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Analysis of the group-velocity dispersion (GVD) of atmospheric air with a model that 

includes the entire manifold of infrared transitions in air reveals a remarkably broad and 

continuous anomalous-GVD region in the high-frequency wing of the carbon dioxide 

rovibrational band, from approximately 3.5 to 4.2 µm, where atmospheric air is still highly 

transparent and where high-peak-power sources of ultrashort mid-infrared pulses are 

available. Within this range, anomalous dispersion acting jointly with optical nonlinearity of 

atmospheric air is shown to give rise to a unique three-dimensional dynamics, with well-

resolved soliton features in the time domain, enabling a highly efficient whole-beam soliton 

self-compression of such pulses to few-cycle pulse widths. 

 

 

INTRODUCTION 

Among a vast variety of ultrafast phenomena found in the complex spatiotemporal nonlinear 

dynamics of high-intensity laser fields, physical scenarios whereby spatially and temporally 

confined high-peak-power solitary field waveforms can be isolated are of special interest for 

nonlinear optical physics and ultrafast photonic technologies. As an important example, light 

bullet formation [1, 2] stands out as a generic scenario where nonlinear dynamics gives rise to 

solitary lightwaves localized in space and time. When the laser field intensity is high enough 

to generate free charge carriers in a nonlinear medium through ultrafast photoionization, laser-

induced filamentation [3, 4] provides a universal scenario of nonlinear dynamics where beam 

divergence due to diffraction is suppressed due to dynamic self-action effects and field 

waveform confinement in the time domain is possible in certain regimes, leading to 

filamentation-assisted pulse compression [5, 6]. Outside the parameter space of laser 

filamentation, nonlinear spatiotemporal dynamics involving spatial and temporal localization 



of ultrashort field waveforms has been shown to enable pulse self-compression through 

adiabatic pulse self-steepening within long propagation paths [7], as well as pulse 

compression to subcycle pulse widths in carefully designed stacks of solid materials with 

suitable dispersion properties [8]. 

In anomalously dispersive solids, spatial localization provided by spatial self-action and 

laser filamentation can be combined with temporal field confinement due to a solitonic 

dynamics of laser pulses in the time domain [9]. For carefully optimized parameters of input 

laser pulses, light bullets can be generated in anomalously dispersive solids as a part of laser-

induced filamentation [10, 11]. If they could be extended to atmospheric air, these concepts 

and methods would open new avenues for a long-distance transmission of high-peak-power 

laser pulses and remote sensing of the atmosphere. Such an extension, however, is anything 

but trivial. For Ti: sapphire laser pulses, used in the overwhelming majority of laser 

filamentation experiments in the atmosphere, dispersion of atmospheric air is normal, leaving 

no parameter space for soliton dynamics. The mid-infrared range, where efficient sources of 

high-peak-power ultrashort pulses are now available [12, 13], seems to offer much more 

promise in this regard. In this wavelength region, rovibrational molecular modes within and 

near atmospheric absorption bands give rise to rapidly varying, sign-altering group-velocity 

dispersion (GVD), creating expectations that some of the minibands where the air GVD is 

anomalous would be broad enough to support soliton dynamics of ultrashort mid-infrared 

field waveforms. 

An accurate analysis of GVD of atmospheric air in the mid-infrared is central for a 

correct identification of wavelength ranges where solitonic effects are possible. Because of a 

complex behavior of air refractivity within molecular absorption bands and in the wings of 

these bands [14], such an analysis is difficult both conceptually and technically. With full 

calculations of air refractivity using the high-resolution transmission molecular absorption 

(HITRAN) database of infrared line transitions [15] being time- and labor-consuming, a 

useful polynomial-fit approximation has been developed [16] to facilitate such calculations, 

providing a reasonable accuracy of refractive-index calculations for atmospheric air within a 

broad spectral range. As an important step toward finding an adequate model for the air GVD, 

this polynomial-fit approximation has been applied to GVD calculations, predicting an 

anomalous GVD of air within the range of wavelengths from approximately 3.0 to 3.3 µm 

[17]. Numerical simulations suggest [18, 19] that, had this anomalous-GVD region existed, 

generation of ultrashort mid-infrared light bullets in air would have been possible within this 

spectral range. 



Here, we revisit the air GVD in the mid-infrared range using the full model of air refractivity 

including the entire HITRAN-database manifold of infrared transitions. We show that, while 

the polynomial-fit model provides a useful tool for approximate calculations of air dispersion 

within a remarkably broad spectral range, the accuracy of this approximation is inevitably 

limited, especially when it is extended beyond refractive-index calculations and employed for 

GVD analysis. As a result of unavoidable approximation errors, the mid-infrared GVD profile 

calculated using the full model of air refractivity deviates from GVD calculations based on 

the polynomial-fit approximation. The most drastic deviations are observed within the regions 

where radiation is resonantly coupled to molecular modes. As one of the most dramatic 

findings, full-air-refractivity-model calculations do not confirm the existence of continuous 

anomalous GVD of air within the 3.0 – 3.3-µm region, predicted by the polynomial-fit model. 

Instead, full-model calculations suggest that such a continuously anomalous GVD occurs 

within a reasonable broad spectral range in the high-frequency wing of the carbon dioxide 

rovibrational band, from approximately 3.5 to 4.2 µm, where atmospheric air is still highly 

transparent. Our numerical analysis of spatiotemporal field evolution within this wavelength 

range reveals physical scenarios that provide a long-distance temporal-soliton transmission of 

subterawatt ultrashort pulses and enable highly efficient whole-beam self-compression of 

such pulses to few-cycle pulse widths. 

 

GROUP-VELOCITY DISPERSION OF AIR 

For an accurate analysis of the dispersion of atmospheric air, we calculate the refractive index 

of atmospheric air as [14] 
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Here, Nk is the density of molecules of sort k, ωik, Γik, fik are the frequency, the linewidth, and 

the oscillator strength of the ith resonance in the spectrum of molecules of sort k, me and e are 

the electron mass and charge, ε0 is the dielectric permittivity of vacuum, and nvis(ω) is the 

refractive index of air in the visible–near-infrared range, calculated with the standard formula 

[20 – 22] ( ) ( ) ( ) 12
22

12
11

−−−− −+−= λλλ CBCBnvis , with 0.057921051 =B  µm–2, 

16791700.02 =B  µm–2, 238.01851 =C  µm–2, 57.3622 =C  µm–2 [23]. 

 



In the full model of air refractivity, we calculate the refractive index of air with Eq. (1) 

including the entire HITRAN-database manifold of molecular transitions in air [15]. The 

GVD of atmospheric air can then be found as β2 = ∂2k/∂ω2, k and ω being the wave number 

and the frequency entering the dispersion relation k(ω), calculated with the use of Eq. (1) as a 

function of the wavelength. 

With each molecular band in atmospheric absorption consisting of a large number of 

individual rovibrational transition lines, the refractivity of air displays rapid oscillations (Figs. 

1a, 1b) within and near molecular absorption bands (Fig. 1c). In Fig. 1a, we compare 

predictions of the polynomial-fit model of air refractivity [16] with the results of full-model 

calculations that include the entire HITRAN-database manifold of infrared transitions in air 

[15]. As an important result, Fig. 1a helps appreciate how powerful the polynomial-fit 

approximation is when applied to refractive-index calculations. The refractive index of air 

calculated with the use of this model is seen to reproduce, with an adequate accuracy, the 

results of full-model calculation within a remarkably broad range of wavelengths from the 

visible to the long-wavelength infrared. However, GVD calculation is a very different matter 

as the polynomial-fit model is simply not designed to include the fine details of the dispersion 

profile related to individual molecular transitions within rovibrational bands. These features 

may be almost invisible in the refractive index (Fig. 1a), but show up in a very prominent 

way, upon differentiation, in the GVD (Fig. 1d), giving rise to dramatic discrepancies 

between the GVD profiles calculated using the full and polynomial-fit models (cf. blue solid 

and magenta dashed lines in Fig. 1d). Furthermore, a blow-up of the refractive index profile in 

Fig. 1b visualizes small-amplitude oscillations of the polynomial fit (magenta dashed line in 

Fig. 1b) relative to full-model calculations (blue solid line in Fig. 1b). These oscillations are, 

of course, typical of any polynomial fitting procedure. One of such oscillatory features 

(dashed circle in Fig. 1b) translates into a 3.0 – 3.3-µm anomalous-GVD artifact (dashed 

circle in Fig. 1d). When plugged into a pulse-evolution model, this artifact gives rise to 

solitonic effects, including light bullets generation [18, 19]. However, the full-air-refractivity-

model prediction for the GVD β2 within this wavelength region is very different (Fig. 1d). It 

suggests a rapidly varying GVD profile with multiple β2 sign reversals – a GVD behavior that 

does not support any solitonic effects or light bullets on the femtosecond time scale. 

Still, a full-model analysis suggests that the dispersion of air does offer a parameter 

space for ultrashort solitons and related solitonic phenomena. As can be seen in Fig. 1d, full-

model calculations reveal a remarkably broad and continuous region of anomalous GVD that 



covers a range of wavelengths from approximately 3.5 to 4.2 μm in the high-frequency wing 

of the CO2 rovibrational band. Although this wavelength range is close to the CO2 absorption 

band, atmospheric air is still highly transparent in the central part of this anomalous-GVD 

region, with the absorption length of 3.9-μm radiation estimated as la ≈ 40 km. For 

comparison, the absorption length at the center of the CO2 absorption band, at λ = 4.26 μm, is 

only la ≈ 1 m. The bandwidth of this region is broad enough to support temporal solitons as 

short as ~200 – 250 fs (assuming the central wavelength λ ≈ 3.9 μm), although perturbations 

due to high-order dispersion are inevitable, especially near the CO2 absorption band edge 

(Fig. 1d). As a stroke of luck, the central wavelength of high-peak-power OPCPA sources 

capable of generating such short pulses in the mid-infrared [12, 13], λ ≈ 3.9 μm, falls right 

into this wavelength range, promising practical technologies for long-distance transmission of 

subterawatt and terawatt mid-infrared pulses and pulse compression based on solitonic effects 

in atmospheric air. 

 

MODEL OF SPATIOTEMPORAL FIELD EVOLUTION 

Our numerical analysis of spatiotemporal field evolution in atmospheric air is based on the 

three-dimensional time-dependent generalized nonlinear Schrödinger equation (GNSE) [3, 4, 

24, 25] for the complex amplitude of the field, which is referred to hereinafter as the GNSE 

model, 
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Here, A ≡A(η,x,y,z) is the field envelope, Ã ≡Ã(ω,x,y,z) is its Fourier transform, x, y are 

the transverse coordinates, z is the coordinate along the propagation axis, η is the retarded 

time, ω  =  2πc/λ  is the radiation frequency, λ is the wavelength, F̃ is the Fourier transform 

operator, Δ⊥ = ∂2/∂x2 + ∂2/∂y2 is the diffraction operator, D ̃ ̃= k(ω) – k(ω0) – ∂k/∂ω|ωo(ω – ω0) 

is the dispersion operator, ω0 is the central frequency, k(ω) = ωn(ω)/c, n(ω) is the refractive 

index, n0 = n(ω0), n2 and n4 are the Kerr nonlinearity coefficients, T ̃ = 1 + iω0
–1∂/∂η, R(η) is 

the delayed nonlinear response, ρ ≡ ρ(η,x,y,z) is the electron density, ρ0 is the neutral gas 

density, ρc = ω0
2meε0/e2 is the critical electron density, Ui = U0 + Uosc, Ui  is the ionization 

potential, Uosc is the energy of field-induced electron oscillations, W(I)  is the photoionization 



rate, I  is the field intensity, σ(ω) is the impact ionization cross section, and e and me are the 

electron charge and mass, respectively. 

The field evolution equation [Eq. (2)] is solved jointly with the rate equation for the 

electron density, ∂ρ/∂t = W + σ(ω0)Ui
–1ρI, which includes impact ionization and 

photoionization with the photoionization rate W calculated using the Keldysh formalism [26]. 

When supplemented with this equation for ρ, our GNSE-based model includes all the key 

physical phenomena that have been identified as significant factors behind a truly three-

dimensional spatiotemporal evolution of ultrashort optical pulses in nonlinear media, such as 

dispersion and absorption of the medium, beam diffraction, Kerr and Raman nonlinearities, 

pulse self-steepening, spatial self-action phenomena, as well as ionization-induced loss, 

dispersion, and optical nonlinearities.  

The way the dispersion of atmospheric air is included in Eq. (2) is, perhaps, the most 

significant distinctive feature of our approach. Since our main focus here is to identify 

negative-dispersion and, in particular, solitonic phenomena in the dynamics of ultrashort laser 

pulses in air, dispersion of the atmosphere needs to be included into our model as accurately 

as possible. The frequency-domain representation of the dispersion operator D ̃̃ is ideally 

suited to achieve this goal. Indeed, there is simply no way that the standard time-domain 

approach using a polynomial expansion of k(ω) about ω0 with constant dispersion coefficients 

could be possibly tailored to describe the realistic dispersion profile of atmospheric air in its 

entire complexity as defined by modern databases, such as the HITRAN database. By 

contrast, when written in the frequency domain, the dispersion operator can be defined in such 

a way as to accommodate all the fine details of atmospheric dispersion in the spectral domain 

of interest that influence the dynamics of optical field waveforms on the subpicosecond time 

scale. In simulations presented below in this paper, the D ̃ ̃ operator was programmed to 

include all the pertinent features of air refractivity from the HITRAN database [15] related to 

the asymmetric-stretch rovibrational band of atmospheric CO2 (with a density NCO2 = 1016 

см−3), as well as all the rovibrational bands of water (NH2O = 5.4 1016 см−3) falling within the 

range from 1.8 to 4.5 µm (Figs. 1b, 1d). Although individual rovibrational components within 

these bands appear almost as discontinuities in Figs. 1a – 1d, their linewidths [Γik in Eq. (1)] 

are finite and are typically of the order of Γik/(2π) ~ 2 GHz for the asymmetric-stretch 

rovibrational band of atmospheric CO2 [27, 28].  

Simulations are performed for typical parameters of the atmospheric air – the ionization 

potential molecular oxygen Ui = 12.063 eV and the Raman function R(η) = (τ12 + τ22)τ1–1τ2–

2exp(–η/τ2)sin(η/τ1), with fR = 0.5, τ1 = 62.5 fs, τ2 = 70 fs [3, 4, 29]. The Kerr-effect nonlinear 



refractive index coefficients n2 and n4 have never been accurately characterized in this 

wavelength range. In simulations presented here, we use the n2 and n4 coefficients, n2 ≈ 

2.8·10–19 cm2/W, n4 ≈ –1·10–33 cm4/W2, that provide the best fit simultaneously for the 

spectra, pulse shapes, and beam profiles measured for ultrashort 3.9-µm laser pulses 

transmitted through atmospheric air [13, 30, 31]. 

The field evolution equation (2) is solved by the split-step method. The linear diffraction 

and dispersion operators in this equation are computed using the Fourier method. The 

nonlinear part of the field evolution equation, as well as the equation for the electron density 

dynamics are solved by the fifth-order Runge−Kutta method. Simulations are performed using 

an MPI parallel programming interface and the CUDA graphical architecture on the 

Lomonosov and Lomonosov-2 supercomputer clusters of Moscow State University (see Refs. 

32, 33 for the details of parallel algorithms and optimization of computer resources). 

In freely propagating laser beams, soliton dynamics occurs as a part of complex 

spatiotemporal field evolution. In this regime, soliton field transformations in the time domain 

are often strongly coupled to nonlinear beam dynamics. As a result, canonical soliton effects 

known from textbook nonlinear fiber optics are very rarely observed in their pure form. Still, 

with a careful choice of input laser parameters, a decrease in the field intensity due to 

diffraction-induced beam divergence can be significantly reduced by self-focusing. In this 

regime, the soliton effects, as we will show below, can be decoupled from beam dynamics, 

helping isolate soliton phenomena in three-dimensional field evolution in freely propagating 

laser beams. 

 

RESULTS AND DISCUSSION 

Envisaging experiments with mid-infrared OPCPA sources [12, 13] as, perhaps, the most 

realistic option for nearest-future experimental studies of solitonic effects in atmospheric air, 

we examine the spatiotemporal evolution of laser pulses in a nonfocused beam with a central 

wavelength λ0 = 3.9 μm, an input pulse width τ0 = 250 fs, and an initial pulse energy W0 = 25 

mJ. The input peak power, P0 = 100 GW, is adjusted to be right above the critical power of 

self-focusing, Pcr ≈ 80 GW at λ0 = 3.9 μm, which, along with the choice of the input beam 

diameter, d0 = 14 mm, helps reduce diffraction beam divergence, avoiding, at the same time, 

filamentation of the laser beam (Fig. 2a) and any noticeable photoionization of air. 

In Fig. 2a, along with the map of overall beam dynamics, we present the effective mean 

beam radius, defined as  
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where r is the radial coordinate and the field intensity I(z, r, η) is found by solving the 3d field 

evolution equation (2). In Fig. 2a, we compare the behavior of rb as a function of z calculated 

using the full 3d spatiotemporal model of Eq. (2) (solid line) with the rb(z) dependence 

calculated with the self-action term in the 3d GNSE disabled (dashed line). Comparison of 

these rb(z) dependences gives a quantitative measure of diffraction beam divergence 

suppression due to self-focusing. As can be seen from Fig. 2a, self-focusing prevents rapid 

beam divergence, helping sustain high field intensities, needed for soliton dynamics, within 

much longer propagation paths. 

A laser pulse with such input parameters becomes shorter (Figs. 2b, 2с) as it propagates 

through atmospheric air within the anomalous-GVD range, attaining a pulse width of about 80 

fs at zm ≈ 90 m (Fig. 2c). Integration over the entire beam at this point yields a pulse with a 

pulse width τm ≈ 105 fs (Fig. 2b). To identify solitonic effects in this pulse self-compression 

dynamics, in Figs. 2c and 2d, we compare simulations performed by solving the 3d GNSE 

[Eq. (2)] with the solution of the 1d GNSE [34] for a laser pulse with the same input 

parameters (Figs. 2e, 2f). The 1d GNSE model is instrumental here as it fully ignores 

diffraction and spatial self-action effects, but can accurately describe the 1d temporal soliton 

dynamics in the presence of high-order dispersion, which tends to grow in its significance 

near the CO2 absorption band edge (Fig. 1b). 

The 3d dynamics of a freely propagating laser beam is seen to closely follow the 1d 

evolution of a laser pulse, exhibiting clear signatures of soliton self-compression (Figs. 2c, 

2e), as well as spectral broadening dominated by self-phase modulation (Figs. 2d, 2f). 

Moreover, even a quantitative comparison of 1d and 3d scenarios is meaningful in this 

regime. Indeed, while in 3d dynamics, the minimum on-axis pulse width τm ≈ 80 fs is 

achieved at zm ≈ 90 m (Fig. 2с), the 1d GNSE dictates pulse compression to a pulse width of 

about 60 fs within the same optimal pulse compression length (Fig. 2e). 

To demonstrate a high-efficiency soliton self-compression in atmospheric air, we 

consider the 3d spatiotemporal evolution of laser pulses with the same values of λ0, τ0, and W0 

as specified above, but with a much smaller beam diameter, d0 = 4.2 mm. Since the diffraction 

length ldf for such a beam diameter is more than an order of magnitude shorter than ldf in Fig. 

2, while the input peak power is kept unchanged, self-focusing is now too weak to suppress 

diffraction-induced beam divergence within a noticeable propagation path (Fig. 3a). In this 



regime, temporal transformations of laser pulses are coupled to beam dynamics, and any 1d 

model is no longer accurate. 

However, the field intensity in such a smaller-d0 beam within the initial section of its 

propagation path (1.4 TW/cm2 at z = 0 m in Fig. 3a) is much higher than the field intensity in 

a laser beam shown in Fig. 2a (0.12 TW/cm2 at z = 0 m). As a result, laser pulses in such a 

beam are compressed to much shorter pulse widths, becoming as short as ≈ 40 fs at zm ≈ 42 m 

on the beam axis (Fig. 3d). The spectral broadening of such pulses, dominated by self-phase 

modulation, tends to fill up the entire atmospheric transmission window, giving rise to sharp 

edges of output spectra at 2.75 and 4.2 µm and an extended tail stretching beyond the long-

wavelength edge of the CO2 absorption line (Figs. 3b, 3c). 

To isolate the role of dispersion effects in the pulse-compression scenario illustrated in 

Figs. 2a – 2f, 1-d simulations without the dispersion and absorption terms in the 1d GNSE 

have been performed. In Figs. 2e – 2h, these simulations are compared with simulations using 

the full 1d GNSE model with the dispersion and absorption terms included. As can be seen 

from Figs. 2e and 2g, the difference in the temporal dynamics of laser pulses simulated with 

and without dispersion is striking. When the dispersion term is disabled, the pulse is seen to 

show no sign of self-compression whatsoever (Fig. 2g).  On the other hand, when anomalous 

dispersion of air is included in the model, the laser pulse shortens to a pulse width of about 60 

fs at z ≈ 90 m as a part of solitonic pulse self-compression dynamics.  

Unlike filamentation-assisted pulse compression, where efficient pulse shortening is 

often limited to a small area near the beam axis, soliton pulse compression considered in this 

work can be made remarkably uniform across the laser beam. Indeed, while the minimum 

pulse width achieved at zm ≈ 42 m on the beam axis is about 40 fs (Fig. 3d), integration over 

the entire beam at this point yields only a slightly longer pulse with a pulse width τm ≈ 50 fs  

(Figs. 3e, 3f) and an energy Wm ≈ 24.3 mJ, corresponding to a compression ratio τm/τ0 ≈ 5 

with an energy throughput as high as Wm/W0 ≈ 96.8%. Defining the peak power of the 

compressed pulse as ( ) rdrrIPm πη
η

2,max
0∫
∞

= , we find Pm ≈ 200 GW, which is twice as high 

as the peak power of the input pulse. 

 

CONCLUSION 

To summarize, analysis of air refractivity with a model that includes the entire manifold of 

infrared transitions in air suggests the existence of a remarkably broad and continuous 

anomalous-GVD region in the high-frequency wing of the carbon dioxide rovibrational band, 



from approximately 3.5 to 4.2 µm, where atmospheric air is still highly transparent and where 

high-peak-power sources of ultrashort mid-infrared pulses are available. Within this range, 

anomalous dispersion acting jointly with optical nonlinearity of atmospheric air is shown to 

give rise to a unique three-dimensional dynamics, with well-resolved soliton features in the 

time domain, enabling a long-distance transmission of subterawatt ultrashort mid-infrared 

pulses and highly efficient whole-beam soliton self-compression of such pulses in the time 

domain to few-cycle pulse widths. 
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Fig. 1. (a) The refractive index of atmospheric air calculated with the full model including 
the entire manifold of HITRAN-database infrared transitions (blue solid line) and the 
polynomial-fit model (magenta dashed line). (b) Blow-up of the refractive index of 
atmospheric air within the 2.6 – 4.2 µm wavelength range calculated with the full model 
including the entire manifold of HITRAN-database infrared transitions (blue solid line) 
and the polynomial-fit model (magenta dashed line). (c) Absorption spectrum of 
atmospheric air, κ(λ), calculated with the full model including the entire manifold of 
HITRAN-database infrared transitions. (d) Group-velocity dispersion β2 of atmospheric 
air within the 2.6 – 4.2 µm wavelength range calculated with the full model including the 
entire manifold of HITRAN-database infrared transitions (blue solid line) and the 
polynomial-fit model (magenta dashed line). The 3.0 – 3.3-µm anomalous-GVD artifact is 
contoured by a dashed circle. Full-model calculations are performed for atmospheric air at 
a temperature of 17.5oС, humidity of 10%, pressure of 101325 Pa, and CO2 content of 370 
ppm; n0 ≈ 1.000269919 is the refractive index of air at λ = 3.9 µm. 

 



 
Fig. 2. Nonlinear dynamics mid-infrared pulses with λ0 = 3.9 μm, τ0 = 250 fs, W0 = 25 mJ, 
and d0 = 14 mm in air in (3+1)-d (a – d) and (1+1)-d (e – h) simulations with (a – f) and 
without (g, h) dispersion and absorption: (a) beam dynamics with the beam radius rb 
calculated in the full model of beam dynamics (solid line) and with self-focusing disabled 
(dashed line), (b) temporal evolution of the field intensity integrated over the entire beam, 
(c, d) temporal (c) and spectral (d) evolution of the field intensity on the beam axis, and (e 
– h) temporal (e, g) and spectral (f, h) evolution in 1d dynamics with (e, f) and without (g, 
h) dispersion and absorption. 

 



 
 

Fig. 3. Soliton self-compression of mid-infrared pulses with λ0 = 3.9 μm, τ0 = 250 fs, W0 
= 25 mJ, and d0 = 4.2 mm in air: (a) beam dynamics, (b) spectral evolution, (c) the 
spectrum at the point of maximum pulse compression, z = 42 m, with the absorption 
spectrum of air shown by grey shading, (d) temporal evolution of the field intensity on the 
beam axis, (e) temporal evolution of the field intensity integrated over the entire beam, 
and (f) temporal envelope of the mid-infrared pulse on the beam axis (dashed line) and 
integrated over the entire beam (solid line) at the point of maximum pulse compression, z 
= 42 m, versus the input pulse (dash–dotted) line. 

 


