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We show from ab initio laser theory that by choosing an appropriate spatial pump profile, many
different spatial modes of a typical microlaser can be turned on at the same pump energy, substantially
increasing the number, N , of simultaneous lasing modes. The optimal pump profile can be obtained
simply from knowledge of the space-dependent saturated gain profile when the system is uniformly
pumped up to the Nth modal threshold. We test this general result by applying it to a two-
dimensional diffusive random laser and a microdisk laser. Achieving highly multimode lasing at
reasonable pump powers is useful for reducing the spatial coherence of laser sources, making them
suitable for use in speckle-free imaging and other applications.

PACS numbers: 42.55.Sa,42.55.Zz,42.62.-b

The laser is a well studied driven-dissipative nonlinear
system, and many aspects of the theory are well under-
stood and tested experimentally [1, 2]. In the past two
decades however, many new laser cavity designs have been
introduced, both to study novel optical physics and in
the search for efficient, on-chip microscale sources [3–5].
Unlike macroscopic laser cavities, where cavity design
and intracavity components can be used to control the
number of lasing modes, for microlasers modal control
is less straightforward; moreover until recently there was
no convenient theoretical approach to determining the
number of lasing modes and their thresholds. Despite
these challenges, modal control in microlasers offers a
unique opportunity in regard to recent breakthroughs
in speckle-free imaging [6–8]. While single-mode lasing
is desirable in many applications, highly multimode las-
ing with spatially uncorrelated phases is a very conve-
nient mechanism for reducing the spatial coherence of
a bright laser source, allowing lasers to be used in full-
field imaging microscopy and other applications requiring
intense speckle-free sources. Compared with traditional
low spatial coherence sources such as thermal lamps and
light-emitting diodes, highly multimode lasers offer the
advantage of higher power per mode, improved collection
efficiency, and easier spectral control.

As has been known for some time [2, 9], for essentially
all microlasers, multimode lasing is stable due to spatial
hole-burning: different spatial modes use distinct regions
of the gain medium and can reach the lasing threshold
(modal gain equals loss) at different pump strengths, de-
spite saturation of the gain by modes which turn on earlier.
In addition, the large free spectral range in microlasers
prevents population dynamics from effectively driving
multimode laser instabilities. The modal thresholds of
lasers in the absence of saturation are determined by two
factors: the quality (Q) factor of the mode in the pas-
sive cavity, and the modal overlap with the gain medium,
both spatially and spectrally. Previous work on achieving
highly multimode lasing in microlasers has focused on
passive cavity engineering to create many modes with

similar Q factors, using, for example, random lasers [10]
and chaotic lasers [11]. This approach, however, usually
leads to relatively low Q factors and high thresholds.

In this work we propose to exploit the spatial degrees of
freedom of the pump to achieve highly multimode lasing
in microlasers, which can be applied to both high-Q and
low-Q cavities without spoiling their quality factors. The
spatial pump profile can be controlled through spatial
light modulators [12], phase masks, or eventually by mul-
tiple electrical contacts [13–15], and such an approach
has been used empirically to achieve single-mode lasing
[16–18] and directional emission [19, 20]. In contrast to
these work using trial-and-error optimization to achieve
modal control, here we show the existence of pump pro-
files leading to highly multimode lasing analytically, using
Steady-state Ab initio Laser Theory (SALT), a recently
developed approach to predict the modal behavior in com-
plex microlaser geometries with arbitrary pump profiles.
SALT reduces the semiclassical laser equations to a set of
time-independent self-consistent nonlinear wave equations
that include the spatial hole burning effect exactly. The
SALT equations accurately find the solutions of the full
semiclassical laser equations for nonuniformly pumped
multimode microlasers [21–25], and they have been used
to predict new phenomena, such as re-entrant lasing near
exceptional points [26], which have since been observed
[27, 28]; Hence SALT (and approximations to it) have
been used to study numerically modal control through
variation of the pump profile. However, due to the non-
linearity of the equations there have been no rigorous
analytic results to guide these studies.

Here we present a very surprising result of this type.
Suppose a laser cavity is pumped with some trial pump
profile (e.g., uniform in space), and as the pump power

increases, N � 1 modes turn on at thresholds D
(µ)
0 (µ =

1, 2, . . . N). We show that for any such trial profile there
exists a refined pump profile which will cause all N modes
to turn on at the same “master threshold” Dm, where

D
(1)
0 < Dm < D

(N)
0 . Above Dm typically many more
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modes will lase for the same pump power as with the trial
pump profile. We also show that this approach can be
effective even given practical constraints on pump control.

Before going into the proof of threshold condensation
and relevant examples, we note that degenerate thresholds
arising from symmetry are well-known, e.g., counterprop-
agating modes in ring or disk lasers. However, this case
is only a pairwise degeneracy, and it is usually lifted by
the nonlinearity, which randomly locks into one of the
two possible states [29–31]. There are also degenerate
macroscopic cavity designs which have many modes with
the same threshold. Here, as noted, we are focusing on mi-
crolasers which can have any cavity design which supports
many modes at high pump, and our approach requires no
symmetry at all, nor any simple relationship among the
condensed modes.

To understand why such a master threshold should exist,
note that the pumped laser cavity itself is performing an
optimization: as the pump increases, modes at different
frequencies have different access to the gain, and all those
which eventually lase have managed to balance gain and
loss through positive feedback. However in the nonlinear
steady state, the lasing modes do not respond simply to
the pump profile imposed externally; instead they respond
to the saturated gain profile, which is strongly affected by
the spatial variation and relative intensities of each mode.
Hence if one imposes an external pump at low power (so
no modes lase) which follows spatially the saturated gain
profile and simply increases the total pump power with
this profile, at some power level all the modes will balance
gain and loss with the now unsaturated gain susceptibility
and start lasing together.

We now show that this simple argument is rigorously
correct using the SALT equations [21–25], which find the
steady-state solutions of the semiclassical Maxwell-Bloch
equations [1, 2] and N -level generalization thereof. SALT
assumes a stationary population inversion in the gain
medium (see the discussion in Ref. [32]), which requires
that the relaxation rate of the gain medium, γ‖, be small
compared to the dephasing rate of the polarization, γ⊥,
and the free spectral range of the laser, both satisfied
for most microlasers. The high accuracy of SALT in
this regime has been verified by comparing with time-
dependent FDTD simulations [32–35]. Although SALT,
as well as the Maxwell-Bloch equations, treats homoge-
neously broadened gain media by construction, there is
evidence that it applies qualitatively to certain inhomo-
geneously broadened gain media as well, such as InAs
quantum dots lasers [18].

The SALT equations for the steady-state lasing modes
Ψµ(~r;D0) (µ = 1, . . . , N) and their frequencies Ωµ take
the form [32][
∇×∇− [εc(~r) + εg(~r;D0)]

Ω2
µ

c2

]
Ψµ(~r;D0) = 0, (1)

where c is the speed of light in vacuum and εc(~r) is the
passive part of the cavity dielectric function independent

of the pump strength, D0. The electric field, Ψµ(~r;D0),
is expressed in dimensionless form, measured in units
ec = ~√γ‖γ⊥/2g where g is the dipole matrix element of
the lasing transition. The equations are to be solved with
purely outgoing boundary conditions, and below the first

threshold D
(1)
0 no solutions exist. Nontrivial solutions

Ψµ(~r;D0) appear and increase in amplitude above each

threshold D
(µ)
0 , and each Ψµ(~r;D0) oscillates at a real-

valued lasing frequency Ωµ, which in general varies with
D0.

Each mode interacts with itself and the other lasing
modes via nonlinear gain saturation, which appears in
the “active” part of the dielectric function and takes the
form [24]:

εg(~r;D0)=
γ⊥

Ωµ−ωa+ iγ⊥

D0f0(~r)

1+
∑N
ν=1 Γν |Ψν(~r;D0)|2

. (2)

ωa here is the atomic transition frequency, Γν ≡ γ2⊥/[γ2⊥+
(Ων − ωa)2] is the Lorentzian gain curve evaluated at Ων ,
and f0(~r) ≥ 0 is the externally imposed spatial profile
of the pump, which we normalize by

∫
cavity

f0(~r)d~r = S,

where S =
∫
cavity

d~r is the area of the cavity in two

dimension (2D). As noted, the saturated gain profile
depends strongly on the amplitude, spatial variation and
frequency of the lasing modes, with the highest amplitude
modes causing the most saturation.

Now consider f0(~r), as the “pilot” profile we wish to
refine to cause all of the modes up to a target number,
Nt, to lase at the same threshold. This trial problem for
Ψµ(~r;D0),Ωµ up to the Ntth threshold, Dt, can be solved
either by expanding Ψµ(~r;D0) in a complete, biorthogo-
nal, and frequency-depedent basis (i.e., the constant flux
states [22]) and solving a set of nonlinear equations for
the expansion coefficients and Ωµ; or by a direct nonlinear
numerical solver based on the Newton-Raphson algorithm
[32]. As noted, for those Nt modes the saturated gain
profile balances gain and loss. Hence we take our refined
pump profile to be proportional to the saturated gain
profile

fm(~r;Dt) =
C(Dt)f0(~r)

1 +
∑Nt
µ=1 Γµ|Ψµ(~r;Dt)|2

, (3)

where C(Dt) is a constant determined by the normal-
ization

∫
cavity

fm(~r;Dt)d~r = S. After replacing f0(~r) by

fm(~r;Dt) in Eqs. (1) and (2), we insist that the unsatu-
rated susceptibility with the new profile be identical to
the saturated susceptibility of the original pilot problem
at Dt. This requires that the appropriate pump value for
the refined problem be

Dm =
Dt

C(Dt)
, (4)

which uniquely determines a master threshold, at which
all Nt modes turn on under the new pump profile. At
Dm all the lasing modes have the same spatial pattern
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and frequency as in the trial problem. This construction
was first noted in passing in Ref. [36], and it relies on the
fact that the SALT equations are homogeneous nonlinear
differential equations. To exemplify this construction
in a much simpler case, we discuss its analogue using a
nonlinear matrix problem in Append. A.

The above result on threshold condensation is exact
for the SALT equations, and therefore applies to many
lasers, particularly microlasers as noted above. However,
while this result rigorously proves that all Nt modes are
at threshold at Dm, it does not prove that above Dm, all
modes are lasing, and below Dm none are. It is possible in
principle that one or more of the modes have turned on at
a lower pump value, acquired a negative slope before Dm,
and stop lasing at Dm, which would be their “off thresh-
old.” However, while negative power slope due to modal
interactions is possible, it requires special relationships
between the modal profiles and lasing frequencies and
typically also some optimization of the pump profile [35].
Since the modes involved here are arbitrary and the pump
profile has been set by the requirement of degeneracy, it
is highly unlikely that negative power slopes will occur at
or near Dm (see Append. B).

As a first demonstration of threshold condensation
following this construction, we show in Fig. 1 the conden-
sation of Nt = 6 modes in a 2D diffusive random laser
[21, 37–39], calculated via SALT. (For 2D geometries
the vector equation (1) reduces to a nonlinear Helmholtz
form [24]). Using a uniform pilot pump profile f0(~r) = 1,
we ramp up the pump power until 6 modes are lasing
[see Fig. 1(a)]. Expressed in terms of the 1st threshold

D
(1)
0 , the thresholds of the other 5 modes are 1.18, 1.27,

1.34, 1.35, and 1.48. Now using Dt = 1.48D
(1)
0 and the

corresponding saturated gain profile fm(~r;Dt) as the re-
fined pump profile, we find that the master threshold is

given by Dm = 1.17D
(1)
0 . At this pump value only one

mode lases with uniform pumping, while with the refined
pump there are now six [see Fig. 1(b)]. As a separate
verification, we plot the trajectories of the correspond-
ing resonance poles [quasi-bound (QB) mode frequencies]
with increasing pump strength in Fig. 1(c); the pump
value at which a pole first reaches the real axis denotes
the lasing threshold [24], and here all six poles reach the
real axis simultaneously.

The same procedure can be applied to a larger target
number of lasing modes in the same laser. For example,

for this random laser the 9th mode starts lasing at D
(9)
0 =

1.81D
(1)
0 with uniform pumping. Now using this different

value as Dt, and the different saturated gain profile as
the refined pump profile, the master threshold is given

by Dm = 1.20D
(1)
0 , a value where there are only two

modes lasing with uniform pumping, whereas now there
are nine. Strikingly, the master threshold increases much
more slowly with Nt than does the Ntth threshold with
uniform pumping [see Fig. 1(d)]. For example, Dm only

increases by 0.03D
(1)
0 when Nt increases from 6 to 9, while

the difference between the 6th and 9th thresholds with
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FIG. 1. (Color online) Condensation of multiple thresh-
olds in a 2D random laser. (a) Modal intensity Iµ ≡∫
cavity

|Ψµ(~r;D0)|2d~r/S as a function of pump power D0 with

uniform pumping. Inset: A disk pump of radius R over an
aggregate of scatterers with refractive index n = 1.2. The
background index is 1. The gain medium is characterized
by ωaR/c = 30 and γ⊥R/c = 1. (b) Simultaneous onset of

6 modes above Dm = 1.17D
(1)
0 with the refined pump pro-

file fm(~r;Dt = 1.48D
(1)
0 ). An additional mode (thin grey

line) also turns on in the range of pump power shown. Inset:
Refined pump profile and its color scale. (c) The lasing fre-
quencies of the 6 modes in (a) at Dt are shown by filled circles,
where the trajectories of the corresponding QB modes end up
as the pump power increases from 0 (squares) to the master
threshold Dm with the refined pump profile. The trajectories
of 6 other QB modes that have not reached their thresholds
are also shown (thin grey lines). The horizontal line indicates
the threshold condition Im[ΩµR/c] = 0. (d) Dm as a function
of Dt. Filled circles show the values of Dm when Nt increases
by 1, and open circles show the threshold of this new mode
with uniform pumping. Two pairs of such values for Nt = 6
and 9 are enclosed by boxes.

uniform pumping is 0.33D
(1)
0 .

The reason for this behavior is as follows: the ratio of
Dm and Dt is given by the normalization constant C(Dt)
[Eq. (4)]. By integrating both sides of Eq. (3) and using
the normalization of fm(~r;Dt), we find

C(Dt)
−1 =

∫
cavity

f0(~r) d~r

1 +
∑Nt
µ=1 Γµ|Ψµ(~r;Dt)|2

. (5)

On average, the saturation term in the denominator
increases linearly with pump, so that (averaging over

space)
∑Nt
µ=1 ΓµIµ(Dt) ≈ aDt/D

(1)
0 − b, (where Iµ(Dt) ≡∫

cavity
|Ψµ(~r;Dt)|2d~r/S). Thus Dm ≈ Dt/[1 − b +

aDt/D
(1)
0 ]→ D

(1)
0 /a, when the pump power Dt � D

(1)
0 ,

indicating that Dm remains of order D
(1)
0 even when Dt

becomes very large. The asymptote of Dm in Fig. 1(d) is
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captured well by this approximation (1.16D
(1)
0 ; marked

by the star).
The saturated gain profile used to generate the refined

pump typically varies on the scale of the wavelength of
light in the cavity, whereas approaches to shape the pump
profile mentioned in the introduction will have limited
resolution due to the diffraction limit, carrier diffusion
and other effects. In addition, the saturated gain profile is
typically not directly measurable but must be calculated
from some model of the cavity, and will be subject to
corresponding inaccuracies. Thus there will be limits on
our ability to generate the ideal pump profile leading to
exact degeneracy. To estimate this effect, we perform a
Gaussian smoothing of the refined pump profile used in
Fig. 1:

f̄m(~r;Dt) =
C̄(Dt)

2πσ2

∫
cavity

fm(~ς;Dt) e
− (~r−~ς)2

2σ2 d~ς, (6)

where C̄(Dt) is a normalization constant similar to C(Dt).
We note that a quite noticeable reduction of pump details
already takes place at σ = R/40 [see the inset in Fig. 1(b)].
Nevertheless, we still find a significant enhancement of
multimode lasing [see Fig. 2(b)]: while the 6th threshold

is now at 1.27D
(1)
0 and higher than the master thresh-
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FIG. 2. (Color online) Effect of a deviated pump profile and
its correction. (a) Filled diamonds: lifting of the 6-fold thresh-
old degeneracy (filled circles) in Fig. 1(b) due to a Gaussian
smoothing of the refined pump profile with σ = R/40 [see
inset in (b)]. Open symbols show an additional mode. Con-
nected black triangles: restoration to a quasi-degeneracy after
an “error correction” procedure with modal-intensity changes
∆I1−7(Dt) = 0.82, 0.01, 0.25, 0.08,−0.05,−0.10, 0.13. Modal
interactions under the smeared pump profiles are neglected in

calculating the degeneracy-lifted thresholds D
(u)
m but included

in (b) and (c). (b) Modal intensity Iµ as a function of pump
power D0 with f̄m(~r;Dt) before “error correction.” (c) Same
as (b) but after “error correction.”

old (1.17D
(1)
0 ), it is still much lower than its value with

uniform pumping (1.48D
(1)
0 ). D

(1)
0 here refers the first

threshold under the pilot pump profile.

In addition, we can perform further optimization by
treating the refined pump profile itself as a variational
function, and using the intensities in the denominator of
Eq. (3) as variational parameters to compensate much
of the threshold splitting. For example, the dominant
effect of pump smearing in Fig. 2(a) is a much lower
threshold of mode 1. To reverse this change, we increase
the suppression of mode 1 in the refined pump profile
(before smearing) by increasing the intensity |Ψ1(~r;Dt)|2
(and I1(Dt)). Due to cross-saturation, this treatment also
changes the thresholds of the other modes but typically to
a lesser extent. Hence by adjusting each modal intensity in
the appropriate direction to compensate its splitting due
to smearing, quasi-degeneracy can be restored as shown
in Figs. 2(a) and (c). Note that the quasi-degenerate
master threshold after “error correction” is given by D̄m ≈
1.15D

(1)
0 , which is even lower than the degenerate one.

This illustrates the point that Dm is not a lower bound
on the pump value where Nt modes can lase; but it is an
excellent starting point for optimization.

As a final example, we apply the threshold condensation
procedure to a microdisk laser (see Fig. 3), a well studied
multimode microlaser of technological interest. We choose
a high index contrast typical of semiconducting devices
although we assume an atomic-like gain medium (e.g.
quantum dots). The relevant electromagnetic modes are
high-Q whispering-gallery modes (WGMs), confined by
near total internal reflection. For the reason discussed al-
ready in the introduction, we only consider WGMs of one
symmetry, e.g., the clockwise rotation (positive azimuthal
quantum number m), which preserves the rotational sym-
metry of the system when gain saturation is considered.
With n = 3.3 + 10−4i and ωaR/c = 30, this microdisk
laser supports WGMs of m up to 100. It is natural here

1 1.5 2
0

0.2

0.4

M
o

d
a

l 
in

te
n

s
it
y
 

(a)

Pump power D0 /D
0

(1)

R

M
o

d
a

l 
in

te
n

s
it
y
 

(b)

1 1.1 1.2
Pump power D0 /Dm

0

0.04

0.08

FIG. 3. (Color online) Condensation of multiple thresholds
in a microdisk laser of radius R. (a) Modal intensity Iµ as a
function of pump power D0 with a ring-shaped pilot pump

profile (inset). The 16th mode starts lasing at D0 = 1.83D
(1)
0 ,

and γ⊥R/c = 0.5 is used. (b) Simultaneous onset of all 16

modes above Dm = 1.08D
(1)
0 with the refined pump profile

fm(~r;Dt = 1.83D
(1)
0 ).The 3D rendering of the latter is shown

as the inset, one quarter of which is removed to show its radial
profile.
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to choose a non-uniform pilot profile, and we take a ring-
shaped pump profile (f0(~r) = 0 for r < R/3). With this
choice the 1st mode has m = 80 and the 16th mode of
m = 37 starts lasing at D

(16)
0 = 1.83D

(1)
0 [see Fig. 3(a)].

Using this pump value as Dt, the master threshold occurs

at Dm = 1.08D
(1)
0 , beyond which all 16 modes start lasing

simultaneously [see Fig. 3(b)].

In summary, we have shown that the spatial hole-
burning nonlinearity of a laser can be utilized to refine
the pump profile, resulting in the simultaneous lasing of
many modes at relatively low pump power. This ana-
lytic property of the lasing equations is a consequence of
their nature as a set of homogeneous nonlinear differential
equations, which is independent of the laser cavity itself.
Therefore, this approach can be used as a guide to find
spatial profiles leading to control of multimode lasing
properties, for both high-Q and low-Q cavities, even if
there are limitations on the spatial precision or resolution
of the pump profile as illustrated in Fig. 2. For a stable
pump source, its temporal fluctuation, even if noticeable,
has a timescale longer than the laser dynamics. Then the
laser can be viewed as subjected to multiple realizations
of a spatial noise sequentially. For each instance the effect
of the noise is captured by what we have discussed in
Fig. 2, and as a function of time we may see lasing of
different subgroups of the intended modes. Nevertheless,
this “subgroup hopping” does not impose a problem for
our purpose of speckle-free imaging, since we only require
a large group of modes lasing simultaneously (that have
random relative phases), without requiring constant lasing
of a particular group of modes.
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der Grant No. 68698-0046 and NSF under Grant No.
DMR-1506987. H.C. acknowledges support by NSF under
Grant No. DMR-1205307. A.D.S. acknowledge support
by NSF under Grant No. DMR-1307632.

Appendix A: Nonlinear matrix model

To exemplify the construction of the refined pump
profile in a much simpler setting, here we consider the
following nonlinear matrix problem:(

1 + D0fa
1+Ia

−1

−1 1 + D0fb
1+Ib

)(
a
b

)
= 0, Ia(b) = a2(b2). (A1)

Here f = (fa, fb) resembles the pump profile and the
fractions Da ≡ D0fa/(1 + Ia), Db ≡ D0fb/(1 + Ib) resem-
ble the saturated gain profile. With a uniform “pump
profile” fa = fb = 1 and at “pump strength” D0 = 4,
we find a = (1 +

√
5)/2, b = (1−

√
5)/2 give a nonlinear

solution of the matrix problem above, resulting in a satu-
rated “gain profile” Da = 4/[1 + (

√
5 + 1)2/4] ≡ da and

Db = 4/[1 + (
√

5− 1)2/4] ≡ da. Now if we choose a new
“pump profile” f = (da, db) ≡ fm, we immediately find

that (
a
b

)
=

(
1 +
√

5

1−
√

5

)
ε (A2)

is a solution of Eq. (A1) at D0 = 1 ≡ Dm, when ε → 0.
This solution indicates that Dm is the threshold of the
“laser” with the new “pump profile” fm.

We note that this simplified example differs from the
SALT equations in the main text in two important aspects.
First, it is a “single-mode” model, where Ia,b represents
the intensity of this mode at two different locations. Sec-
ond, we did not normalize fm and hence the value of
Dm cannot be compared directly with the threshold with
uniform pumping. Nevertheless, the essential feature of
this simplified example is exactly the same as that in the
main text, where we have a set of homogeneous nonlin-
ear equations and take the saturated “gain profile” at a
certain pump strength with uniform pumping to be the
pump profile in a second setup, resulting in a laser at its
threshold.

Appendix B: Negative power slope at the master
threshold

With a refined pump profile fm(~r;Dt), we have shown
in the main text that all Nt modes lase simultaneously
once the pump power is increased beyond the resulting
master threshold Dm. There are two rare scenarios where
this behavior breaks down, with one or more of the Nt
mode suppressed beyond Dm. We discuss these two sce-
narios in this appendix.

The first scenario in which one or more of the Nt modes
could in principle be suppressed beyond their condensed
threshold Dm is a linear effect, where the trajectory of
the corresponding quasi-bound mode frequency Ωµ(D0)
crosses the real axis at D0 = Dm from above. This
behavior is caused by an exceptional point [26, 40, 41],
and such an Ωµ(D0) has another crossing with the real
axis at a lower pump power (see the schematics in Fig. 4).
We have not find a case where this rare scenario takes
place, which requires fine tuning of the system parameters
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close to an exceptional point.

The second scenario is a nonlinear effect. It occurs if
the onset of mode competition above Dm would lead to a
negative power slope of one or more modes. To study this
scenario analytically, we assume the cavity has a high Q
factor and consider first the Nt = 2 case for simplicity. For
a high-Q cavity SALT can be approximated by a simple
set of intensity equations [24], which take the following
form here:

D0

Dm
− 1 = χ11I1 + χ12I2 = χ22I2 + χ21I1. (B1)

Although Iµ ≡ Γµ|
∫
cavity

fm(~r)Ψµ(~r;D0)2d~r/S| is de-

fined differently from the modal intensity Iµ intro-
duced in the main text, they are proportional to
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FIG. 5. (Color online) Mode suppression beyond the master
threshold in a microdisk laser (a-c) and an aperiodic laser
(d-f). (a) and (d) Modal intensity Iµ as a function of pump
power D0 with uniform pumping. Both cases feature an
interaction-induced mode switching (IMS), for the 1st and
2nd modes respectively. The arrows point to their negative

power slopes at Dt = 2.29D
(1)
0 in (a) and Dt = 2.38D

(1)
0 in (c).

Insets: Schematics of a microdisk laser with nc = 2 + 0.01i,
ωaR/c = 4.83 and γ⊥R/c = 1 in (a) and an aperiodic laser
with dielectric layers of nc = 1.5 (in air), ωaR/c = 122.51 and
γ⊥R/c = 17.46 in (d). (b) and (e) Im[ΩµR/c] as a function
D0 with the refined pump profile fm(~r;Dt). Nt = 2, 3 and

Dm/D
(1)
0 = 1.54, 1.37 in (b) and (e), respectively. (c) and (f)

Same as (a) and (d) but with their respective fm(~r;Dt).

each other in a high-Q cavity, and the normalized
spatial mode profile ϕµ(~r) = Ψµ(~r;D0)

√
Γµ/Iµ is

approximately real and varies little above threshold.

χµν =
∣∣∣∫cavity fm(~r)ϕµ(~r)2|ϕν(~r)|2d~r/S

∣∣∣ gives the self-

interaction coefficients when µ = ν and the cross-
interaction coefficients when µ 6= ν, and we note that
χ21 ≈ χ12 holds in a high-Q cavity. It is straightforward
to see that a negative power slope for either I1 or I2
requires

χ22 − χ12

χ11 − χ21
=

I1
I2

< 0. (B2)

In other words, the cross-interaction coefficients χ12, χ21

need to be larger than one of the self-interaction co-
efficients and smaller than the other. This condition
is again very rare in a high-Q cavity which features
χ11, χ22 � χ12, χ21 in general; only recently was the
condition (B2) reported that leads to interaction-induced
mode switching (IMS) [35]. Using the multimode form of
Eq. (B1), the criterion (B2) can be generalized to Nt > 2
cases straightforwardly, i.e.

Iµ ∝
Nt∑
ν=1

[χ−1]µν < 0 (B3)

for one or more of the Nt modes, where χ−1 is the inverse
matrix of χ.

In Fig. 5 we apply the condensation procedure to the
microdisk laser studied in Ref. [35] that exhibits IMS:

the 2nd mode turns on at D
(2)
0 = 2.21D

(1)
0 before it

switches off the 1st mode via a negative power slope at

D0 = 2.41D
(1)
0 [see Fig. 5(a)]. We choose Dt = 2.29D

(1)
0

in the cross-over region, which leads to Dm = 1.54D
(1)
0 .

As Fig. 5(b) shows, Ω1,2 reach the real axis simultaneously
as the pump power is ramped up to Dm with the pump
profile fm(~r;Dt). But as soon as D0 goes beyond Dm, Ω1

is forced into the lower half of the complex plane again
due to mode competition, leading to single mode lasing
of the 2nd mode only [see Fig. 5(c)].

While Eq. (B1) and the criterion (B3) do not apply
to low-Q cavities, the correlation between IMS and the
suppression of certain mode(s) beyond Dm still seems
to hold. In Figs. 5(d-f) we show such an example in a
one-dimensional (1D) aperiodic cavity. The 2nd mode
exhibits a negative power slope after the onset of the

3rd mode at D0 = 1.66D
(1)
0 , and it is switched off at

D0 = 2.73D
(1)
0 . When taking any pump value in this

range as Dt, we find that the 2nd mode is suppressed
beyond Dm with the refined pump profile fm(~r;Dt).

We note that IMS does not only feature a negative
power slope; this negative power slope must be induced
suddenly by the onset of a new lasing mode. If the
negative power slope is due to mode mixing [21], we find
that all Nt modes still lase simultaneously above Dm.
One example is shown in Fig. 6 for a 2D random laser.
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FIG. 6. (Color online) Condensation of multiple thresholds
in a 2D random laser. (a) Modal intensity Iµ as a function of
pump power D0 with uniform pumping. The arrow points to

the negative power slope of the 5th mode at Dt = 1.48D
(1)
0

chosen for Nt = 6. Inset: Schematics of the 2D random laser.
The parameters are the same as in Fig. 1 of the main text
except for a different disorder. (b) Simultaneous onset of all

6 modes above Dm = 1.35D
(1)
0 with the refined pump profile

fm(~r;Dt). The latter is shown in the inset with its color scale.
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