapes (81) or (82). The
false alarm rate should be proportional to the probability
of being beyond the threshold, 〈C〉 − C > Θ〈C〉; how-
ever, finding the correct prefactor (“attempt frequency”)
is not too easy. For that we use the “first-passage” ap-
proach [75, 76] and analyze the Fokker-Planck equation
for the quasi-stationary first-passage probability distribu-
tion Pf.p.(C), which has a condition that the threshold
has not yet been past and therefore

Pf.p.[(1−Θ)〈C〉] = 0. (96)

The first-passage calculations for exponential integra-
tion (82) are relatively easy because the stochastic pro-
cess Ce(t) is Markovian. It can be characterized by the
drift velocity (〈C〉 − Ce)/T e

c and effective diffusion coef-
ficient (1/2)(A/T e

c )2. By equating constant probability
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current (flux) with the first-passage rate γf.al., we write
differential equation

〈C〉 − C
T e

c

Pf.p.(C)− 1

2
(A/T e

c )2 dPf.p.(C)

dC
= −γf.al. (97)

and solve it approximately in the vicinity of the thresh-
old, C ≈ (1−Θ)〈C〉, using the boundary condition (96)
and also the condition that Pf.p.(C) should become prac-
tically equal to P (C) from Eq. (94) away from the thresh-
old. In this way we find the result

γf.al. =
Θ 〈C〉
A
√
πT e

c

e−Θ2〈C〉2T e
c /A

2

(98)

for the false alarm rate in the case of exponentially-
integrated monitored correlator (82).

The case (81) of the rectangular integration of the cor-
relator is more complicated because the stochastic pro-
cess Cr(t) is not Markovian. However, neglecting non-
Markovian effects, for the quasi-stationary distribution
Pf.p.(C) we can still introduce effective drift velocity
(〈C〉−Cr)/T r

c and effective diffusion coefficient (A/T r
c )2,

assuming a big fluctuation, 〈C〉 − Cr �
√
Dr

c. Then in
the same way as above we obtain the false alarm rate

γf.al. =
Θ 〈C〉

A
√

2πT r
c

e−Θ2〈C〉2T r
c /2A

2

. (99)

Since we had to neglect non-Markovian effects in the
derivation, we are not fully sure that the prefactor in
Eq. (99) is correct; however, numerical simulation con-
firmed it with the accuracy better than 20%. Note that
using the results of the previous section for the optimiza-
tion over τc, for η = 1 we find 〈C〉2/A2 = 0.261 τ−1

m and
for η = 0.5 we have 〈C〉2/A2 = 0.203 τ−1

m .
In a good quantum error detecting code, the rate γf.al.

of false alarms should be less than the rate of actual er-
rors, so that the termination rate (93) is not significantly
increased. (In a quantum error correcting code, γf.al.

should be even less than the rate of logical errors since it
contributes to logical errors.) Therefore, the exponent in
Eqs. (98) and (99) should be rather large, very crudely

Θ2〈C〉2T e
c /A

2 ' Θ2〈C〉2T r
c/2A

2 ' 10−20. (100)

Increase of the integration time T e
c (or T r

c ) decreases the
false alarm rate; however, this increases the response time
TR (and therefore the rate of logical errors), creating a
trade-off between these characteristics of the code oper-
ation.

Let us find TR in the simplest way, neglecting the noise.
Then, we simply assume that in Eqs. (81) and (82) a non-

stochastic signal C̃(t) switches from the constant value

〈C̃〉 to −〈C̃〉 at a time moment t1 due to a single-qubit
error. By finding the time at which Cr,e(t) crosses the

threshold (1−Θ)〈C̃〉 and equating it to t1 + TR, we find
TR. Thus obtained response times for the rectangular
and the exponential integrations are, respectively:

T r
R =

Θ

2
T r

c , T
e
R = T e

c ln
2

2−Θ
. (101)

Since we neglected the noise in finding TR, this re-
sult becomes inaccurate when Θ is close to 0 or 2 by
. 3
√
Dr,e

c /〈C〉 [so that the randomness in the distribu-
tion (94) becomes important].

Rectangular vs exponential integration

Let us compare performance of the rectangular and
exponential integrations for the monitored correlator to
find out which one is better. As seen from Eqs. (98) and
(99), the false alarm rates in both cases (for the same
threshold) are practically equal if T r

c = 2T e
c (a factor of 2

difference in the prefactor is not very important). Using
this relation in Eq. (101), we obtain

T e
R ≈ T r

R

1

Θ
ln

2

2−Θ
(102)

for the same γf.al. As we see, for the symmetric threshold,
Θ = 1, the response time for the exponential integration
is shorter, T e

R = 0.69T r
R. Therefore, exponential integra-

tion in the monitored correlator is better than the rect-
angular integration, providing 31% smaller logical error
rate for the same false alarm rate. However, the rect-
angular integration becomes better than the exponential
one for higher thresholds, Θ > 1.6; in this case T r

R < T e
R.

Even though the symmetric threshold, Θ = 1, seems
most natural, the choice of Θ is rather arbitrary. Let
us consider first the integration (82) with exponen-
tial kernel and vary Θ, while simultaneously chang-
ing the integration timescale T e

c to keep the response
time T e

R constant. Substituting the corresponding value
[Eq. (101)] T e

c = T e
R/ ln[2/(2 − Θ)] into Eq. (98),

we find that the false alarm rate γf.al. is proportional
to exp{−Θ2T e

R〈C〉2A−2/ ln[2/(2 − Θ)]}. Neglecting Θ-
dependence in the prefactor, we see that the minimal
γf.al. is achieved when ln[2/(2−Θ)] = Θ/[2(2−Θ)], i.e.,
at Θe

opt = 1.43. Thus, the optimal threshold is not sym-
metric, and at this optimal Θ the false alarm rate is

γf.al. =
0.90 〈C〉
A
√
T e

R

e−1.63T e
R〈C〉

2/A2

, Θe
opt = 1.43. (103)

In particular, in the cases η = 1 and η = 0.5 this gives

γf.al = 0.46 (T e
Rτm)−1/2 e−0.425T e

R/τm , η = 1, (104)

γf.al = 0.41 (T e
Rτm)−1/2 e−0.331T e

R/τm , η = 0.5. (105)

As an example, for a desired false alarm rate γf.al. =
10−5τ−1

m , we need response time T r
R = 21.7 τm for η = 1

and T e
R = 27.2 τm for η = 0.5.

However, if the symmetric threshold is chosen, then
by using T e

c = T e
R/ ln 2 for the exponential-kernel inte-

gration, from Eq. (98) we obtain

γf.al. =
〈C〉/A√
πT e

R/ ln 2
e−(〈C〉2/A2)T e

R/ ln 2, Θ = 1. (106)
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For η = 1 and η = 0.5 this gives

γf.al. = 0.24 (T e
Rτm)−1/2e−0.376T e

R/τm , η = 1, (107)

γf.al. = 0.21 (T e
Rτm)−1/2 e−0.293T e

R/τm , η = 0.5. (108)

Then the desired rate γf.al. = 10−5τ−1
m corresponds to the

response time T e
R = 22.6 τm for η = 1 and T e

R = 28.3 τm
for η = 0.5. As we see, the difference in the response time
compared with the above case of optimal Θ, is rather
minor.

Now let us consider optimization of Θ in the case
of rectangular integration (81). Substituting T r

c from
Eq. (101) into Eq. (99), we see that the false alarm
rate γf.al. is proportional to exp(−ΘT r

R〈C〉2/A2), so that
it is beneficial to increase Θ to its maximum possible
value of Θ = 2. In this case the exponential factor
exp(−2T r

R〈C〉2/A2) is significantly smaller than in Eq.
(103) for the exponential integration for the same re-
sponse time. Thus, it seems that for the rectangular
integration the optimal threshold is Θ = 2, and the per-
formance is better than with the exponential integration.

However, Eq. (101) for T r
R is significantly inaccurate for

Θ = 2. The reason is the fluctuations of C(t), which are

on the order of ±
√
Dr

c = ±A/
√
T r

c [see Eq. (94)]. For the
negative fluctuation, the crossing of the threshold occurs
earlier by ∼

√
Dr

c/(2〈C〉/T r
c ), while for the positive fluc-

tuation the crossing occurs later by ∼ T r
c , which is much

longer (crudely by the factor
√
T r

c/τm). This asymmetry
significantly increases the average response time T r

R.
To avoid this problem, let us shift the threshold by 2

standard deviations (so that we can neglect the fluctua-

tions), then Θ = 2 − 2
√
Dr

c/〈C〉. In this case from Eqs.
(99) and (101) we obtain approximately

γf.al. ≈
√

2 〈C〉
A
√
πT r

R

exp

(
−2〈C〉2T r

R

A2
+

2〈C〉
√
T r

R

A
− 1

)
.

(109)
For the desired false alarm rate γf.al. = 10−5τ−1

m , this
gives the response time T r

R = 25.1 τm for η = 1 and
T e

R = 31.6 τm for η = 0.5. Somewhat surprisingly, this
response time is longer than even for the exponential in-
tegration with symmetric threshold, Eq. (106), in spite of
faster decaying main exponential term in Eq. (109). The
reason is that our shift of the threshold by two standard
deviations is quite significant for these parameters, lead-
ing to a significant positive term within the exponent of
Eq. (109).

Therefore, even though asymptotically the rectangu-
lar integration (81) for the monitored correlator (with
the threshold Θ approaching 2) is better than the expo-
nential integration (82), for our typical parameters the
exponential integration is better. Moreover, since for the
exponential integration there is no big difference between
the results for the optimal Θ [Eq. (103)] and for the sym-
metric threshold [Eq. (106)], and since choosing the sym-
metric threshold avoids possible problems with Θ being
too close to 2, we conclude that the symmetric threshold,
Θ = 1, is a good choice.

Note that besides the definition (83) for the signal

C̃kk̄(t) (which is then integrated to give the monitored
correlators), we also considered the definition

C̃kk̄(t) = Ĩk(t) Ĩk̄(t), Ĩk(t) =
1

τc

∫ t

−∞
Ik(t′) e−(t−t′)/τcdt′,

(110)
which still leads to a bilinear form (80) after applying
integration (81) or (82). The definition (110) is more
natural for an experimental realization. It can also be
naturally generalized to the nine-qubit Bacon-Shor code
with continuous measurement, which will be able to oper-
ate as a quantum error correcting code (not only detect-
ing). Even though Eq. (110) formally contains two inte-
grations in contrast to the single integration in Eq. (83),
the important integration is only over the time difference
between the two channels, while the integration over the
running time is anyway repeated in forming Ckk̄(t). As a
result, the integrated correlator Ckk̄(t) in Eq. (81) is prac-
tically the same when either Eq. (83) or (110) is used for

C̃kk̄ if T r
c � τc (the difference is only near the edges of

the integration, with the relative difference on the order
of τc/T

r
c ). For the exponential integration in Eq. (82),

the relative difference for Ckk̄(t) is similarly on the order
of τc/T

e
c . Therefore, we can still use Eqs. (84) and (89)

for the signal and low-frequency noise of C̃kk̄(t) defined
via Eq. (110), and thus all results derived in this section
remain (approximately) valid.

I. Monte Carlo simulation results

To check the developed above (approximate) theory
for the termination and logical error rates, we have per-
formed quantum trajectory simulations for the full den-
sity matrix ρ(t) of the four-qubit system. For each time
step δt, the density matrix ρ(t+δt) is obtained from ρ(t)
by consecutively applying the random quantum Bayesian
updates, corresponding to measurements of the gauge op-
erators Gk [70]. Then, to the resulting density matrix we
apply an extra evolution to account for the environmen-
tal decoherence within the same timestep; for that we
use the Lindblad equation [see Eqs. (20)–(21)], obtaining
ρ(t + δt) up to second order in δt. In the simulations
we use the orthonormal basis, introduced in section II A,
neglect the phase backaction, and assume ideal measure-
ments of equal strength Γm = 1/2τm for all gauge oper-
ators. The time step is δt = 5 · 10−3 Γ−1

m .
The time-integrated correlators C12(t) and C34(t) are

computed using Eqs. (81)–(83) for each of 104–105 tra-
jectories. For a given duration T of the process, “good”
(no-detected-error) trajectories are selected by the con-
dition that the correlators for both channels are above
the threshold (1 − Θ)〈C〉 for the whole duration T .
The results presented below are for the symmetric case,
Θ = 1. The relative number of no-detected-error tra-
jectories gives (approximately) the success probability
Psuccess(T ); by fitting this numerical dependence to the
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FIG. 5: (Color online) The false alarm rate γf.al. as a function
of the response time T r,e

R (normalization involves the collapse
time τm). Numerical results for the rectangular and expo-
nential correlator integrations are shown by red squares and
blue crosses, respectively. The (upper) red and (lower) blue
dashed lines represent the analytics, Eqs. (99) and (98). The
solid lines include correction factors in the analytical formulas
(see main text). The inset shows the termination rate γterm
as a function of T r,e

R (the same horizontal axis as in the main
panel) for the case when qubits 1 and 2 are subject to pure
dephasing with Γϕ,1 = Γϕ,2 = 10−3Γm (no decoherence in the
main panel); the horizontal dashed line corresponds to single-
qubit errors, γterm = (Γϕ,1 + Γϕ,2)/2. We used Θ = 1, η = 1
and τc = τc,opt.

exponential decay of Eq. (23), we obtain the termination
rate γterm. In particular, in the absence of decoherence,
γterm is twice the false alarm rate γf.al. per channel.

Figure 5 shows thus calculated false alarm rate γf.al.

as a function of the response time T r,e
R [obtained from

the actual integration time T r,e
c via Eq. (101)] for mon-

itoring the time-integrated correlators with rectangular
(red squares) and exponential (blue crosses) kernels. The
red and blue dashed lines show the analytical formulas
(99) and (98), respectively. The numerical results indi-
cate that the analytical formulas slightly underestimate
the coefficients in the exponents. We have found that
this discrepancy between numerics and analytics is due
to non-Gaussian fluctuations of Cr,e

kk̄
(t) [which were as-

sumed to be Gaussian in the analytical derivation be-
cause of the approximation (87) for C̃kk̄(t)]. In partic-
ular, for τc = τc,opt and η = 1, we numerically calcu-
lated the third cumulant κ3 = 〈C3〉 − 3〈C2〉〈C〉+ 2〈C〉2
for Cr

kk̄
(t) and Ce

kk̄
(t), obtaining κ3 ≈ 1.05/(ΓmT

r
c )2 and

κ3 ≈ 0.34/(ΓmT
e
c )2 for the cases of rectangular and expo-

nential integrations, respectively (κ3 = 0 for a Gaussian
process). The non-zero third cumulant leads to the cor-
rection factor 1 + 〈C〉κ3/3κ

2
2 in the exponent for γf.al.

in Eqs. (99) and (98), where the second cumulant is
κ2 = A2/T r

c and κ2 = A2/2T e
c for these two cases. This

gives the correction factors of 1.23 and 1.30 to the expo-
nents of Eqs. (99) and (98), respectively (for τc = τc,opt

and η = 1). The red and blue solid lines in Fig. 5 show the
analytical results with account of these corrections, which
agree well with the numerical results. Note that the main

figure shows the false alarm rate γf.al. calculated in the
absence of decoherence, while the inset shows the termi-
nation rate in the presence of dephasing in qubits 1 and
2 with the rates Γϕ,1 = Γϕ,2 = 10−3 Γm. In this case, for
small response times the termination rate is dominated
by false alarms, but for large response times the termi-
nation rate converges to the rate of single-qubit errors
(horizontal dashed line) – see Eq. (93).

The logical error rates have been calculated numer-
ically in the following way. First, to extract the logi-
cal qubit state (for no-detected-error trajectories) from
the four-qubit density matrix ρ at each time T , we ap-
ply the transformation ρ(T ) → ρ̃(T ) = Π++ρ(T )Π++ +
Π−−ρ(T )Π−−, where Π++ = (11 + G3)(11 + G4)/4 and
Π−− = (11 − G3)(11 − G4)/4 are projection operators.
This transformation corresponds to applying projective
measurements of G3 and G4 at time T in the decoding
procedure and selecting only outcomes with the same re-
sults. Then the logical qubit state is extracted from the
4× 4 block of ρ̃(T ), corresponding to the code space Q0,
by tracing out the gauge qubit. The resulting Bloch co-
ordinates of the logical qubit are given by the equations

xL = 2 Re
〈ρ̃13 + ρ̃24〉
〈Tr ρ̃〉 , yL = −2 Im

〈ρ̃13 + ρ̃24〉
〈Tr ρ̃〉 , (111)

zL =
〈ρ̃11 + ρ̃22 − ρ̃33 − ρ̃44〉

〈Tr ρ̃〉 , (112)

where the indices correspond to the basis (3)–(6) and av-
eraging is over trajectories with no detected errors. From
{xL(T ), yL(T ), zL(T )} for four initial logical states, we
calculate the quantum process matrix χ(T ) for the log-
ical qubit state evolution [4, 60]. Then the logical error
rates γX , γY , and γZ are extracted from the linear de-
pendence on time T of the diagonal elements χXX , χY Y ,
and χZZ . Note that we normalize the process matrix,
χ→ χ/Tr(χ) after checking that the success probability
does not depend on the initial logical state.

We have checked our analytical formulas for the logical
error rates (Sec. III F) against the numerical results for
the cases of pure dephasing and energy relaxation (am-
plitude damping). For pure dephasing, we have found
that Eqs. (71)–(72) agree well with the numerical results
for the logical error rates. As an example, Fig. 6 shows
dependence of the logical Z-error rate γZ on the response
time T e

R [obtained from the exponential integration time
T e

c via Eq. (101)] for the case when the qubits 1 and 2 are
subject to dephasing with Γϕ,1 = Γϕ,2 = 10−3Γm. We
see that the agreement between the numerics (crosses)
and analytics (line) is quite good. The inset in Fig. 6
shows time-dependence of all three diagonal elements of
the process matrix χ. We see that even though numeri-
cal values of χXX and χY Y are not exactly zero (as they
should be analytically), they do not grow with the time
T ; their non-zero values are due to statistical noise in the
Monte Carlo simulations. The numerical off-diagonal el-
ements of the χ-matrix are zero (not shown). Similar
results are obtained when other pairs of qubits are sub-
ject to pure dephasing.
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FIG. 6: (Color online) The rate γZ of the logical Z-error as
a function of the response time T e

R for the case when qubits
1 and 2 are subject to pure dephasing with Γϕ,1 = Γϕ,2 =
10−3Γm. The crosses show numerical results, the solid line is
the analytical result, Eq. (72). The inset shows the diagonal
elements of the process matrix (χXX , χY Y , and χZZ) as func-
tions of time T for T e

R = 20.8τm. The rate γZ is calculated
from the slope of χZZ(T ). We used Θ = 1, η = 1, τc = τc,opt,
and the exponential kernel for the correlators.

Numerical results for the case of energy relaxation in
physical qubits also agree with analytical results (74)–
(76); however, there are minor deviations discussed be-
low. Let us first assume that only qubits 1 and 3 are
subject to energy relaxation. For this case we expect
only logical X-errors – see Eqs. (74)–(76). Indeed, our
numerical results shown in Fig. 7(a) indicate that out of
the diagonal elements of χ(T ), only χXX exhibits lin-
ear scaling with time T (non-zero values of χY Y and
χZZ are due to inaccuracy of Monte Carlo simulations),
and the off-diagonal elements are zero (not shown). The
extracted logical error rate γX is shown by crosses in
Fig. 7(b) as a function of the response time T e

R (the ex-
ponential integration of the correlators is used for all
panels of Fig. 7). The agreement with the analytical
formula (74) [solid line in Fig. 7(b)] is good. However,
the agreement is not so good for the case of energy re-
laxation in the qubits 1 and 2, presented in Figs. 7(c)
and 7(d). Figure 7(c) indicates that even though ele-
ments χXX and χY Y are much smaller than the main
element χZZ , they still increase with time, in contrast
to what is expected from Eqs. (74)–(76). We have also
found several small but non-zero off-diagonal elements,
linearly increasing with time T ; numerical results can be
fitted well by formulas χIZ(T ) = χZI(T ) = Tµ1µ2/8Γm

and χXY (T ) = −χY X(T ) = −iTµ1µ2/8Γm (other off-
diagonal elements are practically zero). Note that these
small elements are not proportional to the response time,
in contrast to the main element χZZ = TT e

Rµ1µ2/8.
Figure 7(d) shows the numerical logical error rate γZ
(crosses) extracted from the linear dependence χZZ(T ).
The analytical result given by Eq. (76) is shown by the
solid line. There is apparently a shift between the nu-
merical and analytical results. We do not know what
is exactly the reason for this discrepancy. For exam-
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FIG. 7: (Color online) The χ-matrix elements and logical er-
ror rate for the case of qubit energy relaxation (amplitude
damping). In panels (a) and (b) the energy relaxation af-
fects only qubits 1 and 3, µ1 = µ3 = 10−3Γm; in panels (c)
and (d) it affects only qubits 1 and 2, µ1 = µ2 = 10−3Γm.
Panels (a) and (c) show numerically calculated components
of the χ-matrix as functions of time T ; the diagonal elements
are depicted by solid lines. The only non-zero off-diagonal
elements are χIZ (real) and χXY (imaginary) in panel (c),
shown by (almost coinciding) dashed green lines. Panels (b)
and (d) show, respectively, the logical error rates γX and γZ
as functions of the response time T e

R. The crosses represent
numerical results and the solid lines represent analytical for-
mulas, Eqs. (74) and (76). We used Θ = 1, η = 1, τc = τc,opt,
and the exponential kernel for the correlators.

ple, it can be because an error can be detected due to
correlator noise even after the second single-qubit error
occurred. It can also be related to no-jump evolution,
which was neglected in the analytical derivation in Sec.
III F 3, which included only the effects scaling linearly
with TR. The numerical results for the energy relaxation
in qubit 1 and 4 are similar to the results presented in
Fig. 7, with dependence γX(T e

R) agreeing well with an-
alytics similar to Fig. 7(b) and γY (T e

R) showing a shift
from analytics similar to Fig. 7(d). In spite of the minor
deviations, we conclude that numerical results agree with
the (approximate) analytics (74)–(76).

Note that our analytical derivation is based on the pic-
ture of abrupt jumps between the code space and error
subspaces because of single-qubit errors, while in the nu-
merical simulations we use the Lindblad equation to de-
scribe continuous evolution due to decoherence. Never-
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theless, in the simulations we clearly see almost abrupt
state transitions between the subspaces, which are caused
by the interplay between the decoherence, which mixes
the subspaces, and measurement, which gradually col-
lapses the state into only one subspace. The timescale
of the transitions is much shorter than the response time
needed for correlators to report the transition.

J. Comparison with projective measurement case

For a quantum error detecting code, there are two main
characteristics of performance: success probability (prob-
ability that no errors have been detected) and probability
of a logical error (assuming that no errors have been de-
tected). Since in our case the probability of a detected
error and probability of a logical error both linearly de-
pend on time (for a sufficiently short time), it is more
convenient to use the termination rate [see Eq. (23)] and
the logical error rate.

To compare operations of the 4-qubit Bacon-Shor code
with projective and continuous measurements, let us
use the model of uncorrelated Markovian errors. The
rates of logical X, Y , and Z errors for the projective-
measurement case are given by Eqs. (24)–(26), while
for the continuous-measurement case they are given by
Eqs. (66)–(68). In general, the formulas in the two
cases are similar to each other, with the projective-
measurement half-cycle time ∆t (or ∆t/2) replaced
with the response time TR for the continuous measure-
ment. (Some difference in the formulas is because in
the continuous-measurement mode, the response time
TR is the same for any single-qubit error, while in the
projective-measurement mode, Yi-errors are detected on
average twice sooner than Xi or Zi errors.) Since the for-
mulas are slightly different, let us assume equal rates for
errors of all types in all qubits (depolarizing channel), as
in Eqs. (29) and (70). Then we see that the ratio of the
total logical error rates γL for the projective and contin-
uous measurements is γL,cont/γL,proj = (14/11)TR/∆t.
In particular, for the continuous-measurement correlator
integration (82) with exponential weight and symmetric
threshold, Θ = 1, this ratio of the logical error rates is

γL,cont

γL,proj
=

14 ln 2

11

T e
c

∆t
≈ 0.9

T e
c

∆t
, (113)

where T e
c is the correlator integration time.

Besides the logical error rates γL, we need to com-
pare the termination rates γterm. For the projective-
measurement case, γterm is (almost) the sum of single-

qubit rates, so for the depolarizing channel with Γ
(X)
i =

Γ
(Y )
i = Γ

(Z)
i = Γd/3 it is γterm = 4Γd. In the continuous-

measurement case, γterm is increased by the false alarm
rate for each of two monitored correlators, so using Eq.
(98) for the exponential integration of the correlator with
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FIG. 8: (Color online) Trade-off between the logical error rate
and termination rate for the Bacon-Shor code with continuous
measurements. Thick red line: ratio γL,cont/γL,proj of the
logical error rates for continuous and projective measurements
[Eq. (113)], as a function of the correlator integration time T e

c

normalized by the projective-measurement half-cycle time ∆t.
Thin blue lines: ratio γterm,cont/γterm,proj of the termination
rates for the continuous and projective measurements [Eq.
(114)] for several values of the collapse (“measurement”) time
τm: τm/∆t = 1, 0.3, 0.1, and 0.03 (from right to left) and
quantum efficiency η = 1 (solid lines) or η = 0.5 (dashed
lines). We assume Γd = 10−4/∆t and Θ = 1.

Θ = 1, we obtain the ratio

γterm,cont

γterm,proj
= 1 + 2

〈C〉/A
4Γd

√
πT e

c

e−T
e
c 〈C〉

2/A2

, (114)

where, as discussed above, 〈C〉2/A2 = 0.26 τ−1
m for ideal

detectors, η = 1, and 〈C〉2/A2 = 0.20 τ−1
m for detectors

with efficiency η = 0.5. Note that as discussed in the
previous section, the exponential suppression of the false
alarm rate is actually about 30% stronger due to non-
Gaussian effects (which improves the operation); how-
ever, for simplicity we neglect this correction here.

Figure 8 shows the ratios of the logical error and ter-
mination rates, Eqs. (113) and (114), as functions of the
correlator integration time T e

c for several values of the
collapse (“measurement”) time τm for each detector, as-
suming Γd = 10−4/∆t and η = 1 (thin solid lines) or
η = 0.5 (thin dashed lines). We see that if τm = ∆t,
then in order to keep γterm,cont/γterm,proj . 3, we need to
choose T e

c /∆t & 20, and correspondingly the logical error
rate is also a factor of 20 larger than in the projective-
measurement case. However, if τm = 0.03 ∆t, then
γterm,cont/γterm,proj ∼ 3 corresponds to γL,cont/γL,proj ∼
1.

We see that for comparable operations of the code
in the continuous and projective measurement cases,
we need a quite strong continuous measurement, τm ∼
∆t/30 (the non-Gaussian corrections increase this esti-
mate to ∼ ∆t/20). Even though this may seem as a dis-
advantage of using continuous measurement, actually the
same problem is hidden in the assumption of an instanta-
neous projective measurement. Since any measurement
in circuit QED architecture for superconducting qubits



22

is physically continuous, for a “projective” measurement
with infidelity of ∼ 10−5 we need duration ∼ 5τm. In the
conventional code with projective measurements, this du-
ration is assumed to be much shorter than the half-cycle
∆t. Therefore, our result of ∆t ∼ 20 τm is not surpris-
ing, and the same or larger ratio is implicitly assumed
in the conventional code with projective measurements.
(Note that the logical qubit is not protected during ex-
perimental “projective” measurement of two-qubit oper-
ators, which includes quantum gates between the code
qubits and ancillary qubits.)

IV. CONCLUSIONS

In this paper we have analyzed the operation of a
four-qubit Bacon-Shor code, in which projective mea-
surements of two-qubit operators are replaced with their
continuous measurements. Since these operators do not
commute with each other (except specific pairs of them),
there is a non-trivial question if the code can or can-
not operate with simultaneous continuous measurements.
We have shown that such operation is possible. An ad-
vantage of the continuous-measurement operation is that
it requires only a passive steady-state monitoring of error
syndromes, in contrast to repeated sequences of quantum
gates between the code qubits and ancillary qubits (fol-
lowed by measurement of ancillas) to implement projec-
tive measurements.

Simultaneous measurement of non-commuting qubit
operators [49] is a physically interesting beyond-textbook
process, which became an experimental reality only re-
cently [50]. Our work shows that it has relevance not
only to foundations of quantum mechanics, but can also
be useful for practical purposes, in this case for quantum
error detection and correction.

The four-qubit Bacon-Shor code encodes one logical
qubit, and the conventional operation involves random
discrete evolution of an additional degree of freedom,
the gauge qubit, due to sequential non-commuting pro-
jective measurements. In the continuous-measurement
mode, the evolution of the gauge qubit becomes contin-
uous, while transitions between the code space and error
subspaces due to single-qubit errors remain similar to the
projective-measurement case. As a result, the descrip-
tion of logical errors due to two close-in-time single-qubit
errors remains somewhat similar in the continuous and
projective measurement modes.

In the conventional Bacon-Shor code operation, the er-
ror syndrome is based on products (parity) of projective
measurement results. In the continuous-measurement
mode this is replaced by positive or negative signs of
the cross-correlators between the noisy output signals;
therefore the analysis relies on properties of correlators
in continuous qubit measurements [68, 69, 74]. Since the
cross-correlators of noisy signals are very noisy, we need
to construct time-averaged correlators; moreover, this av-
eraging should involve at least two integrations over time.

For the (inner) integration over the time difference in
the two measurement channels, we used exponentially-
decaying kernel and optimized over its time constant. For
the second (outer) integration over the running time, we
considered two options: rectangular kernel and exponen-
tial kernel. Our results have shown that even though
asymptotically the rectangular kernel is better, in the
moderate range of parameters the exponential kernel is
more natural.

The time constant Tc of the second integration is pro-
portional to the response time TR: the delay between
actual single-qubit error and obtaining an evidence that
the error has occurred (crossing of a certain threshold
by the time-averaged correlator). Since the logical error
rate is proportional to TR, we would wish to decrease Tc.
However, this increases the rate of false alarms, when the
error is mistakenly reported because of a large fluctua-
tion of the time-averaged correlator. Therefore, there is
a trade-off in the choice of Tc (Fig. 8).

A comparison between the code operations with pro-
jective and continuous measurements shows that they
are comparable when the half-cycle duration ∆t of the
projective-measurement mode is about 20 τm, where
the strength of continuous measurement is character-
ized by the “collapse” (“measurement”) timescale τm.
Even though this may seem to indicate that projective-
measurement mode is easier to realize (allowing longer
time scales), a comparable (if not larger) ratio ∆t/τm
is implicitly assumed in the conventional operation
with “instantaneous” projective measurements (when
formally τm = 0). As mentioned above, the advantage
of the operation with continuous measurements is the
absence of any time-dependent protocol (constantly re-
peated sequence of gates, ramping up and down measure-
ment pulses, etc.).

Since the four-qubit Bacon-Shor code cannot perform
quantum error correction and provides only quantum er-
ror detection, our results in this paper are formally appli-
cable only to the quantum error detection with continu-
ous measurement of non-commuting operators. We antic-
ipate that results for the nine-qubit Bacon-Shor code [8–
10] (which is an error correcting code) should in general
be similar to the results in this paper; most importantly,
we expect that its operation with continuous measure-
ment is indeed possible. The analysis can be based on
evolution equation (50) with 12 measured gauge oper-
ators and four monitored time-averaged correlators con-
structed as three-signal products via Eq. (110). However,
we did not do any calculations for the nine-qubit code,
and this analysis should be done in a separate paper.

While a simultaneous continuous measurement of
non-commuting single-qubit operators has been already
demonstrated [50], simultaneous measurement of non-
commuting two-qubit operators has not been demon-
strated, and so far there is no clear theoretical proposal
for such a measurement. However, continuous quantum
measurement of superconducting qubits is a rapidly de-
veloping field [35, 36, 50, 52, 53, 77, 78], and we hope that
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the four-qubit Bacon-Shor code with continuous mea-
surements analyzed in this paper can be realized experi-
mentally reasonably soon.
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Appendix A: Error classification in the conventional
case

In this appendix we discuss in more detail the error
classification considered in Sec. II C.

a. Single-qubit errors

There are 12 possible single-qubit errors: Xi, Yi, and
Zi, with i =1–4 labeling physical qubits. All these 12
types of errors are detectable by the code. It is easy to
see that operatorXi (with any i) applied to a state within
the subspace Q0, moves it to the subspace QX , since this
flips the sign of the eigenvalue of Zall (because {Xi, Zi} =
0 and therefore {Xi, Zall} = 0) and does not affect the
eigenvalue of Xall (because [Xi, Xall] = 0). Similarly, the
error Zi (with any i) moves a state from Q0 to QZ , since
this flips Xall and does not change Zall. The errors Yi
move a state from Q0 to QY by flipping both Xall and
Zall.

Therefore, all single-qubit errors are detectable with
the following error syndromes:

• Xi errors produce negative parity of outcomes
(“+−” or “−+”) at step-1 measurements (Z13 and
Z24), while producing usual positive parity (“++”
or “−−”) at step-2 measurements (X12 and X34);

• Zi errors produce positive parity at step-1 measure-
ments and negative parity at step-2 measurements;

• Yi errors produce negative parities for both step-1
and step-2 measurements.

Recall that without errors both parities are positive.
Since there are only three different error syndromes

and 12 possible errors, the errors are not correctable,
and the procedure should terminate when at least one
parity of measured outcomes is negative. Therefore, the
termination rate (success probability decay rate) for this
code is the sum of rates for all single-qubit errors (these
errors are dominating, so we do not need to include two-
qubit and higher-order errors into the termination rate).

From the point of view of the termination rate, the
considered quantum error detecting code is optimal (the
termination rate is approximately equal to actual error
rate). This is in contrast, for example, to the quan-
tum error detection procedure based on uncollapsing
[19, 79, 80], which experimentally demonstrated an in-
crease of the qubit lifetime by a factor of three [19],
but with a significantly smaller success rate than dic-
tated by actual errors. As discussed in Sec. III, the four-
qubit Bacon-Shor code with continuous measurements
may have a significant contribution to the termination
rate from “false alarms”; then the code becomes non-
optimal in this sense.

Note that any error operator Xi, Yi or Zi applied to
a state in the subspace Q0, moves it to one of the error
subspaces (QX , QY or QZ) and not to a superposition of
states from different subspaces. If another error operator
is applied after that, it also moves the state to one of the
subspaces. Therefore, for any sequence of single-qubit
error operators we never have a superposition of states
from different subspaces.

b. Two-qubit errors

There are (4 × 3/2) × 32 = 54 two-qubit error combi-
nations, which can be classified in the following way.

Harmless: X1X2, X3X4, Z1Z3, Z2Z4. (A1)

When these operators are applied to the legitimate states
(8)–(11), the state either does not change (up to an over-
all phase) or changes within the gauge qubit subspace.
Therefore, the effect is essentially unnoticeable and fully
disappears after the next measurement. Note that the
harmless combinations are the measured operators (1).

Logical X error: X1X3, X1X4, X2X3, X2X4,

Y1Y3, Y2Y4.
(A2)

For these combinations the state remains in the code
space Q0 (and therefore, no error syndrome is pro-
duced); however, the logical qubit |α, β〉L transforms into
±|β, α〉L (the overall phase ± is not important). It is easy
to see that the state remains in Q0 because the operators
(16) commute with Xall and Zall (since Pauli operators
either commute or anticommute with each other). The
transformation |α, β〉L → ±|β, α〉L can be checked ex-
plicitly for the states |z±〉 and |x±〉 [Eqs. (8)–(11)] by
using the following mapping: |φ1〉 ↔ |φ3〉, |φ2〉 ↔ |φ4〉
for X1X3 and X2X4; |φ1〉 ↔ |φ4〉, |φ2〉 ↔ |φ3〉 for X1X4

and X2X3; |φ1〉 ↔ −|φ3〉, |φ2〉 ↔ |φ4〉 for Y1Y3 and Y2Y4

(these mappings may also exchange states |z+〉 ↔ |z−〉
and/or |x+〉 ↔ |x−〉). Note that the complementary
combinations of operators (X1X3 and X2X4, also X1X4

and X2X3, also Y1Y3 and Y2Y4) have exactly the same
action within Q0, and therefore it is sufficient to check a
property only for one of the two complementary combina-
tions. The equivalence can be easily proven by recalling
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that any state within Q0 is an eigenstate of Xall, Zall,
and Yall = Y1Y2Y3Y4 with eigenvalues of +1; therefore
complements to Xall, Zall, and Yall are equivalent.

Logical Y error: Y1Y4, Y2Y3. (A3)

For these combinations the state remains in the code
space Q0, but the logical qubit |α, β〉L transforms into
±|β,−α〉L. This can be shown in the same way as for
the combinations (16), using the mapping |φ1〉 ↔ −|φ4〉,
|φ2〉 ↔ |φ3〉. Note that the combinations Y1Y4 and Y2Y3

are complementary to each other, so only one of them
needs to be checked.

Logical Z error: Z1Z2, Z3Z4, Z2Z3, Z1Z4,

Y1Y2, Y3Y4.
(A4)

For these combinations the state remains in Q0, but the
logical qubit |α, β〉L transforms into ±|α,−β〉L. This
can be shown via the mapping |φ1,2〉 ↔ |φ1,2〉, |φ3,4〉 ↔
−|φ3,4〉 for Z1Z2 and Z3Z4, |φ1,4〉 ↔ |φ1,4〉, |φ2,3〉 ↔
−|φ2,3〉 for Z1Z4 and Z2Z3, and |φ1〉 ↔ −|φ2〉, |φ3〉 ↔
|φ4〉 for Y1Y2 and Y3Y4.

The remaining 54−(4+6+2+6) = 36 two-qubit errors
involve different error types and map a state fromQ0 into
one of the error subspaces; therefore, these combinations
are detectable:

Detectable: XiYj , XiZj , YiZj , i 6= j. (A5)

Note that we do not consider two-error combinations
for the same qubit because they are equivalent to single-
qubit operators and therefore are either harmless (XiXi,
YiYi, ZiZi) or detectable (XiYi, XiZi, YiZi).
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