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We consider a generalized modular-value based scheme based on the standard von Neumann
measurement. We model the scheme as an interaction between a quantum system and a discrete
quantum pointer where the pointer operator is a projection operator onto one of the states of
the basis of the pointer Hilbert space. The interaction strength is made arbitrarily large. After
postselection onto the system, the results of the pointer measurement are so-called the conditional
probabilities. We first explicitly derive the analytical expressions of the conditional probabilities, the
expectation value, and the average displacement in the measured value of a pointer observable, that
we name as the pointer quantities. We also provide an expression for a generalized modular value
and discuss the relationship between the generalized modular value and generalized weak values.
The study then shows that the generalized modular value can characterize these pointer quantities.
Then we give applications of our proposal to the cases of a spin-s particle pointer and a semiclassical
pointer state. One of the key results is that the amplification effect, similar to the weak-value case,
is also observed in the case of the generalized modular value. Our study can also apply to the cases
of nonclassical pointer states.

PACS numbers: 03.65.Ta, 03.65.Aa, 02.50.-r, 03.67.Ac

I. INTRODUCTION

In 2010, Kedem and Vaidman [1] treated the von
Neumann measurement process performed between the
preparation of an initial state and the postselection of a
final state. Different from the weak-value case, the inter-
action strength between the system and the qubit pointer
is kept arbitrarily large [1]. The expectation value of the
outcomes of such measurement process is so-called “mod-

ular value”. The modular value for a quantum observable
Â of the system is given by:

(A)m =
〈φ|e−igÂ|ψ〉

〈φ|ψ〉 , (1)

where |ψ〉 is the initially prepared state, |φ〉 is the postse-
lected state, and g is the coupling constant, which is not
assumed to be small but can be arbitrarily large. The
subscript “m” stands for “modular”.
Apparently, a weak value of an observable is related

to the corresponding modular value through 〈Â〉w =

i[∂g(Â)m]g→0. For an arbitrarily large of g, the absolute
value of the modular value Eq. (1) naturally behaves a
periodic property, where its value is periodically repeated
respect to g [2]. The study in Ref. [3] has also indicated
a generalized relation between weak and modular values
in the sense that the weak value can be obtained from
the corresponding modular value even for an arbitrarily
large g, with an arbitrarily given operator, for arbitrar-
ily pre- and postselected states. The theoretical studies
also clarified that the essence of some quantum paradoxes
could be attributed to the complex nature of the mod-
ular values [2, 3]. We also proposed that the change in
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the detection probability could be used to calculate the
amplitude of a modular value [2], instead of using the
state tomography as in Ref.[1]. We also connected the
phase of a modular value to the Pancharatnam phases.
Moreover, Cormann et al. demonstrated that the modu-
lus and argument of a modular value could be measured
by using the interference in quantum eraser [4]. One of
the possible applications of the modular-value method is
that experimentally measured weak and strong values in
sequential measurements [5].

So far, weak values have been studied in the con-
text of weak measurements, and in such weak mea-
surements, not only classical pointer states (such as
Gaussian states [6–9] or Hermite-Gaussian/Laguerre-
Gaussian beams [10, 11] but also nonclassical pointer
states (squeezed states, and Schrödinger cat states) are
used [12, 13]. Nonclassical pointer states have an advan-
tage in controlling the precision of weak measurements,
which have been recently demonstrated [11–13].

On the contrary, in the case of modular-value mea-
surement, such generalization has not been studied yet.
Therefore, the usage of various pointer states has not
been investigated either. Originally, the modular-value

based scheme was described by the interaction between
a given system and a qubit pointer via an interaction
Hamiltonian Ĥ = g(t)Â⊗ P̂ , where the projection oper-

ator is chosen as P̂ = |1〉〈1|, and the initial qubit pointer
is prepared in state γ|0〉+ γ̄|1〉, with |γ|2+ |γ̄|2 = 1. This
scheme limits the usage of modular values.

In the present work, we consider the pointer is not a
qubit but a qudit (i.e., multi-level system), which we call
generalized modular-value based scheme. The analysis of
such scheme results in a generalization of modular value,
which we call the generalized modular value. Of course,
the standard modular value is derived as a special (pure
states) case of the generalized modular value. The inter-
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action between the system and the pointer is given by
the Hamiltonian Ĥ = g(t)Â⊗ P̂ with an arbitrarily large
coupling constant g, which is the same as the standard
modular-value case. What is different is that the pointer
projection operator P̂ is not necessarily |1〉〈1| but can
be any of the eigenstates |ηµ〉〈ηµ| (µ = 0, 1, · · · , d − 1,
where d is the dimension of the qudit pointer). Through
the analysis of this generalized modular-value scheme,
we derive a formula for the generalized modular value.
We also illustrate a relationship between the generalized
modular value and generalized weak values, which allows
us to measure the generalized weak value from the gen-
eralized modular value. Then we derive the expressions
for some conditional probabilities using the generalized
modular value. As an application, we give an illustra-
tion of this theory to a spin-s particle pointer. We also
provide an application to a semiclassical pointer state,
where we take the coherent state of bosons as an initial
pointer state, which suggests the implementation of the
present theory to the cases of nonclassical pointer states.

This paper is organized as follows. Sec. II introduces
a generalized modular-value based scheme. Sec. III rep-
resents a generalized modular value. The applications to
a spin-s particle pointer and a semiclassical pointer state
are presented in the Sec. IV. Finally, we summarize the
results in Sec. V.

II. GENERALIZED MODULAR-VALUE BASED

SCHEME

We analyze a system-pointer interaction under the
standard von Neumann paradigm [14]. Therein, an oper-

ator Â on the system Hilbert space Hs couples to a pro-
jection operator P̂ on the finite pointer Hilbert space Hp

via an interaction Hamiltonian Ĥsp = g(t)Â ⊗ P̂ . Then
the corresponding unitary operator can be written as

Ûsp = e−igÂ⊗P̂ , where g =
∫

g(t)dt is the coupling con-
stant. The subscript s(p) denotes the system(pointer).
The coupling constant g is important, and most of the
equations below are g-dependent due to the g-dependent
of the interaction Hamiltonian Ĥsp.

We also assume that the system is initially prepared in
state ρ̂i while the pointer state is |ξ〉. The total den-
sity operator of the system-pointer, ρ̂sp, is written as
ρ̂sp = ρ̂i ⊗ |ξ〉〈ξ| before the interaction. This joint state
will involve in the Schrödinger picture under the unitary
interaction to ρ̂′sp = Ûspρ̂spÛ

†
sp.

The quantum system is then postselected onto a freely
chosen final state ρ̂f (≡ |f〉s s〈f |). The joint probability
of obtaining ρ̂f and a pointer outcome µ(= 0, 1, · · · , d−
1), that corresponds to the projection onto the state |ηµ〉
of the pointer, is expressed as p(µ, ρ̂f ) = Trsp[(ρ̂f ⊗
|ηµ〉〈ηµ|)ρ̂′sp], where Trsp[...] represents the total trace
over the joint Hilbert space of the system and the pointer.
Tracing out the pointer Hilbert space, then the joint
probability is expressed by the trace over the system [see

Appendix A] as

p(µ, ρ̂f ) = Trs[ρ̂fM̂µρ̂iM̂
†
µ], (2)

where the operator M̂µ ≡ 〈ηµ|e−igÂ⊗P̂ |ξ〉 is known as the
Kraus operator, which operates on the system Hilbert
space Hs. The completeness of the Kraus operators,
∑

µ M̂
†
µM̂µ = Îs, is easily verified.

By taking the sum over all µ’s in the joint probability,
one can derive the probability to obtain the postselected
outcome ρ̂f as

p(ρ̂f ) =
∑

µ

p(µ, ρ̂f ) = Trs[ρ̂f ρ̂
′
i], (3)

where ρ̂′i ≡
∑

µ M̂µρ̂iM̂
†
µ = Trp[ρ̂

′
sp] is the density matrix

of the quantum system after the interaction, which is
obtained by tracing out the pointer Hilbert space of the
bipartite ρ̂′sp.
We next use the Bayesian rule to obtain the conditional

probability of the outcome µ, which is written as

p(µ|ρ̂f ) =
p(µ, ρ̂f )

p(ρ̂f )
=

Trs[ρ̂fM̂µρ̂iM̂
†
µ]

Trs[ρ̂f ρ̂′i]
. (4)

The expectation value of an arbitrary pointer opera-
tor, Ôp, is given by 〈Ôp〉 = Trsp[(ρ̂f⊗Ôp)ρ̂

′
sp]/Trsp[(ρ̂f ⊗

Îp)ρ̂
′
sp], where 〈...〉 denotes the expectation value for the

final pointer state throughout this paper. After tracing
out the pointer Hilbert space and using the spectral de-
composition, Ôp =

∑

κ oκ|ηκ〉〈ηκ|, where oκ denotes the

κth eigenvalue of the operator Ôp with Ôp|ηκ〉 = oκ|ηκ〉,
we have [see Appendix A]

〈Ôp〉 =
∑

κ

oκ
Trs[ρ̂fM̂κρ̂iM̂

†
κ]

Trs[ρ̂f ρ̂′i]
=

∑

κ

oκp(κ|ρ̂f ) , (5)

where we have used the basis {|ηκ〉} of the discrete
Hilbert space Hp. We define and calculate the average
displacement in the measured value of the pointer ob-
servable Ôp as

∆〈Ôp〉 ≡ 〈Ôp〉 − 〈Ôp〉ξ =
∑

κ

oκ

[

p(κ|ρ̂f )− |cκ|2
]

, (6)

where 〈Ôp〉ξ ≡ 〈ξ|Ôp|ξ〉 is the expectation of the pointer
observable for the initial pointer state |ξ〉, and we have
defined cκ ≡ 〈ηκ|ξ〉. The term inside the bracket [...] is
the average displacement of the probability, which is the
difference between probabilities after and before the in-
teraction in the pointer. So, the Eq. (6) implies that the
average displacement in the measured value of the pointer
observable is proportional to the average displacement of
the probability. The same as weak-value case, an amplifi-
cation effect appears whenever the average displacement
of the pointer observable is very large. Notable that the
result can be generalized to the case of the continuous
spectrum of an operator, such as Ôp to be a momentum
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operator p̂. Also, in this case, the measurement of the
pointer observable implies the indirect measurement of
the quantum system observable [15].
Thereafter, let us assume that the initial pointer state

is expanded on the basis {|ηκ〉}, (κ = 0, 1, ..., d − 1) of
the d-dimensional discrete Hilbert space Hp, such that
|ξ〉 = ∑

κ cκ|ηκ〉, where cκ ≡ 〈ηκ|ξ〉. The projection op-

erator that we consider here is P̂ ≡ |ηλ〉〈ηλ|, which is
analogous to that |1〉〈1| in the qubit pointer case. With
the aid of the spectral decomposition theorem, the uni-
tary operator acting on the initial pointer state is given
by Ûsp|ξ〉 =

∑

κ cκ|ηκ〉exp(−igÂδκλ), and the Kraus op-
erator becomes (see Appendix B)

M̂µ = cµexp(−igÂδµλ), (7)

where cµ = 〈ηµ|ξ〉, and δµλ is the Kronecker delta func-
tion. We also introduce an analytic function, which is
based on the joint probability and the Kraus operator
(7), defined by

Z(µ, ν|λ) ≡ Trs[ρ̂fe
−igÂδµλ ρ̂ie

igÂδνλ ] , (8)

where the vertical bar “|” means “conditioned by”, and
ν is an extra integer suffix, which will be used to express
the density matrix elements like ρµν . This similar (but
different) characteristic function has been introduced and
analyzed by Lorenzo [16]. In the present work, we will
show that this analytic function, Z(µ, ν|λ), is used to
express a generalized modular value as below.

III. GENERALIZED MODULAR VALUE

In the previous section, we have derived the analytical
expressions of the conditional probability [Eq.(4)], the
expectation value [Eq.(5)] and the average displacement
of the measured values of the pointer observable [Eq.(6)].
In this section, we introduce a generalized modular value
and connect it to these three quantities. The generalized
modular value is defined as:

(A)µ,ν|λm ≡ Z(µ, ν|λ)
Z(µ′ 6= λ, ν′ 6= λ|λ)

=
Trs[ρ̂fe

−igÂδµλ ρ̂ie
igÂδνλ ]

Trs[ρ̂f ρ̂i]
, (9)

where, same as before, ρ̂i is the prepared state, ρ̂f is
the postselected state, µ and ν are the suffixes of density
matrix components used in the below. Before describing

the usage of (A)
µ,ν|λ
m , we classify it in the following three

cases:

(i) µ 6= λ and ν 6= λ (Here, both µ = ν and µ 6= ν are
allowed.)

→ In this case, the generalized modular value (A)
µ,ν|λ
m

becomes unity.

(ii) µ = λ and ν 6= λ (or, ν = λ and µ 6= λ)
→ For µ = λ and ν 6= λ, Eq. (9) gives

(A)λ,ν|λm ≡ Z(µ = λ, ν 6= λ|λ)
Z(µ′ 6= λ, ν′ 6= λ|λ) =

Trs[ρ̂fe
−igÂρ̂i]

Trs[ρ̂f ρ̂i]
. (10)

This expression is reduced to the original definition of
the standard modular value [Eq. (1)] when both pre-
and postselected states are pure states, i.e., ρ̂i = |ψ〉〈ψ|,
and ρ̂f = |φ〉〈φ|. For ν = λ and µ 6= λ, on the other

hand, the generalized modular value becomes (A)
µ,λ|λ
m =

Trs[ρ̂f ρ̂ie
igÂ]/Trs[ρ̂f ρ̂i] = [(A)

λ,µ|λ
m ]∗.

(iii) µ = ν = λ

→ (A)λ,λ|λm ≡ Z(µ = λ, ν = λ|λ)
Z(µ′ 6= λ, ν′ 6= λ|λ) =

Trs[ρ̂fe
−igÂρ̂ie

igÂ]

Trs[ρ̂f ρ̂i]
,

(11)

which will reduce to the square of the modulus of the
standard modular value |(A)m|2 when the system states

are pure. Using (A)
µ,ν|λ
m = [(A)

ν,µ|λ
m ]∗, (A)

λ,λ|λ
m becomes

real. We note that there is a similar “generalized” con-
cept for weak values [16, 17], but the way of generaliza-
tion is very different.
Here we show the meaning of the indices µ and ν more

explicitly. Let us consider the final state of the pointer,
which is given by

ρ̂outp =
Trs[(ρ̂f ⊗ Îp)ρ̂

′
sp]

Trsp[(ρ̂f ⊗ Îp)ρ̂′sp]
, (12)

where the denominator is the normalization factor, which
equals to the success probability of the postselected of ρ̂f .
We can proceed the calculation, as is seen in Appendix
C, resulting in

Trs[(ρ̂f ⊗ Îp)ρ̂
′
sp]

Trsp[(ρ̂f ⊗ Îp)ρ̂′sp]
=

∑

µ,ν cµc
∗
ν(A)

µ,ν|λ
m |ηµ〉〈ην |

∑

µ |cµ|2(A)
µ,µ|λ
m

, (13)

where the denominator is the probability of obtain-
ing ρ̂f , which is p(ρ̂f ). If we define

(

ρoutp

)

µν
≡

cµc
∗
ν(A)

µ,ν|λ
m

p(ρ̂f )
, then Eqs.(12) and (13) just show ρ̂outp =

∑

µ,ν

(

ρoutp

)

µν
|ηµ〉〈ην |. In this form, we can see that the

indicators µ and ν indicate the elements of the pointer
density matrix outcome.
As we mentioned in the introduction, the standard

modular value and the standard weak value are related
even for an arbitrarily large coupling g, that allows us
to obtain the weak value from the modular value. Here
we show that this relation is still valid in the general-
ized case. Let us illustrate this for cases (ii) and (iii),
ignoring the trivial case (i). Following Ref. [3], for the
two-dimensional nondegenerate case, the corresponding

exponential term e−igÂ is given by

e−igÂ = ΛÎ + Λ′Â, (14)
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where Λ ≡ λ1e
−igλ2−λ2e

−igλ1

λ1−λ2

, and Λ′ ≡ e−igλ1−e−igλ2

λ1−λ2

,
with λ1 and λ2 are two distinct eigenvalues of the oper-
ator Â [3]. Inserting Eq. (14) into Eq. (10), we have

(A)λ,ν|λm = Λ + Λ′〈A〉w, (15)

where we used 〈A〉w =
Trs[ρ̂f Âρ̂i]
Trs[ρ̂f ρ̂i]

, which is the generalized

weak value [17]. Similarly, Eq. (11) gives

(A)λ,λ|λm = ΛΛ+ + Λ′Λ+〈A〉w
+ ΛΛ′

1(〈A〉w)∗ + Λ′Λ′
+|〈A〉w|2, (16)

where we also used Λ+ ≡ λ1e
igλ2−λ2e

igλ1

λ1−λ2

, and Λ′
+ ≡

eigλ1−eigλ2

λ1−λ2

. The last term in Eq. (16) can be viewed

as a generalized high-order weak value [17].
Notable, for higher-dimensional Hilbert space, the re-

lation between the generalized modular value and the
generalized weak value is still valid, which allows us to
measure the generalized weak value and generalized high-
order weak values from the generalized modular value
with an arbitrarily coupling constant g.
We now show the usage of the generalized modular

value in the pointer, which gives the attainable outcomes.
First, it can be used to express the conditional probabil-
ities. The R.H.S. of Eq. (4) is rewritten, using Eqs.(7),
(9), as

p(µ|ρ̂f ) =
|cµ|2(A)µ,µ|λm

1− |cλ|2 + |cλ|2(A)λ,λ|λm

. (17)

Clearly the conditional probabilities satisfy
∑

µ p(µ|ρ̂f ) = 1.

Since these conditional probabilities appear in Eqs.(5)
and (6), this means that the generalized modular value
also characterizes the expectation value of an arbitrary
operator Ôp and its average displacement ∆〈Ôp〉.

IV. APPLICATIONS

In this section, we apply our proposal to the cases of a
spin-s particle pointer and a semiclassical pointer state.

A. Spin-s particle pointer

We first consider the spin-s particle pointer. We deal
with the three quantities explained above, i.e., the condi-
tional probability, the expectation value, and the average
displacement of an arbitrary operator of the pointer. We
also examine the signal-to-noise ratio (SNR) of spin oper-

ator Ŝz to discuss the enhancement of the signal-to-noise
ratio. We denote the eigenvalue of Ŝz as k (k is an in-
teger or a half-integer with the natural unit ~ = 1), and
its maximum value as s. So, the spin state is denoted as
usual as |s, k〉, where s takes values 0, 1

2 , 1,
3
2 ,..., which

corresponds to the (2s+1)-dimensional Hilbert space,
and k takes values −s,−s + 1, · · · , s, for a fixed s [18].
Hereafter, we omit the trivial case of s = 0. For example,
in the qubit pointer case, where s = 1

2 , the initial pointer

state is chosen as |ξ〉 = γ
∣

∣

1
2 ,− 1

2

〉

+
√

1− γ2
∣

∣

1
2 ,

1
2

〉

. In
our case, the initial pointer state is chosen (for a fixed s)
as

|ξ〉 = γ√
2s

s−1
∑

k=−s

|s, k〉+
√

1− γ2|s, s〉 . (18)

For simplicity, we assume that γ is real (0 ≤ γ ≤ 1). Also,
similar to the qubit pointer case, where the projection
operator is chosen as P̂ =

∣

∣

1
2 ,

1
2

〉 〈

1
2 ,

1
2

∣

∣, the projection

operator in our case is selected to be P̂ = |s, s〉〈s, s|; i.e.,
|ηλ〉 = |s, s〉.
The corresponding conditional probabilities Eq. (17)

for the outcomes µ = s and µ 6= s become

p(µ = s|ρ̂f ) =
(1− γ2)(A)sm

γ2 + (1 − γ2)(A)sm
, (19a)

p(µ 6= s|ρ̂f ) =
γ2

2s[γ2 + (1− γ2)(A)sm]
, (19b)

where we have introduced for short the symbol (A)sm ≡
(A)

s,s|s
m . For the purpose of comparison between

the probabilities after and before the interaction in
the pointer, we calculate the probability displacement
∆p(µ|ρ̂f ) ≡ p(µ|ρ̂f )− |cµ|2, which gives

∆p(µ = s|ρ̂f ) =
γ2(1 − γ2)[(A)sm − 1]

γ2 + (1− γ2)(A)sm
, (20a)

∆p(µ 6= s|ρ̂f ) =
γ2(1− γ2)[1− (A)sm]

2s[γ2 + (1 − γ2)(A)sm]
. (20b)

Obviously, we can see that ∆p(µ = s|ρ̂f )(20a) is positive
when (A)sm > 1, and negative when (A)sm < 1. The
behavior for ∆p(µ 6= s|ρ̂f ) (20b) is opposite.
For simplicity, we also assume that the system is chosen

to be a spin-1/2 particle and described by the pure pre-
and postselected states

|ψ〉 = 1√
2

(

| ↑〉+ | ↓〉
)

, (21)

|φ〉 = 1√
2ǫ2 − 2ǫ+ 1

(

ǫ| ↑〉 − (ǫ− 1)| ↓〉
)

, (22)

where we have used the spin orientations ↑ (up) and ↓
(down) for z-direction. It should be noted that the choice
of the system is not relevant to the pointer, where the
dimension can be chosen arbitrarily. We then also choose
Â ≡ Ŝz = 1

2 σ̂z to be the system observable and g = π. A
straightforward calculation the modular value Eq. (11)
gives (A)sm = (2ǫ − 1)2. To change the modular value,
e.g., from 0 to 9, we vary the parameter ǫ from 0.5 to 2.0
as shown in the Insert Fig. 1. Notable that |φ〉 = |ψ〉
when ǫ = 0.5, and they are orthogonal when ǫ → ±∞.
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FIG. 1. (Color online) The probability displacements ∆p(µ =
s|ρ̂f ) and ∆p(µ 6= s|ρ̂f ) in Eqs. (20) as functions of (A)sm for
γ = 0.4, 0.6 and 0.8, and s = 1, i.e., spin-1 pointer. Insert:
the modular value of the system observable σ̂z/2 varies as a
function of ǫ, where the quantum system states are chosen as
in Eqs. (21, 22), also we fix the value of g = π.

The main Fig. 1 shows the results of ∆p(µ = s|ρ̂f) and
∆p(µ 6= s|ρ̂f ) in Eqs. (20) as functions of (A)sm for γ =
0.4, 0.6 and 0.8. Here we assumed a three-level pointer,
that is, s = 1. In general, with increasing (A)sm from
1, the probability displacements ∆p(µ = s|ρ̂f ) smoothly
rise, while the probability displacements ∆p(µ 6= s|ρ̂f )
gradually descend. In other words, the modular value
plays a significant role in the probability displacements.
It can be used to design the measurement interaction to
increase the probability of getting the desired outcome
(i.e., getting |s, s〉 after the interaction).
We next examine the expectation value and the aver-

age displacement in the measured value of the pointer
observable Ôp. For illustration, let us choose Ŝz

p as the
observable whose eigenvalues are k = −s, ..., s. The ex-
pectation value, Eq.(5), straightforwardly gives

〈Ŝz
p〉 =

2s(1− γ2)(A)sm − γ2

2[γ2 + (1− γ2)(A)sm]
, (23)

where we have used the expressions in Eq. (19). The
average displacement in the pointer observable is given
by Eq. (6), being

∆〈Ŝz
p〉 =

∑

k

k∆p(k|ρ̂f )

=
(2s+ 1)γ2(1− γ2)[(A)sm − 1]

2[γ2 + (1 − γ2)(A)sm]
. (24)

Fig. 2 presents the result of the average displacement
of the pointer observable Ŝz

p of spin-2 (s = 2) particle.
It shows that, for (A)sm = 1 (indicated by the vertical

line), the average displacement of Ŝz
p is 0 regardless of

the γ value. The figure also shows that, by increasing
(or decreasing) (A)sm, the amount of displacement can be

0.0

0.2

0.4

0.6

0.8

1.0

 0  1  2  3  4  5  6

γ

(A)m
s
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FIG. 2. (Color online) Contour plot of the average displace-

ment in the measured value of the pointer observable Ŝz
p of

spin-2 (s = 2) particle. The vertical line at (A)sm = 1 indi-
cates the value zero, which means no “displacement”. The
quantum system is chosen the same as in Fig. 1.

made large toward positive (or negative) sign direction,
and the effect of the increase can be made even greater by
choice of γ. Obviously, this tendency can be seen in Eqs.
(6) and (24). This effect can be viewed as the amplifica-
tion effect in postselected modular-value measurement.
This amplification effect has been extensively studied in
weak-value measurement both theoretically [9, 13, 19–22]
and experimentally [23, 24], but still lack in the context
of modular-value measurement. Here we first show the
existence of this effect in the above example. It is worthy
to note that in this example, Ŝz

p does not play a major
role to the amplification effect. Instead, the effect might
appear for any pointer observable as we showed in Eq.
(6) with a suitable choice of pre- and postselected states.
Interestingly, all the above results depend on s, which

means that the amplification effect depends on the di-
mension of the pointer Hilbert space 2s + 1. For more in-
vestigation regarding the dimension, we next investigate
the signal-to-noise ratio (SNR), which is defined by the

ratio between the expectation value 〈Ŝz
p〉 and the square

root of the variance
√

Var(Ŝz
p), as follows [25]:

SNR =
〈Ŝz

p〉
√

Var(Ŝz
p)
, (25)

where the variance Var(Ŝz
p) is defined and given by

Var(Ŝz
p) ≡ 〈[Ŝz

p]
2〉 − 〈Ŝz

p〉2, (26)

where

〈[Ŝz
p ]

2〉 =
γ2

[

s2 + 2s3(1 − γ2)(A)sm +

s−1
∑

k=−s+1

k2

]

2s[γ2 + (1 − γ2)(A)sm]
, (27)
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FIG. 3. (Color online) The SNRs are shown as functions of
(A)sm and γ for s = 1

2
, 2, 7

2
and 5 as can be seen in each panel.

The quantum system is chosen the same as in Fig. 1.

and 〈Ŝz
p〉2 is given in Eq. (23). We remind that 〈...〉

denotes an expectation value for the final pointer state
throughout this paper. Fig. 3 represents the signal-to-
noise ratio (SNR) for s = 1

2 , 2,
7
2 and 5. It shows that the

SNR increase significantly for the larger s cases.

B. Semiclassical pointer state

In this subsection, we will illustrate the usage of our
model to the case of the semiclassical pointer state. Here,
the initial state of the pointer is a coherent state of bosons
as [26]

|ξ〉 ≡ |α〉 = e−
1

2
|α|2

∞
∑

k=0

αk

√
k!
|k〉. (28)

The system-pointer interaction is given as Ĥ = g(t)Â ⊗
|n〉〈n|, where |n〉 is a specifically chosen number state for
the pointer, i.e., |ηλ〉 ≡ |n〉. After the interaction, we
postselect the system state ρ̂f and measure the boson
number of the pointer and select the case that the final
state is |n〉. So, the outcome µ is chosen to be n, which
will be seen in Eq.(30).
Before the interaction, the probability of finding the

number n is given by the Poisson distribution:

p(n) = |〈n|α〉|2 =
e−|α|2 |α|2n

n!
, (29)

but after the interaction, the conditional probability of
finding the boson number n is given in Eq. (17) as

p(n|ρ̂f ) =
p(n)(A)nm

1− p(n) + p(n)(A)nm
, (30)

where (A)nm stands for (A)
µ,ν|λ
m with µ = ν = λ = n.

In this way, the conditional probability is expressed by

0.0

0.2

0.4

0.6

0.8

1.0

 0  2  4  6  8  10  12

p(
n|

ρ f
)

n

|α|2 = 1 |α|2 = 4
(A)m

n = 1
          = 2

            = 8

 
 
 

FIG. 4. (Color online) The conditional probability-versus-
n curves with different modular values (A)nm and |α|2. All
curves show the increasing with (A)nm for each |α|2. This
phenomenon can be regarded as the amplification effect of
the modular value. The quantum system can be chosen the
same as in Fig. 1, i.e., interactions between spin and photon.

the generalized modular value even in this semiclassical
pointer-state case.
Eq.(30) can be used, by designing the pre-/postselected

states, to increase the measurement signal, e.g., the con-
ditional probability. When the modular value takes 1,
Eq.(30) tells that p(n|ρ̂f ) = p(n). Now there is a possi-
bility to increase p(n|ρ̂f ) by changing the value of (A)nm
[27]. To see this, we plotted the conditional probabili-
ties for different modular values (A)nm and different val-
ues of |α|2 in Fig. 4. The results apparently tell that we
can increase the conditional probability by increasing the
modular value. Furthermore, we predict that out study
can be applied to various kind of nonclassical pointer
states such as squeezed vacuum state, and Schrödinger
cat state.

V. CONCLUSIONS

We have analyzed a proposed “generalized modular-
value” through generalizing the two-level pointer to
multi-level pointer in a system-pointer measurement
scheme. We have shown that the conditional probabili-
ties of the pointer outcomes are naturally expressed by
the generalized modular value. We have also calculated
the expectation value of an arbitrary pointer observable
and the average displacement in the measured values of
the pointer observable in the context of the generalized
modular value. We have applied our proposal to the case
of a spin-s particle pointer and a semiclassical pointer
state. In the first instance, we have found that the
generalized modular value can be used to analyze the
amplification effect in postselected modular-value mea-
surement. We also derived that the signal-to-noise ratio
(SNR) can be increased by increasing the dimension of
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pointer Hilbert space. In the later case, we have also an-
alyzed the case where the coherent state of bosons is used
as the initial state of the pointer. In this case, we found
the effect of modular-value amplification in the probabil-
ity of finding the boson number n. It should be noted
that our proposal presented here is a generalized case of
the pointer state. So, it might serve as an argument for
further studies on nonclassical pointer states.
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Appendix A: Joint probability and the expectation

value

We first recall the definition of the joint state after the
interaction:

ρ̂′sp = Ûspρ̂spÛ
†
sp

= Ûsp(ρ̂i ⊗ |ξ〉〈ξ|)Û †
sp . (A.1)

Substituting this expression into the joint probability,
we have Eq.(2) as

p(µ, ρ̂f ) = Trsp[(ρ̂f ⊗ |ηµ〉〈ηµ|)ρ̂′sp]
= Trsp[(ρ̂f ⊗ |ηµ〉〈ηµ|)Ûsp(ρ̂i ⊗ |ξ〉〈ξ|)Û †

sp]

= Trs[ρ̂f · Trp[(Îs ⊗ |ηµ〉〈ηµ|)Ûsp(ρ̂i ⊗ |ξ〉〈ξ|)Û †
sp]]

= Trs[ρ̂f · 〈ηµ|Ûsp|ξ〉ρ̂i〈ξ|Û †
sp|ηµ〉

= Trs[ρ̂fM̂µρ̂iM̂
†
µ] , (A.2)

where the operator M̂µ = 〈ηµ|Ûsp|ξ〉 represents the Kraus
operator.
It is straightforward to calculate the probability p(ρ̂f )

by taking the sum of all µ’s for Eq.(A.2), resulting in
p(ρ̂f ) = Trs[ρ̂f ρ̂

′
i], where ρ̂

′
i is calculated, by tracing out

the pointer Hilbert space of Eq. (A.1), to be

ρ̂′i = Trp[Ûsp(ρ̂i ⊗ |ξ〉〈ξ|)Û †
sp]

=
∑

µ

M̂µρ̂iM̂
†
µ . (A.3)

The expectation value of an arbitrary observable in the
pointer gives

〈Ôp〉 =
Trsp[(ρ̂f ⊗ Ôp)ρ̂

′
sp]

Trsp[(ρ̂f ⊗ Îp)ρ̂′sp]
. (A.4)

We now insert Ôp =
∑

κ oκ|ηκ〉〈ηκ| into the numerator

and Îp =
∑

κ′ |ηκ′〉〈ηκ′ | into the denominator, and then
perform calculations as in (A.2). The result is Eq.(5).

Appendix B: Kraus operator

Consider the basis {|ηκ〉, κ = 0, 1, 2, ..., d − 1}, where
d denotes the dimension of the discrete pointer Hilbert
space Hp. The initial pointer state can be expressed in
the form:

|ξ〉 =
∑

κ

cκ|ηκ〉 , cκ = 〈ηκ|ξ〉 , (B.1)

and the projection operator P̂ = |ηλ〉〈ηλ| can be explic-
itly expressed as

P̂ =
∑

κ

ηκ|ηκ〉〈ηκ| with

{

ηκ = 1 if κ = λ

ηκ = 0 if κ 6= λ

=
∑

κ

δkl|ηκ〉〈ηκ| . (B.2)

Now, the action of the unitary operator Ûsp on the initial
pointer |ξ〉 can be characterized as follows [28]:

Ûsp|ξ〉 =
∑

κ

e−igÂδκλ〈ηκ|ξ〉|ηκ〉

=
∑

κ

cκ|ηκ〉e−igÂδκλ . (B.3)

Then, the Kraus operator is calculated as

M̂µ = 〈ηµ|Ûsp|ξ〉
=

∑

κ

cκ〈ηµ|ηκ〉e−igÂδκλ

=
∑

κ

cκδµκe
−igÂδκλ

= cµe
−igÂδµλ , (B.4)

where cµ = 〈ηµ|ξ〉.

Appendix C: The final state of the pointer

The final state of the pointer is given as

ρ̂outp =
Trs[(ρ̂f ⊗ Îp)ρ̂

′
sp]

Trsp[(ρ̂f ⊗ Îp)ρ̂′sp]
. (C.1)

In the numerator, let us insert
∑

µ |ηµ〉〈ηµ|(= Îp) and
∑

ν |ην〉〈ην |(= Îp), then we have

Trs

[(

ρ̂f ⊗
∑

µ

|ηµ〉〈ηµ|
)

Ûsp

(

ρ̂i ⊗ |ξ〉〈ξ|
)

Û †
sp

∑

ν

|ην〉〈ην |
]

=
∑

µ,ν

cµc
∗
νTrs

[

ρ̂fM̂µρ̂iM̂
†
ν

]

|ηµ〉〈ην |. (C.2)

Similarly, in the denominator, we insert
∑

µ |ηµ〉〈ηµ|, and
then trace out the pointer Hilbert space, which leads to

Trsp

[(

ρ̂f ⊗
∑

µ

|ηµ〉〈ηµ|
)

Ûsp

(

ρ̂i ⊗ |ξ〉〈ξ|
)

Û †
sp

]

=
∑

µ

|cµ|2Trs
[

ρ̂fM̂µρ̂iM̂
†
ν

]

. (C.3)
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After that, we divide both the numerator and denomina-
tor by the non-zero factor Trs[ρ̂f ρ̂i], and use the defini-

tion of modular value Eq. (9). Then we finally obtain

ρ̂outp =

∑

µ,ν cµc
∗
ν(A)

µ,ν|λ
m |ηµ〉〈ην |

∑

µ |cµ|2(A)
µ,µ|λ
m

, (C.4)

which is Eq.(13).
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