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We perform an ab initio study of the ultimate capabilities and limits of applicability of the method for 

few-cycle pulse formation via the resonant interaction of an extreme ultraviolet (XUV) radiation with atoms 
dressed by moderately strong infrared (IR) laser field proposed in ([Phys. Rev. Lett. 105, 183902 (2010)] and 
[Opt. Lett. 36, 2296 (2011)]). Taking into account all the multiphoton processes in the systems under consid-
eration on the basis of numerical solution of the three-dimensional time-dependent Schrödinger equation 
(TDSE) in the single-active-electron approximation, we show the possibilities to produce 1.1 fs pulses from 
124.6 nm XUV radiation via linear Stark effect in atomic hydrogen, as well as 500 as pulses from 58.4 nm 
XUV radiation via excited-state ionization in helium. We derive a generalized analytical solution, which 
takes into account the interplay between sub-laser-cycle Stark effect and excited-state ionization and allows 
to analyze the results of TDSE calculations. We found that the ultimate intensity of the IR field suitable for 
few-cycle pulse formation via the linear Stark effect or excited-state-ionization is limited by the threshold for 
atomic ionization from the resonant excited state or the ground state, respectively. We show that the pulses 
with shorter duration can be produced in the medium of ions with higher values of the ionization potential. 
 
 
I. INTRODUCTION 
 
Starting from the turn of the millennium [1, 2], attosecond physics has become a fascinat-

ing branch of modern science, opening the possibility for real-time imaging and steering of the 
electronic motion in atoms, molecules, and solids on its intrinsic timescale [3-9], conceptually 
similar to the femtosecond optical control of chemical reactions [10]. 

During the last years, a remarkable progress has been achieved in understanding and mani-
pulating the sub-laser-cycle dynamics of the bound and autoionizing atomic states induced by an 
intense laser field combined with attosecond pulses/pulse trains of the extreme ultraviolet (XUV) 
radiation produced via high-harmonic generation (HHG) of a replica of the laser field [4, 6-8, 
11-20]. In these studies, the laser field is not strong enough to ionize or excite atoms from their 
ground state, but it strongly perturbs the excited states resonantly populated by high-harmonic 
radiation. This perturbation has been visualized directly via the attosecond transient absorption 
technique [6, 17, 18]. Due to mutual coherence of the fundamental laser field and its high-order 
harmonics, the pathways of atomic excitation and ionization through absorption of a higher har-
monic photon or a lower harmonic photon along with a few photons of the laser field (or, expli-
citly, the pathways of atomic excitation by different harmonics into the same Floquet state) inter-
fere, leading to beatings of the atomic ionization yield versus the sub-laser-cycle time delay be-
tween the harmonic signal and the laser field [11-13, 15, 17-19] and allowing for the complete 
transparency of the medium for the resonant XUV radiation [19, 20]. However, the possibilities 
for such investigations and control over the ultrafast intra-atomic dynamics are limited by the 
nature of HHG process in gases, which is commonly used for the attosecond pulse formation and 



dictates the relatively high carrier frequency and low efficiency of generation of the XUV pulses 
[1, 3, 8]. 

Although in recent years both HHG and laser technologies have been considerably ad-
vanced, resulting, in particular, in the generation of high-energy (~ 1μJ) isolated attosecond 
pulses [21], the photon energy of these pulses remains above the ionization potential of both the 
generating medium and majority of neutral media, which prevents from using them for nonioniz-
ing manipulation of ultrafast intra-atomic and intra-molecular processes and impedes investiga-
tion of such processes without photoionization (to the best of our knowledge, studies of bound-
state attosecond electron dynamics have been performed only in He and Ne, the atoms with 
highest ionization potentials). At the same time, the below-threshold harmonics can be produced 
with generation efficiency up to 1% (which is much higher than that of the above-threshold har-
monics used in [21]) under the resonance conditions [22]. However, although the below-
threshold harmonics are generated in a comb [23], they are not phase-matched with each other 
and do not constitute attosecond pulses in time domain. Furthermore, the use of resonantly en-
hanced HHG and plasma-based x-ray lasers allow for producing XUV and soft x-ray field with 
high power, exceeding the power of nonresonant high harmonics at the same wavelength. In par-
ticular, the transitions from autoionizing states to the ground state of multielectron atoms (ions) 
allow to increase the intensity of the resonant (above-threshold) harmonic compared to nonreso-
nant ones by two orders of magnitude and achieve 10-4 efficiency of a single harmonic genera-
tion [24-26], whereas transient inversion on high-frequency transitions of multiply charged ions 
in laser-produced plasmas provides an opportunity to generate picosecond pulses of XUV and 
soft x-ray field with energy up to several mJ [27-30]. However, these sources produce a quasi-
monochromatic radiation, which is not suitable for the time-domain studies of the ultrafast fem-
to- and attosecond processes. 

Recently, a method has been proposed, which may allow for the conversion of XUV and 
soft x-ray radiation from these high-energy sources into the attosecond pulses. This method uses 
the resonant interaction of an incident XUV radiation with an atomic gas dressed by a moderate-
ly strong infrared (IR) laser field [31, 32] and is based on sub-laser-cycle splitting (due to the 
linear Stark effect [17, 33]) and/or broadening (due to ionization [34, 35]) of the excited energy 
levels, selected and populated by the XUV radiation, under the action of the IR field. The magni-
tudes of the splitting and broadening of the atomic energy levels oscillate in time and space 
along with oscillation of the laser-field strength, leading to the multifrequency resonant response 
of the IR-field-dressed atoms to the (quasi-monochromatic) incident XUV radiation. Under the 
optimal conditions, both Stark splitting of the resonant excited atomic energy level in a hydro-
gen-like medium [31, 36] and rapid quasistatic ionization from the resonant excited state in arbi-
trary atomic gas [32, 37, 38] allow for the formation of nearly bandwidth-limited few-femto- or 
attosecond pulses without external adjustment of phases of the generated sidebands (in contrast 
with the attosecond pulse formation through HHG, which implies the attochirp compensation 
[39]). The possibilities to produce both the (quasi-) periodic pulse trains [31, 32, 36, 37] and the 
isolated attosecond pulses [38] were shown. The efficiency of energy conversion of the XUV 
field into a pulse train can exceed 75 % [36] in the case of pulse formation based on the linear 
Stark effect and reach 10 % in the ionization-switching regime [40]. The discussed approach al-
lows for the formation of attosecond pulses with the carrier frequency below the ionization po-
tential of neutral atoms / molecules and solids (corresponding to the wavelength range of 50 to 
200 nm), providing an opportunity for the nondestructive sub-femtosecond control of the bound 
electron dynamics [4, 6-9]. Proximity of the carrier frequency of the pulses to various resonances 
in neutral and ionized media holds the promise to use the resonant enhancement of the nonlinear 
susceptibilities for the implementation of the attosecond pump - attosecond probe experiments 
[21, 41]. Furthermore, the possibility to transform high energy picosecond pulses of x-ray plas-
ma lasers [27-30, 42-44] into the trains or isolated attosecond pulses, opens the door for numer-
ous applications in dynamical, high temporal and high spatial resolution element-specific imag-
ing in biochemistry and material science [45, 46]. 



The previously obtained results were restricted to three- or two-level models, implying 
adiabatic approximation for atomic perturbation by the IR field and the resonant approximation 
for interaction of XUV radiation with atoms. The influence of the IR field on the atomic system 
was taken into account through space-time variation of instantaneous position and width of the 
resonant excited atomic energy levels, while interaction of the XUV radiation with atoms, al-
though described dynamically, was considered in few-level models. Although this approach is 
correct in the limit of a low frequency and low intensity of the IR field and allows for the analyt-
ical solutions, as well as numerical treatment of the propagation problems, it does not allow for 
determining the ultimate capabilities and the limits of applicability of the method. 

In the present paper, we address these questions taking into account all the multiphoton 
processes in the considered system on the basis of numerical solution of the full three-
dimensional time-dependent Schrödinger equation (TDSE) in the single-active-electron approx-
imation. We find the maximal intensity and the minimal wavelength of the laser field suitable for 
few-femto- and attosecond pulse formation from an incident XUV radiation via modulation of 
the resonant atomic response, as well as the minimal duration of the produced pulses. The me-
chanisms of pulse formation due to the linear Stark effect [31, 36] and the excited-state ioniza-
tion [32, 37, 38] are considered for the hydrogen and helium atoms, respectively. The results of 
numerical calculations are compared to the analytical solutions obtained in [36, 37]. In order to 
analyze the differences between these quasistatic analytical solutions [36, 37] and the results of 
ab initio TDSE calculations, we develop a generalized analytical theory, which takes into ac-
count a sub-IR-field-cycle space-time variation of the quadratic Stark effect and the excited-state 
ionization rates. The developed theory allows for distinguishing the differences between the sim-
plified analytical solutions [36, 37] and the ab initio calculations, which are caused by the inter-
play between the Stark effect and quasistatic ionization, from those originating from the non-
adiabatic processes. Moreover, the generalized theory allows for tracing a transition between the 
two regimes of pulse formation (based on the linear Stark effect and excited-state ionization) 
with increasing intensity of the IR field. The performed TDSE calculations are free of most of 
the assumptions made in theoretical works (restricting the number of levels, neglecting the inte-
raction with a continuum or using the quasi-static approximation for ionization rates, neglecting 
higher-order Stark effect, etc.) and, thus, provide a direct bridge to an experimental implementa-
tion of suggested mechanisms. 

The paper is organized as follows. In Section II, we analyze the possibilities for ultrashort 
pulse formation from XUV radiation via Stark splitting of the resonant excited energy level of 
the atomic hydrogen by a moderately strong IR field of various intensities and wavelengths. In 
Section III, we consider the ionization-switching mechanism of few-cycle attosecond pulse for-
mation from the resonant XUV radiation in helium under the action of a strong IR field. The pa-
per is finalized by a conclusion. 

 
II. FEW-FEMTOSECOND PULSE FORMATION VIA LINEAR STARK EFFECT 

IN ATOMIC HYDROGEN 
 
Let us consider the propagation of XUV radiation through an optically thin medium of an 

atomic gas. At the entrance to the medium, x=0, the radiation is monochromatic and its electric 
field has the form 

{ }0 0 0
1( ) exp c.c.
2incE t z E i tω= − +

r r
, (1) 

where E0 is the incident field amplitude, 0ω  is its angular frequency, and c.c.  stands for the 
complex conjugation. The radiation (1) is chosen to be near-resonant to the transition |1〉↔|2〉 
between the ground state and an excited atomic bound state, 0

0 21ω ω≈  (where 0
21ω  is the fre-

quency of the unperturbed resonant transition). 
The medium is simultaneously irradiated by a moderately strong IR laser field 



( ){ }0 0
1( , ) exp c.c.
2IR CE x t z E i t x c ϕ= − Ω − + +

r r
, (2) 

where EC is the amplitude of the IR field, Ω  is its angular frequency, 0ϕ  is its initial phase (

0 0ϕ = , unless specified otherwise), and c is the speed of light in vacuum. Both the IR field and 
the XUV radiation propagate along the same direction and are identically polarized. Since in an 
isotropic gas the polarizations of the fields are not changed, the vector notations will be omitted 
for now on. Since the medium considered in the paper is optically thin, due to far detuning from 
the relevant atomic resonances and tiny population of the excited states, the IR field (2) does not 
suffer from atomic dispersion and traverses the medium without appreciable distortions. 

Propagation of the XUV radiation through the medium is described by the wave equation 
2 2 2

2 2 2 2 2

1 4XUV XUV XUVE E P
x c t c t

π∂ ∂ ∂− =
∂ ∂ ∂

, (3) 

where EXUV is the XUV radiation strength, ( 0, ) ( )XUV incE x t E t= = , and PXUV is the high-
frequency polarization of the medium. 

Since the characteristic scales of a spatial evolution of XUV radiation in a gas are much 
larger than its wavelengths, the substitution t t x cτ→ ≡ −  (within the slowly-evolving wave 
approximation [47, 48]) allows for reducing the wave equation (3) to 

2XUV XUVE P
x c

π
τ

∂ ∂= −
∂ ∂

. (4) 

Finally, in an optically thin medium (when rescattered field remains much weaker than the inci-
dent one) the output radiation transmitted through the medium of thickness L has the form 

2 ( )( , ) ( ) ( , ), ( , ) XUV
XUV inc Scatt Scatt

L dPE L E E L E L
c d
π ττ τ τ τ

τ
= + = , 

(5) 

where ( , )ScattE L τ  is the resonantly scattered XUV radiation determined by the incident fields (1), 
(2). 

In a gas, ( ) ( )XUV XUVP Ndτ τ= , where N is the concentration of atoms and ( )XUVd τ  is the 
high-frequency part of the dipole moment of an individual atom, ( ) ( )d e zτ τ=  (where e is the 

electron charge and ( )z τ  is the expectation value of the active atomic electron displacement 
along the polarization direction of the field). 

In order to get an ab initio solution for ( )d τ , we numerically solve the three-dimensional 
TDSE for an atom simultaneously irradiated by the XUV and IR fields (1) and (2):

 
 

( )0i H V
t
ψ ψ∂ = +

∂
h , (6) 

where ψ  is the wavefunction of the active electron, 
2

0 ( )
2

H U r
m

= − Δ +h r  is the unperturbed 

atomic Hamiltonian (in the case of atomic hydrogen, rerU /)( 2−=r
 corresponds to the pure Cou-

lomb potential), and rtEertEeV XUVIR
rrrr

⋅+⋅= )()(  is the Hamiltonian of atom-field interaction. 
The solution is obtained using the generalized pseudospectral method [49]. The high-frequency 
component of the dipole moment ( )XUVd τ  is calculated by filtering out the low-frequency com-
ponents of the total dipole moment, ( )d τ , at the frequencies of low-order harmonics of the IR 
field and below. An additional filtering is applied for the spectral components with photon ener-
gies exceeding the atomic ionization potential, which accounts for a strong photoabsorption of 
XUV radiation just above the ionization potential. 



In the following, the results of TDSE calculations are compared to the analytical solution 
[36] derived for atomic hydrogen exposed to XUV radiation, which is resonant to the transition 
n=1 ↔ n=2 (where n is the principal quantum number). The analytical solution takes into ac-
count the sub-laser-cycle splitting of the excited energy level n=2 due to the linear Stark effect 
produced by the IR field, but neglects time dependencies of the shift and broadening of the ex-
cited energy level due to the quadratic Stark effect and the excited-state ionization, respectively. 

In order to analyze the discrepancies between the simplified modeling and TDSE solution, 
a generalized analytical solution is derived, which takes into account the interplay between the 
Stark effect and excited-state ionization, as well as the quadratic correction to the alternating-
current (AC) linear Stark effect in atomic hydrogen. The analytical solution implies the approx-

imation of slowly-varying amplitudes:
 

{ }0 0
1( ) ( ) exp c.c., ,
2

dFF F i F
d

τ τ ω τ ω
τ

= − + <<
%

% %  where 

{ }( ) ( , ), ( , ), ( )XUV Scatt XUVF E L E L Pτ τ τ τ= . Within such an approximation, Eq. (5) takes the form 

0
2( , ) ( , ), ( , ) ( )XUV Scatt Scatt XUV

LE L E E L E L i P
c

πωτ τ τ τ= + =% % % % . (7) 

The analytical solution for atomic hydrogen is derived within the three-level model, which 
includes the ground energy level n=1 and the two sublevels of the first excited energy level n=2 
selected and populated by the resonant XUV radiation (1). The corresponding atomic states are 
|1〉=|100〉, |2〉=(|200〉+|210〉) / 2 , and |3〉=(|200〉−|210〉) / 2  (numerals |nlm〉 label principal, orbit-
al, and magnetic quantum numbers, respectively). In the three-level approximation, the nonreso-
nant interaction of XUV radiation with the medium is neglected, while the slowly-varying ampli-
tude of the resonant polarization is given by 

( )21 31( ) 2 ( ) ( )XUV trP Nd a aτ τ τ= −% , (8) 

where N is the concentration of atoms, 7 52 3tr Bd er=  is the dipole moment of the resonant tran-

sitions (e is the charge of the electron, Br  is the Bohr radius), and 21a , 31a  are the slowly-varying 

amplitudes of the atomic coherencies 21ρ , 31ρ  at the transitions |1〉 ↔ |2〉 and |1〉 ↔ |3〉, respec-
tively. The coherency amplitudes satisfy the equations 

( )( )

( )( )

21 0
21 0 21 21

31 0
31 0 31 31

( ) ( ) ,
2

( ) ( ) ,
2

tr

tr

da d Ei a i
d

da d Ei a i
d

ω τ ω γ τ
τ

ω τ ω γ τ
τ

⎧ + − + =⎪⎪
⎨
⎪ + − + = −
⎪⎩

h

h

 (9) 

where 21 31( ), ( )ω τ ω τ  and 21 31( ), ( )γ τ γ τ  are the instantaneous frequencies and decoherence rates 
of the transitions |1〉 ↔ |2〉 and |1〉 ↔ |3〉, respectively, which vary in space and time due to the 
sub-laser-cycle shift and broadening of the energy levels |2〉 and |3〉 introduced by the IR field; 

(0)
1 1( ) E ( )s s sω τ ω τ= +Δ h  and (0) ( )

1 1( ) ( ) 2,s
s s ionwγ τ γ τ= + where (0)

1sω  and (0)
1sγ  are the unperturbed 

frequency and decoherence rate of the transition |1〉 ↔ |s〉, while E ( )s τΔ  and ( )( )s
ionw τ  are the in-

stantaneous shift of / ionization rate from the excited state |s〉; h  is the Planck's constant. The 
perturbation of the ground state |1〉 by the laser field of intensity relevant to this study is negligi-
ble. 

In order to find the generalized analytical solution, we use the biharmonic approximation 
for the dependencies 1( )sω τ  and 1( )sγ τ : 

(1) (2)
1( ) cos( ) cos(2 ),s tr ω ωω τ ω τ τ= Δ Ω − Δ Ωm  (10a) 

(1) (2)
1( ) cos( ) cos(2 ),s tr γ γγ τ γ τ τ= ± Δ Ω + Δ Ω  (10b) 



where the upper and lower signs correspond to s=2 and s=3, respectively. The values trω  and trγ  
characterize the time-averaged position and width of the atomic resonances in the presence of IR 
field; (1)

ωΔ  and (2)
ωΔ  are amplitudes of the sweeping of the transition frequencies due to the linear 

and the quadratic Stark effect, respectively, while (1)
γΔ  and (2)

γΔ  are variations of ionization rates 
from the excited states |2〉 and |3〉 at the fundamental and the doubled frequency of the laser field 
(2). The values (1)

ωΔ  and (1)
γΔ  are nonzero due to an asymmetry of the states |2〉 and |3〉 of atomic 

hydrogen in parabolic coordinates. 
The parameters trγ , (1)

γΔ , and (2)
γΔ  of the decoherence rate for each combination of intensi-

ty and wavelength of the IR field were determined via ab initio solution of an independent aux-
iliary problem. For this purpose, TDSE was solved for an atom initially put into the resonant ex-
cited state and subjected to the IR field of required intensity and wavelength. Then, the norm of 
electron wavefunction in the vicinity of atomic core (inside a sphere with radius R=25 atomic 
units) was calculated numerically. As a result, the probability for an atom to remain nonionized 
by the IR field was found as a function of time. An example of such a calculation is shown in 
Fig. 1. The parameters trγ , (1)

γΔ , and (2)
γΔ  were then found via fitting the obtained time depen-

dence by 1
0

exp ( )s d
τ

γ τ τ
⎧ ⎫

′ ′⎨ ⎬
⎩ ⎭
∫ , where 1( )sγ τ ′  is given by Eq. (10 b). The amplitude of the linear 

Stark effect, (1)
ωΔ , is calculated via the perturbation theory: (1) 3

C
e

E
m eωΔ = h  ( em  is the electron 

mass); the time-averaged transition frequency is (0) (2)
21tr ωω ω= − Δ ; finally, the amplitude of the 

quadratic Stark shift, (2)
ωΔ , is chosen to provide the best agreement between the generalized ana-

lytical solution and the results of TDSE calculations for the output XUV radiation. In the limit of 
low-frequency and low-intensity modulating IR field, the values of (2)

ωΔ  determined in this way 
are comparable to those predicted by the perturbation theory. Thus, for 10.65 μm IR field with 
intensity 1.4×1012 W/cm2, we get (2) 0.46ωΔ = ×Ω , while the static perturbation theory gives 

(2) 0.52ωΔ = ×Ω . In the case of stronger and higher-frequency IR fields, the perturbation theory 
overestimates the quadratic Stark shift. 

The steady-state solution of Eqs. (7)-(10) reads 
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where ( )kJ x  and ( )kI x
 
 are the Bessel function of the first kind and the modified Bessel func-

tion of order k, respectively, and 
(1) (2)(1) (2)

(1) (1) (2) (2), , ,
2 2

P P P Pγ γω ω
ω γ ω γ

Δ ΔΔ Δ≡ ≡ ≡ ≡
Ω Ω Ω Ω

 are the modula-

tion indices. 
The Fourier decomposition of the resonantly scattered radiation (11) has a form 
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As mentioned above, along with the generalized solution (7), (11), (12), the results of 
TDSE calculations are compared to the simplified analytics derived previously [36] within the 
approximations (2) (1) (2) 0P P Pω γ γ= = = , trγ << Ω , and 0 *tr mω ω= + Ω , where ,...2,1,0* ±±=m : 
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Due to its simplicity, the analytical solution (13) allows to determine the optimal condi-
tions for ultrashort pulse formation via the linear Stark effect in atomic hydrogen. As shown in 
[36], the output XUV radiation represents a train of bandwidth-limited pulses if (i) the incident 
radiation is tuned to the time-averaged position of the atomic resonance, 0 trω ω= , (ii) the mod-
ulation index (1)Pω  satisfies the inequality (1) (1) (1)

0 2Pων ν< < , where 40.2)1(
0 ≅ν  is the first root of 

equation 0)(0 =νJ  and 14.5)1(
2 ≅ν  is the first root of equation 0)(2 =νJ , and (iii) the resonant 

component of the output XUV radiation is attenuated to the level of the generated sidebands. In 
Figs. 2-5 we compare the results of both the generalized, (11), (12), and the simplified, (13), ana-
lytical solutions to the ab initio solutions of the TDSE under these optimal conditions for differ-
ent combinations of intensity, IIR, and wavelength, λIR, of the IR field (2). The analytically calcu-
lated envelope (7), (11) of the output XUV radiation is slightly shifted along the time axis in or-
der to provide the best fit to the numerical results. This shift originates from inertia of electronic 
response to the IR field. The timing of pulses predicted by the analytical solution is fully deter-
mined by time dependencies of frequencies and decoherence rates of the resonant transitions |1〉 
↔ |2〉 and |1〉 ↔ |3〉. Equations (10 a) and (10 b) assume that both the frequencies and the deco-
herence rates reach their maximum values at maxima of absolute value of the IR field strength. 
This is correct for the linear Stark shifts but not exactly correct for the decoherence rates. The 
resonant interaction between the atoms and the XUV field decreases with decrease of an overlap 
between the wavefunctions of the atomic ground state and of the ionized electron. Therefore, the 
peak of decoherence rate is slightly delayed with respect to the peak of the excited-state ioniza-
tion rate (and the peak of IR field strength) by a time interval needed for the electron to move 
away from the nucleus by a distance equal to the average radius of its wavefunction (which can 
be estimated on the basis of initial wavefunction of the resonant excited state). In such a case, if 
there were no Stark effect, the results of ab initio solution for the time dependence of the output 
XUV intensity would be delayed with respect to the analytical solution by this time interval, 
which is not taken into account by Eq. (10 b) but naturally arises in numerical TDSE solution. 
However, as far as the IR field intensity is below the threshold of rapid excited-state ionization, 
the pulse shape is predominantly determined by the linear Stark effect, which is instantaneous. 
For this reason, in the case of low-intensity IR fields, the temporal shift, τ0, between the analyti-
cal and numerical solutions for the output XUV intensity which maximizes their overlap, is very 



small (~ 10-3 of the IR field cycle). With increasing intensity and frequency of the IR field, the 
value of τ0 increases to ~ 10-2 of the IR field cycle. In the TDSE calculations, we assume the IR 
field in the form ( ) ( )sin( )IR CE Eτ τ τ= Ω , with the slowly-varying amplitude 

2( ) sin ( 40)CE τ τ= Ω  for 0 20τ π≤ ≤ Ω  and ( ) 1CE τ =  for 20 230π τ πΩ < ≤ Ω . The XUV 
radiation has the form ( )0 0( ) ( )sin ( )XUV XUVE Eτ τ ω τ τ= − , where 0 30τ π= Ω  and ( ) 0XUVE τ ≡  

for 0 30τ π≤ ≤ Ω , ( )( )2
0( ) sin 20XUVE τ τ τ= Ω −  for 30 40π τ πΩ < ≤ Ω , ( ) 1XUVE τ =  for 

40 220π τ πΩ < ≤ Ω , and ( )( )2( ) cos 220 20XUVE τ τ π= Ω − Ω  for 220 230π τ πΩ < ≤ Ω . 
For each combination of intensity and wavelength of the IR field, the wavelength of XUV radia-
tion, λXUV, is adjusted to the Stark-shifted position of the atomic resonance. 

In Fig. 2, we present the results for atomic hydrogen irradiated by the CO2-laser field with 
intensity IIR = 1.4×1012 W/cm2 and wavelength λIR = 10.65 μm, corresponding to the modulation 
index value (1) 4.45Pω = . These are exactly the same parameters as in the original paper [36]. The 
medium is simultaneously irradiated by the XUV radiation with wavelength λXUV = 122.2 nm and 
intensity IXUV = 2.2×108 W/cm2, resonantly exciting the atomic transition n=1↔n=2. As seen 
from this figure (whose panels (a) and (b) are remarkably similar to Figs. 3,4 of [36]), the ab in-
itio TDSE solution fully confirms the possibility of pulse train formation. The pulses produced in 
this case are bandwidth-limited and have the duration τpulse=2.7 fs and repetition period 
T=17.8 fs. The analytical solutions (11), (12), and (13) are in excellent agreement with each oth-
er and with the ab initio TDSE solution both in time and frequency domain representations, see 
panels (a) and (b) of Fig. 2, respectively. This is what we should actually expect, since for such 
parameters of the IR field the applicability conditions of Eq. (13) are well satisfied: (i) the spec-
tral lines of the resonant transitions are narrow with respect to the laser frequency due to the very 
low excited-state ionization rates, (ii) the sub-laser-cycle oscillations of the quadratic Stark shift 
and the ionization rates are not important, since their amplitudes are small compared to both the 
laser frequency and the amplitude of linear Stark splitting, and (iii) for the considered values of 
frequency and intensity of the IR field, the nonadiabatic effects are negligible. 

The duration of the bandwidth-limited pulses is inversely proportional to their bandwidth. 
Therefore, according to (13), for a fixed value of modulation index (1)Pω  the pulse duration (as 
well as the repetition period) is inversely proportional to the frequency of the IR field and pro-
portional to its wavelength, τpulse~ Ω-1~ λIR. Let us further examine the possibilities to shorten the 
pulses via the reduction of the wavelength of the IR field. In the following, we consider the cases 
of λIR = 8 μm, 4 μm, and 2 μm. In order to keep the modulation index constant, (1) 4.45Pω = , the 
intensity of the IR field is chosen to increase inversely proportional to the square of its wave-
length, IIR ~ λIR

-2. Figures 3 and 4 correspond to the IR field with wavelength λIR = 8 μm and 
4 μm and intensity IIR = 2.5×1012 W/cm2 and 1013 W/cm2, respectively. Due to increasing time-
averaged quadratic Stark shift of the excited energy levels |2〉 and |3〉, the wavelength of the re-
sonant XUV radiation grows with increasing intensity of the IR field. For instance, we have 
λXUV = 122.6 nm for 8 μm IR field and λXUV = 124.6 nm for 4 μm IR field. The intensity of XUV 
radiation is IXUV = 1.6×109 W/cm2 and 109 W/cm2, respectively (it should be much lower than the 
intensity of the modulating field and much higher than the intensity of its high-order harmonics). 
In both cases, a train of pulses is produced at the exit of the medium. It is worth noting that we 
regard the parameter values as suitable for the pulse formation if the peak intensity of spikes in 
between the pulses does not exceed half peak intensity of the pulses. Certainly, the "suitability" 
criterion can be defined in different ways depending on the application of the pulses which one 
keeps in mind. In the case of 8 μm IR field, Fig. 3, the duration of pulses equals τpulse=2 fs, the 
repetition period is T=13.3 fs, while for 4 μm IR field, Fig. 4, the pulse duration and repetition 
period are τpulse=1.1 fs (which corresponds to 2.6 cycles of the carrier) and T=6.7 fs, respectively. 
Accordingly, the ab initio calculation results show the possibility of producing nearly 1 fs few-



cycle pulses via the linear Stark effect in atomic hydrogen (reducing the ultimate pulse duration 
by a factor of more than two compared to the results of [36]) using IR fields with wavelength ≥ 
4 μm. It is noteworthy that at the cost of reducing the ratio of pulse repetition period to the pulse 
duration, one is able to use a shorter wavelength IR field of intensity IIR ≤ 1013 W/cm2, corres-
ponding to (1) 2.4Pω > , for the pulse formation. Experimentally, such an IR field can be produced 
by an OPCPA laser system [50], while the resonant XUV radiation can be generated via nonli-
near up-conversion of a visible laser field [51, 52]. Further reduction of the pulse duration can be 
achieved via the linear Stark effect in hydrogen-like ions [31, 36]. As follows from similarity 
between the hydrogen-like ions, using the ions with nucleus charge eZ− , reducing the wave-
lengths of both the XUV radiation and the IR field by a factor of 2Z , and increasing the intensity 
of the IR field by a factor of 6Z  with respect to the case of atomic hydrogen will result in the 
formation of pulses with 2Z  times shorter duration and repetition period. In particular, in the 
case of Li2+ ions, 3Z = , exposed to the XUV radiation with wavelength λXUV = 13.84 nm and the 
IR field with wavelength λIR = 440 nm and intensity IIR = 7.3×1015 W/cm2, a train of pulses will 
be produced with the same shape as in Fig. 4(a) but with the pulse duration τpulse=120 as and re-
petition period T=730 as. 

With decreasing wavelength and increasing intensity of the IR field, the results of ab initio 
calculations for atomic hydrogen increasingly deviate from the predictions of the simplified ana-
lytical theory (13), see Figs. 2-4. However, these deviations are basically reproduced by the ge-
neralized analytical solution (11). Thus, they can be attributed to (i) ionization broadening of the 
resonant transition lines, as well as (ii) sub-laser-cycle oscillations of both the quadratic Stark 
shift of the excited energy levels and ionization rates from them. The generalized analytics 
shows that in the cases of 8 μm and 4 μm IR fields, the distortions of the pulse shape predomi-
nantly originate from the time-independent part of the excited-state ionization rate, causing broa-
dening of the resonant transition lines and violation of the inequality trγ << Ω . In the case of 
shorter wavelength, λIR = 2 μm, and, respectively, higher intensity, IIR = 4×1013 W/cm2, of the IR 
field, which is addressed in Fig. 5 (the corresponding wavelength of the resonant XUV radiation 
is λXUV = 133.4 nm; the XUV intensity is chosen to be IXUV = 4×109 W/cm2), sub-laser-cycle os-
cillations of ionization rate become quite important. As shown in [37], rapid quasi-static ioniza-
tion, which depopulates the resonant excited state within each half-cycle of the IR field, itself 
leads to the transformation of XUV radiation into few-cycle pulses due to the periodic switching 
of its resonant interaction with atoms on and off twice within the IR field cycle. The intensity of 
the IR field assumed in Fig. 5 is not yet enough for such an ionization switching to occur. How-
ever, the peak excited-state ionization rate already exceeds the amplitude of the linear Stark ef-
fect, so that the simplified analytical solution (13) is not yet applicable, and the two mechanisms 
of pulse formation compete with each other, leading to beatings in the time dependence of the 
output XUV intensity, see Fig. 5(a). At the same time, the generalized analytical solution (11), 
(12) remains valid in this case, being in a qualitative agreement with the results of ab initio solu-
tion both in time domain, Fig. 5(a), and frequency domain, Fig. 5(b). 

In summary, the ab initio calculations show that intensities of the IR field suitable for the 
ultrashort / few-cycle pulse formation via the linear Stark effect are limited by the values at 
which atomic ionization from the resonant excited state becomes significant. Further increase of 
intensity of the IR field leads to the dominating effect of the excited-state ionization on the reso-
nant atomic response and provides the conditions for the few-cycle pulse formation due to the 
ionization-switching mechanism [37]. As was previously shown, the ionization switching can be 
implemented in arbitrary atomic gas. In the following section, we consider this regime of pulse 
formation in a helium, which is more convenient for an experimental implementation compared 
to the atomic hydrogen. 

 
III. ATTOSECOND PULSE FORMATION VIA EXCITED-STATE IONIZATION 

IN HELIUM 



 
In the case of helium, we use the unperturbed atomic Hamiltonian from [53], which pro-

vides a relatively good description of the lowest excited states of He in the single-active-electron 
approximation. 

The incident XUV radiation is tuned in resonance with the unperturbed atomic transition 
1s2↔1s2p. As shown in [37], this choice of frequency of the XUV radiation is optimal for atto-
second pulse formation via ionization switching of its resonant interaction with the atoms: the 
interaction is switched on in the vicinity of zero-crossings of the IR field strength, when the 
atomic transition is nearly unperturbed, and switched off at the rest of time, when the transition 
line is strongly broadened due to rapid excited-state ionization. Similarly to the case of hydro-
gen, in order to analyze the results of ab initio calculations, we derive the generalized analytical 
theory taking into account space-time dependencies of both the Stark effect and excited-state io-
nization. However, in the case of helium, it is considerably simpler: since the energy level 1s2p 
is nondegenerate, the resonant atomic response is correctly described within the two-level ap-
proximation, in which the lower and upper energy levels correspond to the states |1〉=1s2 and 
|2〉=1s2p, respectively. In such a case, the slowly-varying amplitude of the atomic polarization is 
given by 

21( ) 2 ( )trP Nd aτ τ=%  (14) 
and the amplitude of the atomic coherence satisfies the equation 

( )( )21 0
21 0 21 21( ) ( )

2
trda d Ei a i

d
ω τ ω γ τ

τ
+ − + =

h
. (15) 

Since both |1〉 and |2〉 states possess a central symmetry, the simplest approximation for the time 
dependencies of the instantaneous frequency, 21( )ω τ , and decoherence rate, 21( )γ τ , of the reso-
nant transition is harmonic: 

(2)
21( ) cos(2 ),tr ωω τ ω τ= + Δ Ω  (16a) 

(2)
21( ) cos(2 ),tr γγ τ γ τ= + Δ Ω  (16b) 

where 0 (2)
21tr ωω ω= + Δ  and 0 (2)

21tr γγ γ= + Δ . Similarly to the case of atomic hydrogen, for each 

combination of intensity and wavelength of the IR field, the values 0
21γ  and (2)

γΔ  are found via 
fitting to the results of the auxiliary TDSE calculation for the time dependence of the probability 
for an atom, which was initially excited into the state |2〉 and exposed to the IR field, to remain 
nonionized. The fitting gives 0

21 0γ =  in all the cases. The amplitude of the quadratic Stark effect,
(2)
ωΔ , is chosen to provide the best agreement between the time dependencies of the output XUV 

intensity calculated analytically and numerically. The obtained values of (2)
ωΔ  are comparable to 

the values of (2)
γΔ  and are much smaller than the those predicted by the perturbation theory, simi-

larly to what has been obtained in the previous studies of Stark effect in strong fields [54, 55]. 
The steady-state solution of Eqs. (7), (14)-(16) has the form 
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where (2) (2) 2Pω ω≡ Δ Ω  and (2) (2) 2Pγ γ≡ Δ Ω . 
The Fourier decomposition of (17) is 
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Along with the generalized analytical solution (17), (18), the results of TDSE calculations 
for helium are compared to the previously derived solution [37], which neglects the Stark effect 
by assuming 21( ) trω τ ω=  and assumes a stepwise temporal change of the excited-state ionization 
rate:  

min zero
21

max zero

, 0 ,
( )

, ,
t

t
γ τ

γ τ
γ τ π

≤ < Δ⎧
= ⎨ Δ ≤ < Ω⎩

21 21( ) ( ).γ τ π γ τ+ Ω =  (19) 

The decoherence rate (19) possesses a half-IR-field-cycle periodicity, taking the minimum value, 

minγ , near a zero-crossing of the IR field at zero 2tτ = Δ  (which corresponds to 

[ ]0 zero 2tϕ π= − ΩΔ  in Eq.(2)) and the maximum value, maxγ , at the rest of time. In order to find 

the values minγ , maxγ , and zerotΔ  for each combination of intensity and wavelength of the IR field, 
we perform the following steps: first, we find the ratio max minγ γ  using the nonadiabatic tunne-
ling ionization rate [56] and calculate the time-averaged decoherence rate 

min zero max zeroav t tπγ γ γ
π
Ω ⎛ ⎞⎛ ⎞≡ Δ + − Δ⎜ ⎟⎜ ⎟Ω⎝ ⎠⎝ ⎠

. Then, we use the exponential function ( )exp 2 avγ τ−  for 

fitting to the results of auxiliary TDSE calculation for the time dependence of the probability for 
an atom in the state |2〉 to remain nonionized under the action of the IR field. These steps allow 
us to represent minγ  and maxγ  as min min zero( )tγ γ= Δ  and max max zero( )tγ γ= Δ , respectively. Finally, 
we choose zerotΔ  to provide best agreement between the analytical and numerical results for the 
time dependence of the output XUV intensity. 

In such an approximation, the slowly-varying amplitude of the resonantly scattered XUV 
radiation takes the form 
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The coefficients 1 2,C C% % , and 1 2,D D% % , in their turn, have the form 
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An analytical expression for the Fourier transform of the solution (20)-(23) for the resonantly 
scattered radiation is given in [37]. 

In the regime of rapid excited-state ionization, which depopulates the resonant excited 
atomic state twice per IR-field cycle, the generated XUV sidebands are in antiphase with the in-
cident XUV radiation and in phase with each other, which corresponds to confinement of the re-
sonant absorption of the XUV radiation within extremely short time intervals near zero-crossings 
of the IR field [37]. In such a case, the resonantly scattered XUV radiation (17), or (20)-(23), it-
self represents a train of few-cycle pulses. Therefore, the generation of attosecond pulses at the 
output of the medium can be achieved via suppression of the central spectral component of XUV 
radiation (at the frequency of the incident field), for example, via its resonant absorption in an 
additional layer of helium, which is not modulated by the IR field. 

The results provided by both analytical solutions (17), (18) and (20)-(23) are compared in 
Figs. 6-10 to the ab initio TDSE calculations for the helium. Timing of the analytically calcu-
lated envelopes of the output XUV radiation is fitted to the numerical solutions within a few per-
cent of the laser cycle. Similarly to the case of atomic hydrogen, this time shifting originates 
from inertia of atomic response to the IR field: the ionized electron continues participate in the 
intra-atomic processes while its wavefunction overlaps with the atomic ground state. The TDSE 
calculations presented in this section imply the IR field in the form ( ) ( )sin( )IR CE Eτ τ τ= Ω , with 

2( ) sin ( 40)CE τ τ= Ω  for 0 20τ π≤ ≤ Ω  and ( ) 1CE τ =  for 20 90π τ πΩ < ≤ Ω . The XUV 
radiation has the form ( )0 0( ) ( )sin ( )XUV XUVE Eτ τ ω τ τ= − , where 0 30τ π= Ω , ( ) 0XUVE τ ≡  for 

0 30τ π≤ ≤ Ω , ( )( )2
0( ) sin 20XUVE τ τ τ= Ω −  for 30 40π τ πΩ < ≤ Ω , ( ) 1XUVE τ =  for 

40 80π τ πΩ < ≤ Ω , and ( )( )2( ) cos 80 20XUVE τ τ π= Ω − Ω  for 80 90π τ πΩ < ≤ Ω . The 
wavelength and peak intensity of the incident XUV radiation are λXUV = 58.4 nm and 
IXUV = 1011 W/cm2, respectively, for all the plots. 

Figure 6 represents the case of helium atoms simultaneously irradiated by the resonant 
XUV radiation and the IR field with wavelength λIR = 4 μm and intensity IIR = 1.5×1014 W/cm2. 
After suppression of the incident spectral component, the output XUV radiation corresponds to a 
train of pulses with duration τpulse=600 as and repetition period T=6.7 fs, see Fig. 6(a). Both ana-
lytical solutions (17) and (20)-(23) correctly describe the shape of the main pulse. However, the 
generalized analytics (17) better reproduces the pedestal. This is predominantly due to the fact 
that, for the assumed strength of the IR field, ionization from the resonant excited state is due to 
suppression of the atomic potential barrier rather than tunneling through it. In such a case, the 
harmonic approximation (16b) for the time dependence of the ionization rate is more suitable 
than the step-function model (19), which better works in the tunneling regime [57]. It is worth 
noting that accounting for the quadratic Stark effect in the analytical solution (17), (18) for the 
resonantly scattered XUV radiation in the presence of a rapidly ionizing IR field, as applied in 
the present Section, is not as critical as accounting for time-dependent excited-state ionization in 
Section II. In the former case, there is only a slight improvement of the agreement with the 
TDSE calculations. Meanwhile, according to the ab initio calculations, the intensity of the IR 
field required for the pulse formation due to ionization switching of the resonant interaction is 
one order of magnitude higher than that estimated from the tunneling formula [27]. This follows 
from the fact that the tunneling models overestimate the ionization rate in the barrier-suppression 
regime [57, 58]. As seen in Fig. 6(b), which plots the Fourier transform of the output XUV radia-



tion, for the chosen parameters of the IR field, the generalized analytical solution (18) provides a 
good agreement with the numerical results both in time and frequency domain representations. 

Let us further examine the possibilities to reduce the pulse duration via reducing the wave-
length of the IR field (leading to shrinking of the overall time scale) or via increasing the intensi-
ty of the IR field (leading to the speed-up of the excited-state ionization). Figures 7 and 8 
represent the case of the helium atoms irradiated by the IR field with the same intensity as in 
Fig. 6, IIR = 1.5×1014 W/cm2, but with shorter wavelengths. The atoms are simultaneously ex-
posed to the resonant XUV radiation. Figure 7 corresponds to the IR field with wavelength 
λIR = 2 μm. In this case, the output XUV radiation has a form of a pulse train with pulse duration 
τpulse=500 as and repetition period T=3.3 fs. As seen from the comparison of Figs. 7 and 6, the 
twofold reduction of the wavelength of the IR field expectedly leads to a proportional reduction 
of the pulse repetition period. However, the duration of pulses is only slightly reduced. This is 
due to the fact that the pulse duration is determined by the ionization-limited lifetime of the re-
sonant excited state |2〉, which approximately equals zerotΔ  and is nearly the same for 2 μm and 
4 μm IR fields of the same intensity. In Fig. 8 we show the time dependence of the intensity and 
the spectrum of the output XUV radiation for the case of helium irradiated by the resonant XUV 
field and the IR field with wavelength λIR = 1 μm. The resonant component of the output XUV 
radiation is suppressed. For such a short wavelength of the IR field, the pulse formation does not 
occur, since the intensity of the IR field is not high enough to provide complete atomic ionization 
from the resonant excited state during half-cycle of the IR field (which is four times shorter 
compared to the half-cycle of the 4 μm IR field assumed in Fig. 6). Correspondingly, ionization 
never switches off the resonant interaction between the XUV field and the atoms, and the neces-
sary condition for pulse formation [37] is not met. As follows from Figs. 7 and 8, for all the con-
sidered wavelengths of the IR field, the analytical solutions (17), (18) and (20)-(23) are in a ra-
ther good agreement with the results of TDSE calculations. This is due to a quasistatic nature of 
excited-state ionization in the barrier-suppression regime [57]. However, the generalized solution 
(17), (18) better reproduces the results of ab initio calculations due to a proper description of 
time dependence of the excited-state ionization rate in the barrier-suppression regime and ac-
counting for the sub-laser-cycle quadratic Stark effect. 

Figures 9 and 10 show the results of the study aimed to examine the possibilities to reduce 
the pulse duration via increasing the intensity of the IR field. The wavelength of the IR field is 
fixed to λIR = 4 μm. Figure 9 corresponds to the laser intensity IIR = 4×1014 W/cm2. As seen from 
the comparison of this figure with Fig. 6, the increase of the IR field intensity leads to a slight 
reduction of the pulse duration, from τpulse=600 as to τpulse=550 as, and suppression of the pulse 
pedestal. The reason of such a slow decrease of the pulse duration with increasing laser field in-
tensity is that the duration of pulses is predominantly determined by the length of the time inter-
val near zero-crossing of the IR field during which the ionization rate is negligible and the reso-
nant interaction occurs rather than by the peak ionization rate. With increasing intensity of the IR 
field, this time interval is shortened quite slowly, therefore, the dependence of the pulse duration 
on the laser intensity is weak. In Fig. 10 we show the time dependence of intensity and the spec-
trum of the output XUV radiation after suppression of its resonant component for the case of the 
IR field with wavelength λIR = 4 μm and intensity IIR = 8×1014 W/cm2. As follows from 
Fig. 10(a), the duration of pulses produced from the resonant radiation is reduced to τpulse=400 as. 
However, along with the pulses of resonantly scattered radiation, the other spikes appear due to 
HHG of the modulating IR field. Indeed, for the parameters of the XUV and IR fields related to 
this case, there are two distinct groups of spectral components of comparable amplitudes, see 
Fig. 10(b). The first group corresponds to the combinational frequencies of the XUV and IR 
fields, 0 2nω ω= + Ω , 1, 2,n = ± ± K, while the second group is the high-order harmonics of the 
IR field, (2 1)kω = + Ω , 1, 2,k = ± ± K Unless the depletion of the ground state is considerable, 
the HHG yield is proportional to the ground-state ionization rate and, thus, grows exponentially 
with increasing IR field strength. Even a small increase in laser intensity beyond the above-



mentioned value will lead to domination of the high-harmonic signal over the resonantly scat-
tered radiation. Thus, for the intensities of the incident XUV radiation discussed here, the ulti-
mate intensity of the IR field suitable for few-cycle pulse formation from XUV radiation via io-
nization switching of its resonant interaction with atoms is limited to the value at which ioniza-
tion from the ground atomic state, leading to HHG of the IR field, becomes significant. At the 
same time, as follows from the results of calculations based on few-level and quasistatic approx-
imations, the ionization-switching mechanism works even if the intensity of the incident XUV 
radiation reaches quarter intensity of the modulating IR field [40]. In such a case, HHG via 
atomic ionization from the ground state does not hamper sub-fs pulse formation from XUV radi-
ation due to the ionization switching mechanism. Instead, ultimate capabilities for the pulse for-
mation are limited by depletion of the atomic ground state through (i) direct ionization by the IR 
field and (ii) resonant excitation by the XUV radiation followed by excited-state ionization by 
the IR field. 

In summary, based on the ab initio solution of the TDSE, we have shown the possibility to 
produce trains of ~500 as pulses from the XUV radiation with wavelength 58.4 nm via ionization 
switching of its resonant interaction with the helium atoms dressed by the IR field with wave-
length 2-4 μm and intensity 1.5-4×1014 W/cm2. Experimentally, the IR field with these parame-
ters can be generated by a parametric laser system [50], while the resonant XUV radiation can be 
produced, for example, via the resonantly enhanced HHG of Ti:Sa laser field in InP plasma 
plume [23, 25]. As discussed in [37, 38], few-cycle pulse formation via the ionization-switching 
mechanism can be implemented in arbitrary atomic gas. In particular, TDSE calculations show 
the possibility to produce pulses similar to those plotted in Figs. 6-10 from XUV radiation with 
wavelength 121.6 nm in atomic hydrogen dressed by the IR field with wavelength 4 μm and in-
tensity of the order of 1014 W/cm2. The pulses of shorter duration can be produced using ions 
with higher ionization potential from the ground state. It is worth noting that few-cycle pulses 
similar to those discussed above can be produced via ionization-switching mechanism in media 
with lower ionization potential also. In such a case, the carrier frequency of the pulses can be 
considerably lower, which would make them especially valuable for non-ionizing steering and 
probing transient physical, chemical, and biological intra-atomic and intra-molecular processes 
in various media. 

 
 

IV. CONCLUSION 
 
In the present paper, we have studied ultimate capabilities for few-cycle pulse formation 

from XUV radiation via the resonant interaction with IR-field-dressed atoms. This study was 
carried out on the basis of full time-dependent Schrödinger equation. Taking into account all the 
multiphoton processes in the considered systems in the single-active-electron approximation, we 
have confirmed the possibilities for few-femtosecond pulse formation via the linear Stark effect 
in atomic hydrogen, as well as attosecond pulse formation via quasistatic excited-state ionization 
in helium. We have found the ultimate limitations on the parameters (the minimum wavelength 
and the maximum intensity) of the IR field suitable for the few-cycle pulse formation, as well as 
characteristics of the produced pulses. Particularly, in the case of XUV pulse formation via the 
linear Stark effect in atomic hydrogen, the output pulses can be as short as 1 fs, which is two 
times shorter than predicted by the previous calculations based on the three-level approximation 
[36]; the laser intensity can be up to 1013 W/cm2, while the laser wavelength can be as short as 
4 μm. The ionization switching of the resonant interaction in helium requires the laser intensity 
up to 4×1014 W/cm2, whereas the laser wavelength can be as short as 2 μm; the duration of out-
put pulses is ~ 500 as. 

In order to analyze the results of ab initio calculations, we derived the generalized analyti-
cal solution, which takes into account the interplay between sub-IR-field-cycle variations of po-
sition and width of the resonant atomic energy levels due to the Stark effect and excited-state 



ionization, respectively. The derived analytical solution is in a good agreement with the results 
of TDSE calculations both in the case of atomic hydrogen in a relatively weak IR field and in the 
case of helium in a strong IR field. Thus, such a solution can be used for the analysis of the vari-
ous resonant phenomena in a system of IR-field-dressed atoms. Based on a comparison of the 
numerical and analytical solutions, we revealed the limitations of the considered method for few-
cycle pulse formation. In particular, the possibility of shortening the pulses produced via the li-
near Stark effect in atomic hydrogen by increasing the intensity of the IR field is limited by the 
growing role of exited-state ionization, which leads to a misalignment of phases of the generated 
sidebands. The ultimate intensity of the IR field suitable for attosecond pulse formation via rapid 
quasistatic ionization from the resonant excited state of helium is limited to a value at which 
atomic ionization from the ground state becomes significant, entailing HHG and blurring the 
produced pulses by the high-harmonic signal. To overcome both these limitations and produce 
shorter pulses, we proposed the use of the medium of hydrogen-like or helium-like ions with 
higher ionization potentials from both the ground and the excited states. We also pointed out the 
possibility to produce few-cycle pulses with lower carrier frequency, in a close proximity to re-
sonances of various atomic and molecular systems, using media with lower ionization potential. 
The paper contains accurate estimation of wavelengths and intensities of XUV and IR fields 
suitable for experimental implementation of the method. The proposed method provides a unique 
tool for nonionizing steering of electronic processes inside atoms, molecules, and solids at the 
few-femtosecond and attosecond timescales, thus extending the capabilities of attosecond 
science. Furthermore, the method is very promising for transformation of the picosecond pulses 
produced by the x-ray plasma lasers into sub-femtosecond pulses, which could widely extend the 
applications of such lasers for element selective imaging of the fast dynamical processes in bio-
chemistry and material sciences. 
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Fig. 1. Time dependencies of a probability for a hydrogen atom initially excited into the 
state |2〉 or |3〉 to remain nonionized by the monochromatic IR field of intensity 
IIR = 2.5×1012 W/cm2 and wavelength λIR = 8 μm. The lower red curves correspond to the state 
|2〉, while the upper blue curves characterize the state |3〉. The solid curves are the results of ab 
initio solution of the TDSE, whereas the dashed curves represent the approximation (10 b). 
 

 
 

Fig. 2. (a) Time dependence of intensity I ~
2

XUVE%  of XUV radiation at the exit of an opt-
ically thin medium of atomic hydrogen simultaneously irradiated by the CO2-laser field with in-
tensity IIR = 1.4×1012 W/cm2 and wavelength λIR = 10.65 μm and the XUV radiation with intensi-
ty IXUV = 2.2×108 W/cm2 and wavelength λXUV = 122.2 nm. The dimensionless parameters in ana-
lytical solution are (1) 4.45Pω = , (2) 0.23Pω = , (1) 0.05Pγ = , (2) 0.015Pγ = , and 0.04trγ = Ω . The 
dashed red curve and the solid green curve correspond to the analytical solutions (11) and (13), 
respectively. The rapidly oscillating dash-dotted blue curve shows the numerical solution of the 
TDSE for the squared value of the XUV field strength, 2

XUVE . (b) Fourier transform of the out-
put XUV radiation corresponding to the time dependence in (a). The results provided by the ge-
neralized analytical solution (12) for the amplitudes and phases of the spectral components are 
shown by red squares and blue circles, while the predictions of the simplified analytical theory 
(13) for the spectral amplitudes and phases are plotted by black asterisks and filled green circles. 
The lavender curve and cyan crosses show ab initio solution of the TDSE for the amplitudes of 
the spectral components, as well as their phases at the combinational frequencies, 0 nω ω= + Ω , 

0, 1, 2,...n = ± ± , respectively. The resonant spectral component, 0ω ω= , of the output XUV radi-
ation is attenuated to the level of the generated sidebands. 
 



 
 

Fig. 3. (a) Same as Fig. 2 (a), but for IR field with intensity IIR = 2.5×1012 W/cm2 and wa-
velength λIR = 8 μm, and XUV radiation with intensity IXUV = 1.6×109 W/cm2 and wavelength 
λXUV = 122.6 nm. The dimensionless parameters in analytical solutions are (1) 4.45Pω = , 

(2) 0.32Pω = , (1) 0.21Pγ = , (2) 0.074Pγ = , and 0.19trγ = Ω . (b) Fourier transform of the output 
XUV radiation corresponding to the time dependence in (a). Designations are the same as in 
Fig. 2 (b). 
 

 
 

Fig. 4. (a) Same as Fig. 2 (a), but for IR field with intensity IIR = 1013 W/cm2 and wave-
length λIR = 4 μm, and XUV radiation with intensity IXUV = 109 W/cm2 and wavelength 
λXUV = 124.6 nm. The dimensionless parameters in analytical solutions are (1) 4.45Pω = , 

(2) 0.23Pω = , (1) 0.8Pγ = , (2) 0.6Pγ = , and 1.3trγ = Ω . (b) Fourier transform of the output XUV rad-
iation corresponding to the time dependence in (a). Designations are the same as in Fig. 2 (b). 
 

 
 



Fig. 5. (a) Same as Fig. 2 (a), but for IR field with intensity IIR = 4×1013 W/cm2 and wave-
length λIR = 2 μm, and XUV radiation with intensity IXUV = 4×109 W/cm2 and wavelength 
λXUV = 133.4 nm. The dimensionless parameters in analytical solutions are (1) 4.45Pω = , 

(2) 0.5Pω = , (1) 1.9Pγ = , (2) 1.8Pγ = , and 3.8trγ = Ω . (b) Fourier transform of the output XUV radia-
tion corresponding to the time dependence in (a). Designations are the same as in Fig. 2 (b). 
 

 
 

Fig. 6. (a) Time dependence of intensity of XUV radiation at the exit of an optically thin 
medium of helium irradiated by the IR field with intensity IIR = 1.5×1014 W/cm2 and wavelength 
λIR = 4 μm, and the XUV radiation with intensity IXUV = 1011 W/cm2 and wavelength 
λXUV = 58.4 nm. The incident spectral component of XUV radiation is suppressed. The dashed 
red curve and the solid green curve correspond to the harmonical and step-like analytical solu-
tions (17) and (20)-(23), respectively. The dimensionless parameters in analytical calculations 
are (2) 15Pω = , (2) 11.5Pγ = , min 0.056γ Ω = , max 2.7γ Ω = , and zero 0.2t πΩΔ = . The rapidly oscil-
lating dash-dotted blue curve is the numerical solution of the TDSE for the squared value of the 
XUV field strength, 2

XUVE . (b) Fourier transform of the output XUV radiation corresponding to 
the time dependence in (a). Red squares and blue circles are the amplitudes and phases of the 
spectral components calculated analytically via the harmonical analytical solution (18). The cor-
responding results of step-like analytical solution (20)-(23) are plotted by black asterisks and 
green filled circles. The lavender curve and cyan crosses show the ab initio solution of the TDSE 
for the amplitudes of the spectral components, as well as their phases at the combinational fre-
quencies, 0 nω ω= + Ω , 0, 1, 2,...n = ± ± , respectively. The upper frequency limit corresponds to 
the ionization potential of helium. 
 

 
 

Fig. 7. (a) Same as Fig. 6 (a), but for IR field with wavelength λIR = 2 μm. The dimen-
sionless parameters in analytical solutions are (2) 4.0Pω = , (2) 4.6Pγ = , min 0.14γ Ω = , 



max 1.5γ Ω = , and zero 0.25t πΩΔ = . (b) Fourier transform of the output XUV radiation corres-
ponding to the time dependence in (a). Designations are the same as in Fig. 6 (b). 
 

 
 

Fig. 8. (a) Same as Fig. 6 (a), but for IR field with wavelength λIR = 1 μm. The dimension-
less parameters in analytical solutions are (2) 1.0Pω = , (2) 1.2Pγ = , min 0.22γ Ω = , max 0.88γ Ω = , 
and zero 0.4t πΩΔ = . (b) Fourier transform of the output XUV radiation corresponding to the time 
dependence in (a). Designations are the same as in Fig. 6 (b). 
 

 
 

Fig. 9. (a) Same as Fig. 6 (a), but for IR field with intensity IIR = 4×1014 W/cm2. The di-
mensionless parameters in analytical solutions are (2) 25Pω = , (2) 20.7Pγ = , min 0.24γ Ω = , 

max 6.2γ Ω = , and zero 0.16t πΩΔ = . (b) Fourier transform of the output XUV radiation corres-
ponding to the time dependence in (a). Designations are the same as in Fig. 6 (b). (i) Cyan 
crosses and (ii) dark blue pluses show the results of TDSE solution for the phases of spectral 
components at (i) the combinational frequencies, 0 nω ω= + Ω , 0, 1, 2,...n = ± ± , and (ii) the high-
order harmonics of the IR field, (2 1)kω = + Ω , 1,2,...k = , respectively. 
 



 
 

Fig. 10. (a) Same as Fig. 6 (a), but for IR field with intensity IIR = 8×1014 W/cm2. The di-
mensionless parameters in analytical solutions are (2) 50Pω = , (2) 51Pγ = , min 0.66γ = Ω , 

max 11.2γ = Ω , and zero 0.1t πΔ = Ω . (b) Fourier transform of the output XUV radiation corres-
ponding to the time dependence in (a). Designations are the same as in Fig. 9 (b). 

 


