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Dynamical decoupling techniques are the method of choice for increasing gate fidelities. While these methods
have produced very impressive results in terms of decreasing local noise and increasing the fidelities of single
qubit operations, dealing with the noise of two qubit gates has proven more challenging. The main obstacle is
that the noise time scale is shorter than the two qubit gate itself so that refocusing methods do not work. We
present a measurement and feedback based method to suppress two qubit gate noise, which cannot be suppressed
by conventional methods. We analyze in detail this method for an error model, which is relevant for trapped
ions quantum information.

PACS numbers: 03.67.Ac, 03.67.-a, 37.10.Vz,75.10.Pq

I. INTRODUCTION

Quantum computers hold the promise to solve problems
more efficiently than classical computers [1]. However, it re-
mained for a long time unclear whether even conceptually a
quantum computer can be constructed. One compelling rea-
son is that even a minute error in each computational step
would rapidly accumulate to a large error. Remarkably, the
theory of quantum fault tolerance [2–5] showed that this intu-
ition was wrong. Actually, in order for a quantum computer to
output a correct result with an arbitrarily small probability of
failure, each gate operation must only fail with a small proba-
bility below a certain threshold. Thus, the precise value of the
error threshold is extremely important to the field of quantum
computation. This has initiated an enormous effort to reduce
gate infidelities below the fault tolerance threshold. Very good
results have been achieved in various platforms, in particular
in trapped ions, NV centers in diamond and superconducting
devices [6–9]. Most of these fidelities were achieved with the
help of dynamical decoupling.

The field of Dynamical Decoupling (DD) was born with
Hahn’s idea in 1950 [10] to refocus in-homogeneous broad-
ening in Nuclear Magnetic Resonance (NMR). This effect
was named Spin Echo, and is currently used in many areas of
physics from atomic systems [11] to condensed matter [12].
The major results of this field have given us the ability to
initialize, manipulate and detect the state of a qubit with ex-
tremely high precision, and even more impressively, the co-
herence time of qubits was prolonged by many orders of mag-
nitude.

Hahn’s idea was expanded to tackle homogeneous broad-
ening by using a pulse sequence which is nowadays termed
CPMG. Based on the CPMG pulse sequence a large number of
subtle modifications have been made among which are Quan-
tum ’Bang - Bang’ control [13, 14], Uhrig Dynamical De-
coupling (UDD) [15] and composite pulses [16]. Moreover, it
was realized that these pulse sequences are effective in dealing
with quantum noise [13]. Furthermore, in the last few years
the field of coherent control has joined forces with spin ma-
nipulation yielding even more successful, but also more com-
plicated, pulse sequences [17, 18].

These methods have made it possible to exceed the fault-
tolerance threshold for single qubit gates [6, 8]. However,

in the case of two qubit gates, this task remains challenging
[6, 8]. Most noise sources of the two qubit gates are single
qubit noisy terms, possessing a sufficiently long correlation
time, e.g., frequency and phase noise [19] and magnetic noise
[20]. Therefore, dynamical decoupling has considerably im-
proved two qubit gate fidelities in various platforms, and uti-
lizing refocusing techniques is expected to improve these fi-
delities even more in the near future [6, 21–25]. On the other
hand, the noise originating from laser or microwave amplitude
fluctuations creates a noisy two qubit term. In order to refocus
this amplitude noise without damaging the entanglement pro-
cess, one might employ composite pulses [26]. However, as
this amplitude noise could have a shorter time scale than the
gate duration [27], a naive composite pulse approach would
not suffice. The amplitude noise, therefore places a limitation
on the fidelity of two qubit gates that might impede future ad-
vances.
A future scenario might be that most errors are below the fault
tolerance threshold by more than an order of magnitude, but
two qubit gates still suffer from a dominant amplitude error
that is above it. In this paper, we show that in this scenario,
noisy two qubit gate fidelities can be enhanced by a sequence
of measurements and feedback, regardless of the noise’s cor-
relation time. The general idea is based on the following rea-
soning: A faulty two qubit gate could be used to realize a
faulty two qubit measurement. The measurement however,
could be repeated many times and reduce the infidelity sub-
stantially, resulting in a high fidelity two qubit measurement.
At the next stage the high fidelity two qubit measurement
could be utilized to create a high fidelity two qubit gate. These
two steps are presented in figure 1, where parts (a) and (b)
refers to the first and second step respectively. This general
idea could be used in many architectures having different er-
ror models, e.g., NV centers in diamond, and superconduct-
ing qubits. Yet, here we will concentrate on trapped ion sys-
tems. The paper is structured as follows: the amplitude error
in trapped ions is introduced, then we present our method and
show that it can arbitrarily suppress this noise. We show a de-
tailed fidelity analysis and give an example of another noise
model relevant for NV centers.
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Figure 1. The general scheme. The source of the protocol is a low
fidelity two qubit gate with a specific error model with a single error
operator. The first step (a) is to utilize this two qubit gate together
with single qubit operations to create efficient two qubit measure-
ments, which are used in the next step (b) to create high fidelity two
qubit gates.

II. ENTANGLING GATES WITH TRAPPED IONS

Entangling gates with trapped ions are realized using the
Mølmer-Sørensen (MS) scheme [6, 28–35], which is con-
structed out of the following interaction:

HMS,i = Ω(σx,i +σx,A)
(

b†e−iδ t +beiδ t
)
, (1)

where b†, (b) are the creation (annihilation) operators of the
vibrational phonon, Ω is the sideband Rabi frequency, and
δ = ωd−ν is the detuning of the driving field from the secu-
lar frequency. During the MS gate operation, the two spins are
entangled to the vibrational phonon, which generates the en-
tanglement between the two spins. It is desirable to get a pure
spin state; i.e., to keep the entanglement between the spins but
to disentangle them from the phonons. This goal is indeed
achieved, as after times of τgate = 2πn/δ with integer n, the
entanglement with the phonons is removed. In these times an
effective Hamiltonian of H = gσX ,1σX ,2, where g = Ω2

δ
, is ob-

tained. It is thus clear that in order to get a pure spin state, the
accuracy of the gate duration, τgate, must be high. This accu-
racy is determined by the stability of the detuning δ . Taking
advantage of the low drift in the trap frequency, and the high
control of the driving frequency, the detuning δ remains stable
during the experiment, and thus dynamical decoupling tech-
niques [36–38] can be used to disentangle the phonon from
the spins.

Producing a pure spin state is also vulnerable to fluctua-
tions of the Rabi frequency. These fluctuations may change
the radius of the circle in the phonon phase space, such that
even if the gate timing is accurate, there is a likelihood of not
returning to the starting point; in other words, a phonon-spin
entanglement may remain. Nevertheless, as long as these fluc-
tuations are stable during a single circle, which is the case of

the weak coupling regime (high detuning), the phonon-spin
entanglement is eliminated. In the strong coupling regime,
this noise only makes a second order contribution, which is
taken into account with the other noise terms that are not re-
focused.

However, the main source of decoherence originates from
the first order contribution of the fluctuating Rabi fre-
quency. These fluctuations eventually give rise to an am-
plitude noise in the interaction: instead of realizing an ef-
fective Hamiltonian of gσX ,1σX ,2 the following Hamiltonian:
(g + ∆g)σX ,iσX ,A is realized. Note that this argument also
holds for other entangling gate schemes with trapped ions,
such as the two qubit phase gate [6, 34, 35]. In these two
qubit gates, in addition to the noisy interaction, the fluctuating
Rabi frequency gives rise to a single qubit noise, which can be
refocused with regular dynamical decoupling techniques.

Thus, the noise in the interaction results in a faulty gate:

UMS = exp
(
−i
[

π

4
+ εi

]
σx,1σx,2

)
.

where εi denotes the error. We model εi as a random variable
uniformly distributed on [−e,e]. UMS is transformed to the
CNOT gate using single-qubit operations:

UZ,1UX ,2UY,1UMSU†
Y,1

with Uα,k = exp
(
−iσα,kπ/4

)
for α = x,y,z and k = 1,2. As-

suming perfect single qubit operations, the obtained gate is a
perfect CNOT followed by an error of exp(iεσZ,1σX ,2). The
CNOT can be utilized to perform non local measurements,
for example measurement of σZ,1σZ,2, i.e., parity detection,
as shown in figure 1 (a). The amplitude error will propagate
through the CNOTs to a final exp(i(ε1σZ,1 + ε2σZ,2)σX ,3) er-
ror, which will result in an imperfect parity detection. This is
illustrated in eq. 2:

|0〉|0〉|0〉 → cos(ε1 + ε2)|0〉|0〉|0〉− isin(ε1 + ε2) |0〉|0〉|1〉
|0〉|1〉|0〉 → cos(−ε1 + ε2)|0〉|1〉|1〉+ isin(−ε1 + ε2)|0〉|1〉|0〉
|1〉|0〉|0〉 → cos(ε1− ε2)|1〉|0〉|1〉+ isin(ε1− ε2)|1〉|0〉|0〉
|1〉|1〉|0〉 → cos(ε1 + ε2)|1〉|1〉|0〉+ isin(ε1 + ε2)|1〉|1〉|1〉

(2)

It can readily be observed that the error flips the ancilla,
so that after the measurement there is still an overlap with
states of the opposite parity. We will show that repeating the
measurement many times reduces this overlap.

The measurement scheme– From low fidelity CNOT to high
fidelity measurement — The basic advantage of a measure-
ment over a gate is that the measurement’s fidelity can be
increased by repeating it a few times, for example, detect-
ing quantum jumps [39] or measuring one qubit via the an-
cilla [40]. We now show the validity of this argument in
our case. It can be seen that the noise does not only flip
the ancilla, but also causes a dephasing. Fortunately, states
with the same parity have the same deformation up to a con-
stant relative phase that can be corrected; hence iteration
is indeed useful. To illustrate, consider an initial state of
a|11〉+b|00〉+c|10〉+d|01〉. Detection of 0 , i.e. even parity,
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implies that we collapsed into: cos(ε1 + ε2)(a|11〉+b|00〉)+
isin(ε1− ε2)(c|10〉−d|01〉) , and detection of 1 implies that
we collapsed into: isin(ε1 + ε2)(a|11〉−b|00〉) + cos(ε1 −
ε2)(c|10〉+d|01〉) . As mentioned, there is an overlap with
states of the opposite parity. If we now repeat the mea-
surement three times and determine the parity according to
a majority vote, the infidelity should go as sin(e)4 instead of
sin(e)2. This is verified by a simple examination of the tra-
jectories: if the same outcome is obtained in all of the mea-
surements, the overlap goes as sin(e)3, and the infidelity as
sin(e)6, but there are still trajectories in which not all the out-
comes are the same. In these trajectories the overlap goes as
sin(e), but the probability of these trajectories goes as sin(e)2.
Hence altogether this accounts for an infidelity that goes as
sin(e)4 instead of sin(e)2. This can be easily generalized to
2n− 1 repetitions: the worst case scenario is an overlap that
goes as sin(e), but the probability of these trajectories goes
as sin(e)2n−2. Therefore performing 2n−1 iterations reduces
the infidelity to an order of magnitude of e2n.

Note that this measurement scheme can be further im-
proved to take fewer operations. First there is no need to ap-
ply two complete CNOT sequences in each iteration. It can
be seen that σX ,1σX ,2 measurement is performed by simply
applying MZ,3UMS,23UMS,13, where the third qubit is an an-
cilla. Therefore σZ,1σZ,2 measurement is realized by adding
two Hadamards at the beginning of this sequence and two
Hadamards at the end. Secondly, there is no need to perform
the entire 2n−1 repetitions in order to get a majority vote, we
can end the sequence once any outcome is obtained n times.
Further analysis of this scheme will be presented in the up-
coming sections.

III. FROM HIGH FIDELITY MEASUREMENT TO HIGH
FIDELITY CNOT

We now present our CNOT scheme, which employs two
qubit measurements and single qubit operations. This scheme
is depicted in figure 2, and is inspired by the scheme presented
in [41]. This method consists of 4 qubits: control and target
qubits denoted as qubits 1 and 2 respectively, and two more
ancillary qubits. One ancilla, denoted as qubit A1, is needed
in order to be able to preform two qubit measurements on the
input qubits. They cannot be preformed soley on the input,
as the measurement might ruin the input state. The second
ancilla, denoted as qubit A2, is needed to realize the two qubit
measurements. The scheme is as follows: the initial state of
ancilla A1 is set to 1√

2
|0+ 1〉A1, so we start with (neglecting

normalization):

(α|11〉1,2 +β |00〉1,2 + γ|10〉1,2 +δ |01〉1,2) |0+1〉A1|0〉A2.
(3)

Now we measure σZ,1σZ,A1, an outcome of a positive parity
results in the state:

(α|111〉1,2,A1 +β |000〉1,2,A1 + γ|101〉1,2,A1 +δ |010〉1,2,A1) |0〉A2,
(4)

while for a negative parity, a correction of σX ,A1 is needed. In
the next step we measure σX ,2σX ,A1. A positive parity would

Figure 2. A detailed description of the scheme that includes all the
required qubits and operations. The MS denotes Mølmer-Sørensen
gate. The first step is a σZ,1σZ,A1 measurement, the second is a
σX ,2σX ,A1 measurement and the last one is a σZ,A1 measurement.
Depending on the measurement outcomes a correction (c1 and c2
boxes) is applied on qubits 1 and 2.

result in:

(α|1〉1|11+00〉2,A1 +β |0〉1|00+11〉2,A1

+γ|1〉1|01+10〉2,A1 +δ |0〉1|10+01〉2,A1)|0〉A2, (5)

for a negative parity, again, a correction of σZ,1σZ,A1 is re-
quired. The last step is measuring the ancilla A1, if we obtain
|0〉A1 the CNOT is realized, otherwise we just need to apply
a correction of σX ,2. We remark that it would be more effi-
cient to concentrate all the corrections at the end, instead of
applying a correction after each measurement, as is depicted
in figure 2 and in appendix A.

Hence, a high fidelity CNOT gate can be realized under the
condition that a high fidelity measurement can be realized.
This specific example illustrates the main scenario in which
there are high fidelity operations, i.e., the single qubit gates
and measurements (which are below the threshold) and one
low fidelity operation: the CNOT gate (above the threshold).
By utilizing many ’cheap’ operations we are able to increase
the fidelity of the bad operation and bring it below the thresh-
old.

We claim that this is the most efficient way to transform
multi-qubit measurements into a CNOT, since one cannot pro-
duce a CNOT using one two qubit measurement alone. This
is quite clear: we can always choose a basis in which the op-
eration of the measurement is not regular; i.e., two orthogonal
states are mapped to the same state. Thus we cannot generate
a CNOT utilizing only one two qubit measurement and single
qubit operations.

Analysis — We first note that a parity measurement can be
performed more efficiently. Instead of applying two CNOTs
it is enough to realize the sequence:

MZ,A1UY,2UY,1UMS2,A1UMS1,A1U†
Y,2U†

Y,1,
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where MZ,A1 denotes a measurement of the ancilla. Similarly a
measurement of σX ,1σX ,2 is realized by MZ,3UMS2,A1UMS1,A1;
in both cases a correction of single qubit operator is required
according to the outcome. Let us first analyze the case in
which the only errors are amplitude errors. Due to these er-
rors the measurement is not accurate and there is an overlap
with states of the opposite parity. So given an initial state
of a|11〉+ b|00〉+ c|10〉+ d|01〉, if we detect an even par-
ity we collapse into: cos(ε1 + ε2)(a|11〉+b|00〉)+ sin(ε2−
ε1)(c|10〉+d|01〉) , and detection of an odd parity implies that
we collapse into: −sin(ε2 + ε1)(a|11〉+b|00〉) + cos(ε2 −
ε1)(c|10〉+d|01〉) . In order to decrease the infidelity, the
measurement is repeated 2n−1 times and the outcome is de-
termined according to a majority vote. We now want to cal-
culate the average infidelity, and show that if the infidelity of
a single measurement goes as e2, 2n−1 repetitions yield infi-
delity that goes as e2n. The average fidelity reads:

∑
ε

p(ε)∑
ψ

〈ψ(ε)|ψ(ε)〉|〈ψ̃p|ψ̃(ε)〉|, (6)

where |ψ(ε)〉 is the unnormalized wave-function given a spe-
cific measurement result, |ψ̃(ε)〉 is the normalized one, |ψ̃p〉
is the normalized desired outcome and ε stands for all the εi
involved in the CNOT. Eq. 6 can be simplified to:

∑
ψ,ε

p(ε)〈ψ(ε)|ψ(ε)〉

√
1− 〈ψ(ε)Πr|Πrψ(ε)〉

〈ψ(ε)|ψ(ε)〉
, (7)

where Πr is the projection on the wrong subspace. Under the
assumption that the probability of the odd subspace is of the
same order of magnitude of the probability of the even sub-
space, which is indeed valid in all measurements performed
in our CNOT, we get that: 〈ψ(ε)Πr |Πrψ(ε)〉

〈ψ(ε)|ψ(ε)〉 ∼ e, and then taking
the leading order of e in eq. 7 we get that the infidelity is:

1
2 ∑

ψ,ε

p(ε)〈ψ(ε)Πr|Πrψ(ε)〉 ≈ 1
2

(
2n−1

n

)(
2e2

3

)n

. (8)

This expression is correct only in the leading order of e; a
comparison with numerical values can be found in the ap-
pendix.

This is obviously not enough, since we need to take into
account other errors. we take the following error model: each
single qubit operation is followed by a single qubit error with
probability e2, and each MS gate is followed by a single qubit
error with probability 2e2.There are clearly also detection er-
rors which should be considered, we note that detection errors
can be significantly suppressed by iteration, and are thus taken
to be e2 (see appendix A). We need to add the accumulation
of these errors to the infidelity, when e2 is assumed to be be-
low the threshold. Note that we can reduce the number of MS
gates, and therefore reduce the accumulation of these errors
since not all the repetitions are required. Instead of making all
the 2n−1 iterations, we just need to wait until one of the out-
comes is repeated n times. In the leading order of e this yields
the same infidelity as the 2n− 1 repetitions, but the average
number of repetitions is reduced to n(1+ 2e2

3 ) (appendix A).

Figure 3. (Color online) Given a threshold T, the single qubit error
e2 determines a new threshold for the original CNOT error, such that
the infidelity of our CNOT will be below T. The plot shows this new
threshold as a function of e2, for T = 10−4. For each value of single
qubit error a different number of maximal repetitions is required: The
brown (top) curve represents 7 repetitions, the blue (middle) curve
corresponds to 5 repetitions and the yellow (bottom) curve represents
3 repetitions.

The infidelity of the measurement thus reads:

n
(

1+
2e2

3

)
5e2 +6e2 +

1
2

(
2n−1

n

)(
2e2

3

)n

. (9)

The infidelity of σX ,iσX , j is almost the same (it differs only
in four Hadmard gates): n(1+ 2e2

3 )5e2+2e2+
1
2

(2n−1
n

)
( 2e2

3 )n.
We are now ready to obtain the infidelity of the CNOT. In
addition to the errors in each of these two measurements, we
have error in the last measurement of the ancilla and errors in
the last correction step. The infidelity of the CNOT is thus
bounded by:(

2n−1
n

)(
2e2

3

)n

+10n
(

1+
2e2

3

)
e2 +12e2, (10)

where this bound is indeed attained for certain states (ap-
pendix A).

Therefore, given a fault-tolerance threshold T , which is
unattainable for a faulty two qubit gates, the single qubit error,
e2, limits the number of repetitions that could be preformed in
order to reduce the error below T . The threshold of the orig-
inal faulty CNOT as a function of e2 is shown in figure 3 for
T = 10−4.
We remark that this analysis might need modifications accord-
ing to the exact experimental realization. Additional single
qubit operations may be required in order to cool the ions af-
ter measurements or shelve the ions states in order to ensure
single addressing (see appendix B).

We note that this method is useful for other noise models,
for example, dephasing in one of the qubits. Since this is a
dominant error in entangling gates in NV centers, this scheme
can be relevant to this platform as well (see appendix C).
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IV. CONCLUSIONS AND OUTLOOK

We presented a new measurement based method that in-
creases the fidelity of entangling gates, which suffer from
dominant amplitude error or dephasing noise. The scheme
is based on the observation that these gates can be used for
accurate measurements that can function as building blocks
for the desired entangling gate. Note that some noise models
seem to be resilient to this method, such as dephasing in both
qubits, which leaves us with the question of whether there are
similar methods for them.

Appendix A: Detailed analysis

Recall that the σZ,1σZ,2 measurement is performed in the
following way:

MZA2 exp(i
π

4
σY,2)exp(i

π

4
σY,1)·

exp(i
π

4
σX ,2σX ,A2)exp(i

π

4
σX ,1σX ,A2)·

exp(−i
π

4
σY,2)exp(−i

π

4
σY,1),

(A1)

where MZA2 denotes measurement of the third qubit (the an-
cilla), and a correction of σZ,1 follows any measurement of 1.
Putting the amplitude error:

MZA2 exp(i
π

4
σY,2)exp(i

π

4
σY,1)·

exp(i(
π

4
+ ε2)σX ,2σX ,A2)exp(i(

π

4
+ ε1)σX ,1σX ,A2)·

exp(−i
π

4
σY,2)exp(−i

π

4
σY,1),

(A2)

yields our imperfect measurement. Recall that εi are modeled
as identical random variables uniformly distributed between
−e to e. The effect of the amplitude error is illustrated by the
following table:

|11〉|0〉 → icos(ε1 + ε2)|11〉|1〉− sin(ε1 + ε2)|11〉|0〉
|10〉|0〉 → cos(ε1− ε2)|10〉|0〉+ isin(ε1− ε2)|10〉|1〉
|01〉|0〉 → cos(ε1− ε2)|01〉|0〉− isin(ε1− ε2)|01〉|1〉
|00〉|0〉 → −icos(ε1 + ε2)|00〉|1〉+ sin(ε1 + ε2)|00〉|0〉.

(A3)

So given an initial state: a|11〉+b|00〉+ c|10〉+d|01〉, if we
measure 1 (and make the repair) we collapse into:

cos(ε1 + ε2)(a|11〉+b|00〉)+ sin(ε2− ε1)(c|10〉+d|01〉) ,
(A4)

and measuring 0, we collapse into:

− sin(ε2 + ε1)(a|11〉+b|00〉)+ cos(ε2− ε1)(c|10〉+d|01〉) .
(A5)

Note that because of the amplitude error, the measurement is
not accurate and there is an overlap with states of the oppo-
site parity. This overlap goes as sin(e); thus, the infidelity
of the measurement goes as sin(e)2. In order to decrease the
infidelity, the measurement is repeated 2n− 1 times and the
outcome is determined according to a majority vote. Let us

consider the case of three repetitions: if we get the same out-
come in all three measurements, the undesired overlap will go
as sin(e)3. For example, getting three times one will leave us
with the non-normalized state:

cos(ε1 + ε2)cos(ε3 + ε4)cos(ε5 + ε6)(a|11〉+b|00〉)+
sin(ε2− ε1)sin(ε4− ε3)sin(ε6− ε5)(c|10〉+d|01〉) ,

(A6)

and thus the undesired overlap will be reduced. Regarding
the case of different outcomes, for example two ones and one
zero, we obtain the following non-normalized state:

− cos(ε1 + ε2)cos(ε3 + ε4)sin(ε5 + ε6)(a|11〉+b|00〉)+
sin(ε2− ε1)sin(ε4− ε3)cos(ε6− ε5)(c|10〉+d|01〉) .

(A7)

After normalization the undesired overlap goes as sin(e), but
the probability for this trajectory goes as sin(e); altogether
this accounts for an infidelity that goes as sin(e)4, instead of
sin(e)2.

We would now like to make a more precise calculation of
the average fidelity of this measurement, given a certain num-
ber of repetitions. We wish to show that for a single measure-
ment with an infidelity that goes as e2, then 2n−1 repetitions
yield infidelity that goes as e2n.
The average fidelity reads:

∑
ε

p(ε)∑
ψ

〈ψ(ε)|ψ(ε)〉|〈ψ̃p|ψ̃(ε)〉|, (A8)

where |ψ(ε)〉 is the unnormalized wave function given a spe-
cific measurement result, |ψ̃(ε)〉 is the normalized one, |ψ̃p〉
is the normalized desired outcome, we observe that |ψ̃p〉 =

Πc|ψ(ε)〉√
〈ψ(ε)Πc|Πcψ(ε)〉

, where Πc is the projection on the correct

subspace and Πr is the projection on the wrong subspace.
Hence the average fidelity reads:

∑
ψ,ε

p(ε)
√
〈ψ(ε)Πc|Πcψ(ε)〉〈ψ(ε)|ψ(ε)〉. (A9)

The average fidelity is thus larger than
∑

ψ,ε
p(ε)〈ψ(ε)Πc|Πcψ(ε)〉, and therefore the infidelity is

bounded by ∑
ψ,ε

p(ε)〈ψ(ε)Πr|Πrψ(ε)〉. This bound is the

same for any initial state, and in the case of three repetitions
we have: ∑

ψ,ε
p(ε)〈ψ(ε)Πr|Πrψ(ε)〉 = S(e)3 +

(3
2

)
C(e)S(e)2,

where C(e) = 1
4e2

∫ e
−e
∫ e
−e cos2(x + y)dxdy ∼ 1 − 2e2

3 and

S(e) = 1
4e2

∫ e
−e
∫ e
−e sin2(x+ y)dxdy ∼ 2e2

3 . Hence for 3 repeti-

tions we get that the infidelity is bounded by 3
(

2e2

3

)2
, and

for n repetitions it is bounded by
( n

n+1
2

)( 2e2

3

) n+1
2
. This bound

is attained for any initial state that lies in only one of the sub-
spaces (any initial state with a well defined parity). This is be-
cause in this case for any trajectory that gives the correct parity
Πc|ψ(ε)〉 = |ψ(ε)〉,Πr|ψ(ε)〉 = 0 and for any trajectory that
gives the wrong parity Πr|ψ(ε)〉 = |ψ(ε)〉,Πc|ψ(ε)〉 = 0.
However in the case where |a|2 + |b|2 is of the same order of
magnitude of |c|2 + |d|2, the infidelity will be smaller than the
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bound. We now calculate the infidelity in this case: note that
eq. A9 can be written as:

∑
ψ,ε

p(ε)
√
〈ψ(ε)|ψ(ε)〉2−〈ψ(ε)Πr|Πrψ(ε)〉〈ψ(ε)|ψ(ε)〉,

(A10)
that can be simplified to:

∑
ψ,ε

p(ε)〈ψ(ε)|ψ(ε)〉

√
1− 〈ψ(ε)Πr|Πrψ(ε)〉

〈ψ(ε)|ψ(ε)〉
. (A11)

Under the assumption that |a|2 + |b|2 has the same order of
magnitude of |c|2+ |d|2, then 〈ψ(ε)Πr |Πrψ(ε)〉

〈ψ(ε)|ψ(ε)〉 ∼ e and then tak-
ing the leading order of e in eq. A11 we get that the infidelity
is:

1
2 ∑

ψ,ε

p(ε)〈ψ(ε)Πr|Πrψ(ε)〉 ≈ 1
2

(
n

n+1
2

)(
2e2

3

) n+1
2

. (A12)

We can compare this approximation to numerical
values for e = 0.3, and |a|2 + |b|2 = |c|2 + |d|2 :

3 repetitions 5 repetitions
numerical 0.0058 0.00137

Approximated 0.0054 0.00108
.

We also need to take into account other single qubit errors
that are assumed to be below the threshold. The other sources
of error are single qubit operations and measurements. The
measurement infidelity can be substantially reduced by itera-
tion, the only limitation here is the finite coherence time of the
qubit that limits the number of iterations. It would be there-
fore reasonable to assume that the measurement error is upper
bounded by the single qubit gate’s error, this is justified and
discussed in the next section. As for the single qubit gates
we assume the following noise model: each single qubit rota-
tion of π

4 is followed by a single qubit error with probability
e2 and any MS gate is followed by a single qubit error with
probability e2 on each of the relevant two qubits. Now 2n−1
iterations of σZ,iσZ, j measurement include: 4n−2 MS gates,
2n− 1 detections, 4 Hadmard gates, one correction of π

2 ro-
tations with probability 1

2 and one measurement to initialize
the ancilla. We thus get that the infidelity of this measurement
reads: (10n+1)e2 +

1
2

(2n−1
n

)( 2e2

3

)n
.

But, as mentioned in the main text, the number of single qubit
errors can be significantly reduced, as we do not need all the
2n− 1 repetitions. Recall that 2n− 1 repetitions are used to
lower the amplitude error from e to en. But in order to get
this improvement we just need to wait until one of the out-
comes is repeated n times, and in most cases this will require
less than 2n− 1 repetitions. So a more efficient scheme is to
repeat the measurement until one of the outcomes occurs n
times; in the leading order of e the same infidelity is achieved
(taking into account only the amplitude errors). Note that
the probability to stop after k repetitions (n ≤ k ≤ 2n− 1) is(n+k−1

k

)(
C(e)nS(e)k +S(e)nC(e)k

)
, thus the average stopping

time is given by ∑
n−1
k=0 k

(n+k−1
k

)(
pn(1− p)k + pk(1− p)n

)
,

which goes as n(1+ S(e)). Hence, the probability for a sin-
gle qubit error is now [5n(1+ S(e))+ 6]e2, and the infidelity

reads:[
5n(1+

2e2

3
)+6

]
e2 +

1
2

(
2n−1

n

)(
2e2

3

)n

. (A13)

We now want to calculate the average infidelity of the en-
tire CNOT. The imperfect σX ,1σX ,2 measurement yields the
following outcomes:
Collapsing into |0〉 (so we do not need to perform a correc-
tion):

|11〉 → cos(ε1− ε2)|11−00〉− sin(ε1 + ε2)|11+00〉
|10〉 → cos(ε1− ε2)|10−01〉− sin(e1+ e2)|10+01〉
|01〉 → cos(ε1− ε2)|01−10〉− sin(ε1 + ε2)|01+10〉
|00〉 → cos(ε1− ε2)|00−11〉− sin(ε1 + ε2)|00+11〉

Collapsing into |1〉 (and applying σX ,1 correction):

|11〉 → cos(ε1 + ε2)|11+00〉+ sin(ε2− ε1)||11−00〉
|10〉 → cos(ε1 + ε2)|10+01〉+ sin(ε2− ε1)|10−01〉
|01〉 → cos(ε1 + ε2)|01+10〉+ sin(ε2− ε1)|01−10〉
|00〉 → cos(ε1 + ε2)|00+11〉+ sin(ε2− ε1)|00−11〉.

The infidelity analysis of this measurement is obviously simi-
lar to that of the σZ,1σZ,2 measurement. except that one does
not need the four Hadamard gates, so the infidelity of this
measurement is:

[
5n(1+ 2e2

3 )+2
]

e2 +
1
2

(2n−1
n

)( 2e2

3

)n
.

We are now poised to get the CNOT infidelity. To this end, we
need to understand how the σZσZ and σX σX measurements
errors propagate. Let us examine this for the σZ,1σZ,A1 mea-
surement:

(α|11〉+β |00〉+ γ|10〉+δ |01〉) |1+0〉, (A14)

will become after the measurement:

r(ε)(α|111〉+β |000〉+ γ|101〉+δ |010〉)+
ε (α|110〉+β |001〉+ γ|100〉+δ |011〉) ,

(A15)

where r(ε) denotes the relevant normalization factor. After a
flawless σX ,2σX ,A1 measurement (and repair if necessary) and
a σZ,A1 measurement (and repair if necessary) we get:

r(ε)(α|10〉+β |00〉+ γ|11〉+δ |01〉)+
ε(α|11〉+β |01〉+ γ|10〉+δ |00〉).

(A16)

Hence σZ,1σZ,A1 error corresponds to an σX ,2 error.
Considering the σX ,A1σX ,2 error:

α|111〉+β |000〉+ γ|101〉+δ |010〉, (A17)

will become after the measurement:

r(ε)(α|1(11+00)〉+β |0(00+11)〉+ γ|1(10+01)〉+δ |0(01+10)〉)+
ε (α|1(11−00)〉+β |0(00−11)〉+ γ|1(01−10)〉+δ |0(10−01)〉) .

(A18)

And after measurement of σZ,A1 :

r(ε)(α|10〉+β |00〉+ γ|11〉+δ |01〉)+
ε (−α|10〉+β |00〉− γ|11〉+δ |01〉) .

(A19)
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Hence the σX ,A1σX ,2 error corresponds to a σZ,1 error. So after
neglecting the terms that correspond to error in both measure-
ments, we get:

r(ε1,ε2)(α|10〉+β |00〉+ γ|11〉+δ |01〉)+
ε1 (α|11〉+β |01〉+ γ|10〉+δ |00〉)+
ε2 (−α|10〉+β |00〉− γ|11〉+δ |01〉) .

(A20)

In the leading order of e, the infidelity equals
1
2 ∑

ψ,ε
p(ε1,ε2)〈ψ(ε1,ε2)Πr|Πrψ(ε1,ε2)〉. So this is just:

∑
ε

p(ε1,ε2)
[
(ε1)

2
(
1−|〈ψ|ψ1〉|2

)
+(ε2)

2
(
1−|〈ψ|ψ2〉|2

)
+

ε1ε2 (〈ψ2|ψ1〉+ 〈ψ1|ψ2〉−〈ψ1|ψ〉〈ψ|ψ2〉−〈ψ2|ψ〉〈ψ|ψ1〉)] .
(A21)

Now we note that 〈ε1ε2〉= 〈ε1〉〈ε2〉= 0. So we are left with:

〈(ε1)
2〉
(
1−|〈ψ|ψ1〉|2

)
+ 〈(ε2)

2〉
(
1−|〈ψ|ψ2〉|2

)
, (A22)

but we already calculated 〈(ε1)
2〉,〈(ε2)

2〉 : this is simply the
infidelity of the measurement. Hence in the leading order of e
, the fidelity of the CNOT is:

ε(2−(|β |2+|δ |2−|α|2−|γ|2)2−(α∗δ +δ
∗
α+β

∗
γ+γ

∗
β )2),

(A23)
where ε denotes the measurement infidelity. Note that by tak-
ing for example: α = 1

2 ,δ = i
2 ,β = 1

2 ,γ = i
2 , the infidelity

is just 2ε. As noted in the main text single qubit corrections
should be applied in the case of wrong measurement out-
comes. As we have just seen a wrong outcome in the σZ,1σZ,A1
measurement is transformed into a final σX ,2 error. A wrong
measurement outcome in the σX ,2σX ,A1 measurement is trans-
formed to a final σZ,1 error and it can be easily seen that a
wrong outcome in the σZ,A1 measurement is also transformed
to a σZ,1 error. Hence wrong outcomes in the first and last
measurement cancel each other. Recall that we need also to
add an e2 error due to the last measurement. altogether This
accounts for an additional 4e2 term in the infidelity (in fact
3 1

4 e2). Therefore the total infidelity of the CNOT as a func-
tion of n, the required majority vote, reads:[

10n(1+
2e2

3
)+12

]
e2 +

(
2n−1

n

)(
2e2

3

)n

. (A24)

Eq. A24 tells us that the problem of decreasing the infi-
delity of the CNOT is mapped to the problem of reducing the
single qubit errors (e2). Since if e2 is small enough we can
take as many iterations as needed, thereby reducing the am-
plitude error below the threshold. Given a threshold T, any
e2 limits the number of iterations and thus imposes a new
threshold for the original CNOT error. This is shown in fig.
3 in the main part. Note that the original CNOT error is:
1
2

1
2e

e∫
−e

sin2(x)dx = e2

6 ; thus the infidelity of our CNOT as a

function of the original mean CNOT error (denoted as e′) is:

[
10n(1+4e′)+12

]
e2 +

(
2n−1

n

)(
4e′
)n
. (A25)

The length of the gate and decoherence— Additional
source of error is the limited coherence time of the qubits.
We must make sure that the duration of the scheme is much
shorter than the coherence time. Let us perform this analysis.
A coherence time of 50s was already achieved with hyperfine
qubits [43]. Currently, single qubit rotations and Ms gates
take about 2µs and 30µs respectively [9]. Measurement
is the longest operation in our scheme, as state of the art
measurements take about 330 µs with an error of 2 ·10−3 [9].
By taking a majority vote of 2 the error is reduced to 1.2 ·10−5

and the average duration is about 660µs. With a majority vote
of 3 the error is 8 ·10−8 and the average duration is 990µs. So
we are now poised to get the total duration of the scheme: for
a majority vote of n (in both measurements) it includes about
4n MS gates and about 2n+1 measurements. Since there are
only 6 single qubit gates and they are much shorter, they can
be neglected. Hence the duration (in microseconds) is about:
(2n+ 1)30+(4n)330. For n = 2,3,4, i.e. 3,5,7 repetitions,
the duration is 2.7,7.3,9.4ms respectively. Comparing these
to the coherence time (∼ 50s) we get that the infidelities
due to decoherence go as ∼ 10−8, Therefore this should not
cause a concern to our scheme. In fact, even if we take a
coherence time of 2s, as was achieved for Zeeman qubits
[44], we get that the infidelity due to decoherence is ∼ 10−6

(for a majority vote of 2), which does not affect the scheme.

Appendix B: Possible modifications to the analysis

The analysis above may change according to the details
of the experimental realization. The multiple measurements
may heat up the ions and thus introduce additional errors,
this can be overcome by performing sympathetic cooling
[45] after every measurement. This means adding in average
2n(1+ 4e)+ 1 more operations. Assuming the error in each
of these operations is e2, the infidelity would change to:
[12n(1+4e)+13]e2 +

(2n−1
n

)
(4e)n , this is quite a minor

change.
Another possible issue is the need for single addressing
of each of the ions. This should not pose a problem if
the addressing error can be reduced to ∼ 10−6, as ref.
[46] suggests. Otherwise shelving gates are required,
i.e. mapping the qubits on which we wish to operate to
different states. Let us consider the worst case scenario,
in which shelving is needed in any MS gate, single qubit
gates and measurements. Then a shelving gate is performed
before and after each of these operations, this accounts to
20n(1 + 4e) + 24 more single qubit gates, so the infidelity
reads: [30n(1+4e′)+36]e2 +

(2n−1
n

)
(4e′)n . This indeed

increases the infidelity, but still a significant improvement
can be achieved for e2 ∼ 10−6. In that case the minimal e2
required for an improvement is e2 = 1.04 · 10−6, and for
e2 = 10−6 we already get that an original CNOT error of
5 ·10−4 can be lowered to 10−4. We note that this should not
have a big effect on the length of the scheme, as single qubit
gates take only 2µs, and thus introducing shelving increases
the length in just ∼ 100 µs, which is acceptable.
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Appendix C: Relevance to NV centers and other noise models

This method can be applied to other noise models as well, in
particular to dephasing in one of the qubits. Namely, instead
of realizing a Hamiltonian of gσZ,1σZ,2, we get gσZ,1σZ,2 +
εσZ,1. This noise again induces a syndrome measurement mis-
take, and thus can be suppressed by iteration. This noise

model is the dominant error in entangling gates in NV cen-
ters. In this platform the main source of decoherence is a slow
drift in the NV energy gap, and this is the undesired εσZ,2.
When using these gates for parity measurements this noise
term flips the ancilla and changes the measurement’s result;
thus the measurement-feedback method works.

It should be noted that for other noise models such as de-
phasing in both qubits, our method is not useful, since the
error does not only change the syndrome but also deforms
the superposition. A future challenge would be to examine
whether a similar method can be used to suppress this kind of
noise.
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