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Temperature fluctuations of an optical resonator underlie a fundamental limit of its cavity stability. Here
we show that the fundamental temperature fluctuations of a high-Q micro/nanoresonator can be suppressed
remarkably by pure optical means without cooling the device temperature. An optical wave launched into the
cavity is able to produce strong photothermal backaction which dramatically suppresses the spectral intensity
of temperature fluctuations and squeezes its overall level by orders of magnitude. The proposed photothermal
temperature squeezing is expected to significantly improve the stability of optical resonances, with potentially
profound impact on broad applications of high-Q cavities in sensing, metrology, and nonlinear/quantum optics.

I. INTRODUCTION

Thermal fluctuations are fundamental thermodynamical
phenomena in physical systems, which manifest as noise
sources in many applications. In the context of high-quality
(high-Q) optical resonators, thermal fluctuations in phys-
ical dimensions (thermal mechanical), thermal expansion
(thermo-elastic), and refractive index (thermo-refractive) im-
pose fundamental limits on the stability of optical cavity reso-
nances [1–3] which impact many important applications such
as laser frequency stabilization [3], precision measurement
[4], quantum optics [5], and diverse optical sensing [6–8]. In
recent years, significant efforts have been devoted to develop-
ing various approaches to actively suppress the thermal me-
chanical noises by cooling the effective temperature of the un-
derlying mechanical mode [9]. The active control of thermo-
elastic and thermo-refractive noises, however, have been left
largely intact, the latter of which plays a dominant role in mi-
croscopic optical resonators due to the significantly reduced
physical sizes of devices [6–8, 10–12].

Here we show that the fundamental temperature fluctua-
tions and the resulting thermo-refractive noises of a high-Q
micro/nanoresonator can be dramatically squeezed by an op-
tical wave launched into the cavity. In contrast to thermal me-
chanical noise, this can be achieved remarkably without cool-
ing the device temperature. The underlying physical mecha-
nism is the photothermal backaction between the device tem-
perature and the intracavity optical energy, as schematically
shown in Fig. 1. For an optical wave launched into the cavity,
a small fraction of the energy would be absorbed by the device
material and converted into heat. The temperature fluctuations
of the device modulate the resonance frequency of the cavity,
which in turn perturbs the intracavity energy. Consequently,
the magnitude of photothermal heating changes accordingly
which eventually back-acts onto the device temperature itself.
Such a photothermal backaction mechanism underlies various
thermo-optic nonlinear phenomena that have attracted consid-
erable interest recently [5, 13–27]. However, its intriguing in-
teraction with the fundamental thermo-optic noises of a high-
Q resonator has been neglected in the past explorations [1–
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27]. As we will show below, photothermal backaction exhibits
very profound impact on the characteristics of the fundamen-
tal temperature fluctuations, squeezing its amplitude and the
resulting thermo-refractive noises by orders of magnitudes.

II. TEMPERATURE SQUEEZING

For a distribution of temperature fluctuation ∆T (r, t) across
a monolithic optical micro/nanoresonator, the thermo-optic
effect results in a shift of the optical cavity resonance ω0 by
an amount of δω(T ) ≡ gT ∆T̄ , where gT ≡ dω0

dT = −ω0
n

dn
dT

stands for the photothermal coupling coefficient and dn
dT is the

thermo-optic coefficient of the device material [10]. ∆T̄ is the
device temperature variation averaged over the optical mode
field profile (Appendix A). Consequently, the optical field in-
side the cavity is described by the following equation

da
dt

= (i∆0−Γt/2)a− igT ∆T̄ a+ i
√

ΓeA, (1)

where ∆0 = ωl −ω0 is the detuning of the laser frequency ωl
to the cavity resonance ω0. Γt and Γe are the photon decay rate

In
tr

ac
av

ity
 e

ne
rg

y

LaserFrequency ω Cavity resonance ω0

1. Temperature increases

1. Temperature decreases

3. Intracavity 

energy increases

2. Redshift

2. Blueshift

3. Intracavity energy decreases
4. Temperature increases

4. Tem
perature decreases

FIG. 1: Schematic of photothermal backaction to squeeze the tem-
perature fluctuation of a device (shown as a microtoroid). A varia-
tion of device temperature (1) shifts the resonance frequency of the
cavity (2) (assuming dn

dT > 0), resulting in a perturbation to the intra-
cavity optical energy (3). As a result, the magnitude of photothermal
heating changes, which in turn leads to a backaction on the device
temperature (4).
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and external coupling rate, respectively, of the loaded cavity,
with a corresponding optical Q given by Qt = ω0/Γt . a and A
are the amplitudes of the intracavity field and the input field,
respectively, normalized such that |a|2 and |A|2 represent the
intracavity energy and the input power, respectively.

The dynamics of the device temperature variation ∆T (r, t)
is governed by the equation of thermal diffusion [1, 2, 10, 13].
Averaging it over the optical mode field, we can find that the
mode-averaged temperature fluctuation ∆T̄ satisfies the fol-
lowing equation (Appendix B)

d(∆T̄ )
dt

=−ΓT ∆T̄ +ηT |a|2 +ξ (t), (2)

where ΓT represents the thermal relaxation rate which is re-
lated to the thermal diffusivity of the device, and ηT is the
photothermal heating coefficient that is related to the optical
absorption and heat conversion [10, 13] (see also Appendix
B). ξ (t) describes the thermal fluctuation source with the fol-
lowing characteristics

〈ξ (t)ξ (t + τ)〉=
2ΓT kBT 2

0
ρCV

δ (τ), (3)

where ρ is the material density, C is the specific heat capacity,
V is the effective mode volume, kB is the Boltzmann constant,
and T0 is the device temperature at thermal equilibrium. δ (τ)
is the Dirac delta function.

In the absence of the optical absorption, Eq. (2) together
with Eq. (3) results in a temperature fluctuation as 〈(δ T̄ )2〉0 =
kBT 2

0
ρCV , which is expected from the fluctuation-dissipation of the
system [1, 2, 10, 28]. This temperature fluctuation leads to
a fundamental uncertainty of cavity resonance 〈(δω)2〉0 =
g2

T 〈(δ T̄ )2〉0 which imposes fundamental thermo-refractive
noise on the cavity resonance [1, 2, 10, 11]. On the other
hand, without the noise term ξ (t), Eqs. (1) and (2) lead to
the well-known thermo-optic nonlinearity that has been ex-
tensively explored in recent years [5, 13–27]. For exam-
ple, a continuous-wave (CW) laser launched into the cavity
at a detuning of ∆0 would result in a static temperature rise
of ∆T̄0 = ηT |a0|2

ΓT
which changes the laser-cavity detuning to

∆′0 = ∆0−gT ∆T̄0 and thus in turn modifies the intracavity en-

ergy to be Uo ≡ |a0|2 = Γe|A|2
(∆′)2+(Γt/2)2 where |A|2 is the input

optical power. A stable thermo-optic locking appears when
gT and ∆′0 have opposite signs (say, a blue laser-cavity detun-
ing, ∆′0 > 0, in a device with dn

dT > 0), which helps stabilize
the laser-cavity detuning [14] and reduce the coupling of laser
frequency noises [22].

The situation becomes very interesting in the presence of
both thermal noises and thermo-optic nonlinearity, where the
photothermal backaction would dramatically modify the char-
acteristics of thermal fluctuations. As the temperature varia-
tion consists of both the fundamental thermal fluctuations and
the static temperature rise induced by photothermal heating, it
can be written as ∆T̄ = ∆T̄0 +δ T̄ (t). Accordingly, the cavity
field becomes a= a0+δa(t) where a0 is the cavity field under
the impact of static temperature rise ∆T̄0, as described above

in the previous paragraph, and δa(t) represents the field fluc-
tuation induced by the temperature fluctuations. From Eqs. (1)
and (2), we can find δ T̄ and δa are governed by the following
equations

d(δa)
dt

= (i∆′0−Γt/2)δa− igT a0δ T̄ , (4)

d(δ T̄ )
dt

= −ΓT δ T̄ +ηT (a∗0δa+a0δa∗)+ξ (t). (5)

Equations (4) and (5) can be solved analytically to find the
spectral intensity of the temperature fluctuation. In general,
the thermal relaxation rate is much smaller compared with the
photon decay rate of the optical cavity. As a result, the spectral
intensity of the temperature fluctuations is given by a simple
expression as (Appendix C)

Sδ T̄ (Ω) =
2ΓT kB

ρCV

(
T0 +

ηT
ΓT
|a0|2

)2

(Γ′T )
2 +(κT Ω)2 , (6)

where Γ′T and κT are given by

Γ
′
T = ΓT −

2ηT gT |a0|2∆′0
(∆′0)

2 +(Γt/2)2 , (7)

κT = 1+
2ηT gT |a0|2Γt∆

′
0

[(∆′0)
2 +(Γt/2)2]2

. (8)

In the absence of photothermal backaction, Eq. (6) reduces to

the case of a passive cavity, with a peak value of S0 =
2kBT 2

0
ρCV ΓT

.
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FIG. 2: Spectral intensity of temperature fluctuation, normalized by

S0 =
2kBT 2

0
ρCV ΓT

of a passive cavity. The dashed curve shows the case
in the absence of optical wave. The device is assumed to be a sil-
ica microtoroid at room temperature of T0 = 300 K, with ΓT = 90
kHz, ηT = 2.87× 1015 K/(J · s), dn

dT = 1.2× 10−5 K−1, density
ρ = 2200 Kg/m3, and effective mode volume V = 5× 10−16 m3.
All these parameters are from Ref. [18]. The device is assumed to
have an optical Q of 107 for the loaded cavity. The laser frequency
is located in the telecom band, with an optimal laser-cavity detuning
of ∆′0 = Γt/2.
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Detailed analysis shows that κT characterizes different
regimes of photothermal backaction. When κT < 0, the pho-
tothermal backaction excites the temperature variation into
unstable regime, leading to dynamic thermo-optic oscilla-
tion. Therefore, κT = 0 sets the maximal optical energy

of |a0|2max = − [(∆′0)
2+(Γt/2)2]2

2ηT gT Γt ∆
′
0

below which the resonator re-
mains stable. In this regime, Eq. (7) shows that photother-
mal backaction modifies the effective thermal relaxation rate,
with a sign dependent on the laser-cavity detuning. The ef-
fective thermal relaxation rate increases on one side of laser-
cavity detuning, e.g., ∆′0 > 0 for dn

dT > 0 (∆′0 < 0 for dn
dT <

0), with a magnitude dependent on the optical energy. For
a given optical energy, the effect of photothermal backac-
tion is maximized with a laser-cavity detuning of ∆′0 = Γt/2
(for dn

dT > 0. ∆′0 = −Γt/2 for dn
dT < 0), leading to Γ′T =

ΓT + 2ηT |gT ||a0|2/Γt and κT = 1− 4ηT |gT ||a0|2/Γ2
t . Con-

sequently, the amplitude of the temperature spectral intensity
would be significantly reduced. In the following, we focus
on the effect for devices at room temperature, since a major-
ity of applications operate at this temperature. We will use a
high-Q silica microtoroid [29] as a typical example to show
the related phenomena.

Figure 2 shows the spectral intensities of temperature fluc-
tuation inside a silica microtoroid with an optical Q of 107,

normalized by the peak value of S0 =
2kBT 2

0
ρCV ΓT

for a passive
cavity in the absence of photothermal backaction. It shows
clearly that the spectral amplitude of temperature fluctuations
decreases dramatically with increased optical energy, while
the spectral width increases accordingly at the same time. At
low frequencies, Sδ T̄ (Ω)|

Ω≈0 = 3.38× 10−14 K2/Hz for the
passive device at room temperature. However, with the pho-
tothermal backaction, Sδ T̄ (Ω)|

Ω≈0 is suppressed by nearly
five orders of magnitude, to a value of 4.87× 10−19 K2/Hz,
with an optical energy of 50 pJ. This energy corresponds
to an optical power of only about 6.3 mW launched into
the cavity assuming the microresonator is critically coupled,
clearly showing the powerfulness of suppressing the tempera-
ture fluctuations by photothermal backaction.

For many practical sensing applications such as sensing
biomolecules [7, 8], electromagnetic field [30], gas [31], me-
chanical acceleration [32], rotation [33], diffusion kinetics
[34], etc, the temperature fluctuation spectrum at low frequen-
cies around DC are most relevant since the signals under de-
tection vary slowly with time, where the thermo-refractive
noise of the device becomes a fundamental limiting factor
[6, 35–37]. Here we show that the photothermal backaction is
able to significantly improve the sensing resolution by orders
of magnitude compared with the fundamental thermodynamic
limit of a passive cavity. Similarly, it might be able to improve
considerably the long-term drift if a high-Q microresonator is
used to for laser frequency stabilization [11, 12, 38].

The variance of the temperature fluctuations can be ob-
tained by integrating Eq. (6) over frequency, which is given
by

〈(δ T̄ )2〉= ΓT

κT Γ′T

kBT 2
0

ρCV

(
1+

ηT |a0|2

ΓT T0

)2

. (9)
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FIG. 3: Temperature squeezing factor as a function of optical energy
inside the cavity, for the example of silica microtoroid given in the
caption of Fig. 2.

In the absence of photothermal effect, Eq. (9) reduces to

〈(δ T̄ )2〉0 =
kBT 2

0
ρCV , as expected for a passive cavity. The pho-

tothermal effect has two impacts on the temperature fluctu-
ations. On one hand, the photothermal backaction on the
device temperature produces negative feedback to suppress
its fluctuations by a factor of ΓT

κT Γ′T
. On the other hand, the

photothermal heating would raise the device temperature to
T̄ = T0 +

ηT |a0|2
ΓT

, which in turn would lead to an increase of
temperature fluctuation. These two competing effects com-
bines together, resulting in the overall level of temperature
fluctuations given in Eq. (9). It is important to note that the
suppression of the temperature fluctuations is realized here
without cooling the device temperature. In fact, the device
temperature increases by a certain amount due to the pho-
tothermal heating. In this sense, the photothermal backaction
squeezes the device temperature towards its mean value, rather
than cooling it as what is generally done in suppressing ther-
mal mechanical noise [9]. On the other hand, the photother-
mal backaction squeezes the temperature fluctuations primar-
ily at the locations where the optical mode field is distributed.
Other portion of the device is not relevant to the photothermal
interaction.

For convenience, we define a temperature squeezing factor
as F ≡ 〈(δ T̄ )2〉

〈(δ T̄ )2〉0
, which characterizes the relative magnitude

of temperature fluctuation under the impact of photothermal
backaction, in comparison with that of a passive resonator.
Figure 3 shows the squeezing factor for a silica microtoroid.
In general, the temperature fluctuation decreases quickly with
increased optical energy because of increased photothermal
backaction. It reaches a minimum value at a certain opti-
cal energy beyond which the impact from static temperature
rise starts to dominate, resulting in an increase of temperature
fluctuations. When the optical Q is 108, the squeezing factor
reaches a minimum value of 0.055 with an optical energy of
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0.65 pJ. However, the minimum value decreases dramatically
to 0.0014 when the optical Q becomes 106, while a higher op-
tical energy of 3.8 nJ is required to provide enough strength
of photothermal backaction.

Figure 3 shows that, for a device with a certain optical Q,
there exists an optical energy that produces the optimal tem-
perature squeezing. From Eq. (9), we can find that the optimal
value of the squeezing factor is given by (Appendix D)

Fo =
8ΓT

Γt
+

2Γt

|gT |T0
=

8ΓT Qt

ω0
+

2n
| dn

dT |T0Qt
, (10)

which is achieved with an optical energy of

|a0|2 =
ΓT T0/ηT

1+8|gT |T0ΓT/Γ2
t
. (11)

This value of optical energy is always below the onset of
thermo-optic oscillation, |a0|2max. Therefore, in principle, the
optimal temperature squeezing can always be realized in the
stable thermo-optic locking regime.

It is interesting to note that high optical Q does not neces-
sarily indicate an improvement on the temperature squeezing.
Equation (10) shows that the maximum temperature squeez-
ing is given by

Fm = 8

√
ΓT

|gT |T0
, (12)

which is achieved at an optical Q and required optical energy
as

Qt =
ω0

2
√

ΓT |gT |T0
, |a0|2 =

ΓT T0

3ηT
. (13)

Interestingly, the maximum temperature squeezing and the
corresponding required optical Q depends only on the ther-
mal relaxation rate and the photothermal coupling coefficient,
but independent of the photothermal heating efficiency. The
latter only affects the required optical energy.

In general, optical materials exhibit thermo-optic coeffi-
cients | dn

dT | ∼ (10−6− 10−4) at room temperature [39]. The
thermal relaxation rate of a micro/nano-photonic resonator,
however, varies considerably with the device structure and
material. Equation (12) shows that the maximum squeezing
factor can be as large as Fm ∼ 10−4−10−3 for a thermal re-
laxation rate in the range ΓT ∼ (1− 100) kHz that exist in
current devices [10–27]. It corresponds to a root-mean-square
value of

√
Fm ∼ 0.01− 0.03. In general, a monolithic mi-

croresonator exhibits an intrinsic temperature fluctuation [12]
in the order of

√
〈(δ T̄ )2〉0 ∼ 1 µK at room temperature, cor-

responding to a resonance stability in the order of
√
〈(δω)2〉0

ω0
∼

10−12. We expect that the photothermal backaction is able to
squeeze them down to as small as

√
〈(δ T̄ )2〉 ∼ 10 nK and√

〈(δω)2〉
ω0

∼ 10−14. The corresponding required optical Q is
∼ 106−107, which is readily available for many device plat-
forms. Equation (12) indicates that a small thermal relaxation
rate is desired to achieve large temperature squeezing. In prac-
tice, this can be achieved by optimizing device structure de-
sign to engineer the heat transport [40].

III. IMPACT OF LASER NOISES

The discussions in the previous section focus on the classi-
cal regime assuming a constant power of the input CW laser.
However, a CW laser inevitably exhibits certain fluctuations
on its intensity due to the quantum nature of light. Such quan-
tum fluctuations of laser intensity would produce quantum
backaction to the temperature fluctuations. On the other hand,
a practical CW laser is accompanied with certain amount of
intensity and frequency noises. These noises would perturb
the optical energy inside the cavity and thus introduce extra
photothermal fluctuations on device temperature. We investi-
gate in this section the impacts of these classical and quantum
fluctuation of the laser.

Detailed analysis (Appendix E) shows that the spectral in-
tensity of temperature fluctuations is described by the follow-
ing expression similar to Eq. (6):

Sδ T̄ (Ω) =
Sξ +SQ +SL

(Γ′T )
2 +(κT Ω)2 , (14)

where Γ′T and κT are given by Eqs. (7) and (8). In Eq. (14), Sξ

describes the effect of photothermal heating, which is given by
(see also Appendix C)

Sξ =
2ΓT kB

ρCV

(
T0 +

ηT

ΓT
Uo

)2

, (15)

where Uo is the optical energy inside the cavity as given in the
previous section. SQ describes the effect of quantum backac-
tion from the quantum fluctuations of the input laser, which is
given by

SQ(Ω) =
η2

T h̄ω0UoΓt

(∆′0)
2 +(Γt/2)2 . (16)

SL describes the effect of the classical noises accompanied
with the input laser, which is given by

SL(Ω) = η
2
TU2

o

{
SRIN(Ω)+

(2∆′0)
2Sω(Ω)

[(∆′0)
2 +(Γt/2)2]2

}
, (17)

where SRIN(Ω) and Sω(Ω) are the spectral densities of laser
relative intensity noise and frequency noise, respectively (see
Appendix E for detailed discussions).

Equations (14)-(17) provide a complete description of the
temperature spectrum under the impact of photothermal back-
action, quantum backaction, and the laser classical noises. As
shown in Eq. (14), these three contributions to the tempera-
ture fluctuations are determined by the relative magnitude of
Sξ , SQ, and SL. In the following, we provide an estimate of
the relative magnitude of these contributions.

Effect of quantum backaction: Detailed analysis shows
that the impact of quantum backaction is negligible when the
device is at room temperature. Figure 4a compares the rel-
ative magnitude of SQ with Sξ , for the example of a high-Q
silica microtoroid [18]. As shown in Fig. 4a, for a normal op-
tical energy below the onset of thermo-optic oscillation, SQ is
at least two orders of magnitude smaller than Sξ for a device
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at room temperature. Figure 4b shows the temperature de-
pendence of SQ

Sξ
, with an optical energy given in Eq. (11) that

achieves the optimal temperature squeezing. It shows clearly
that the impact of quantum backaction is negligible until the
device temperature becomes below 10K.

Effect of laser classical noises: Figure 5 and 6 show the
impact of laser intensity and frequency noises, respectively. In
general, laser intensity and frequency noises introduces extra
photothermal heating with a magnitude dependent quadrati-
cally on the intracavity energy (Eq. (17)). Therefore, their im-
pacts are small at low optical energy but can become consider-
able when the optical energy increases to large values. As a re-
sult, the optimal point of temperature squeezing shifts to lower
optical energy, with a reduced squeezing magnitude. Semi-
conductor diode lasers generally exhibit a low level of relative
intensity noise in the range of ∼ (−160−−150) dB/Hz in
the spectral range well below the relaxation frequency [41].
Figure 5b shows that its impact on the temperature squeez-
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FIG. 4: Impact of quantum backaction on temperature squeezing.
a. SQ

Sξ
as a function of optical energy inside the cavity. The device

is at room temperature T0 = 300 K. b. SQ
Sξ

as a function of device
temperature, with an optical energy given in Eq. (11) that achieves
the optimal temperature squeezing. The device parameters are given
in the caption of Fig. 2.

ing is relatively small, with an optimal temperature squeezing
factor still as large as Fo = 0.007− 0.02. Similar tempera-
ture squeezing can be obtained with laser frequency noises in
the range of (102−103) Hz2/Hz (Fig. 6b). Such level of laser
frequency noises is available in frequency-stabilized semicon-
ductor lasers [42–50], some of which are commercially avail-
able [51]. Therefore, we expect that significant temperature
squeezing can be achieved experimentally with these types of
semiconductor lasers.

IV. ON THE THERMO-ELASTIC EFFECT

The discussions above focus on the temperature squeezing
related to the thermo-refractive effect. It is straightforward to
show that the same idea applies to the effect induced by ther-
mal expansion (thermo-elastic effect) as well, since photother-
mal backaction via the thermo-elastic coupling functions in a
similar fashion as that via thermo-optic coupling, while the
former involves device geometry variation rather than refrac-
tive index change in the latter (see Appendix F for some de-
tailed discussions). Therefore, we expect that the photother-
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FIG. 5: Impact of laser intensity noises on temperature squeezing. a.
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squeezing factor. In b, quantum backaction is included as well, but it
has negligible effect. The black curves show the case in the absence
of laser intensity noises, as a reference. To simplify the analysis,
we assume a frequency independent SRIN(Ω) in (b). The device is
assumed to be a silica microtoroid at room temperature T0 = 300 K,
with an optical Q of 106. Other parameters are the same as Fig. 4.
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mal temperature squeezing would behave in a similar manner
for the thermo-elastic effect.

In general, temperature squeezing occurs in a device with
either dominant thermo-refractive, dominant thermo-elastic
effect, or comparable thermo-refractive and thermo-elastic ef-
fects that act constructively on the optical cavity resonance.
However, the situation becomes complicated if the two ef-
fects are comparable with each other but counteract with each
other. In this case, the resonator can become unstable with
dynamic oscillation, as shown in Ref. [18, 20, 21, 25–27]. Al-
though the dynamics of static temperature variation is well
studied [18, 20, 21, 25–27], it is not clear how the tempera-
ture fluctuations are impacted in this case, which will be left
for future exploration.

V. ON THE EXPERIMENTAL CHARACTERIZATION

The temperature fluctuations of the device perturb the cav-
ity resonance, which will be transduced to the fluctuations of
the optical power transmitted from the cavity. As the trans-
mitted optical power is Po = |A+ i

√
Γea|2 = |A+ i

√
Γe(a0 +

104

102

100

10-8

10-6

10-4

10-2

Ra
tio

 S
L/

S ξ

10-2

10-3

10-1

100

Te
m

pe
ra

tu
re

 S
qu

ee
zi

ng
 F

ac
to

r  
F

101

Sω = 101 Hz2/Hz

102
103

104105106a

10-210-3 10-1 100

Optical Energy (pJ)
101 102 103 104

Sω = 101 Hz2/Hz

102

103

104

105

106b

Sω = 0

FIG. 6: Impact of laser frequency noises on temperature squeezing.
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has negligible effect. The black curves show the case in the absence
of laser frequency noises, as a reference. To simplify the analysis,
we assume a frequency independent Sω (Ω) in (b). The device is
assumed to be a silica microtoroid at room temperature T0 = 300 K,
with an optical Q of 106. Other parameters are the same as Fig. 4.

δa)|2, the induced power fluctuation is thus given by δPo(t) =
i
√

Γe[A∗t δa(t)− Atδa∗(t)], where At ≡ A + i
√

Γea0 is the
transmitted optical field in the absence of temperature fluctu-
ations, ao is given by Eq. (C3), and δa is governed by Eq. (4).
From Eqs. (1), (4), and (5), we can find the spectral intensity
of the power fluctuations is given by the following expression:

SδPo(Ω) = g2
T Sδ T̄ (Ω)H(∆′0), (18)

where H(∆′0) is the cavity transduction function with the fol-
lowing form

H(∆′0) =
(2Γ0ΓeP∆′0)

2

[(Γt/2)2 +(∆′0)
2]4

, (19)

where P is the input optical power and Γ0 is the photon decay
rate of the intrinsic cavity (see Appendix E, for example). To
obtain Eq. (19), we have assumed that the thermal relaxation
rate is much smaller than the photon decay rate of the cavity.

Therefore, as shown in Eq. (18), the temperature fluctua-
tions of the device can be experimentally characterized by the
power fluctuations on the cavity transmission. We thus pro-
pose an experimental scheme, as shown in Fig. 7, to measure
the temperature squeezing. A strong pump laser is launched
into a cavity mode of the high-Q resonator to produce tem-
perature squeezing. At the same time, a weak probe laser is
launched into a separate cavity mode (within the same mode
family of the pump mode) to detect the induced temperature
squeezing. Both lasers are locked to stabilized reference cav-
ities (or wavelength references) to avoid potential wavelength
drifts. The environmental temperature of the microresonator
is stabilized to avoid potential temperature drift. The power
spectra of the pump and probe waves output from the res-
onator can be measured by optical detectors and an electri-
cal spectrum analyzer. Such a testing scheme would provide
detailed characterization of the temperature squeezing effect.
In practice, one potential interference might come from the
optomechanical oscillation excited by the intense pump wave
[9]. As this effect depends sensitively on the quality factor of
the mechanical mode, it can be easily quenched by introduc-
ing mechanical damping to the device.

Pump Detector

10:90 
Coupler

Wavelength 
Reference Cavity

Reference
Detector

90%

10%

DemultiplexerMultiplexer

90%

Wavelength 
Reference Cavity

Reference
Detector

10%

Probe Detector

Electrical 
Spectrum Analyzer

Coupling Waveguide

High-Q
Resonator

Temperature Controller

Pump Laser

Probe Laser

10:90 
Coupler

FIG. 7: Schematic of proposed experimental setup for characterizing
the temperature squeezing.
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VI. CONCLUSION

In conclusion, we have shown by a simple theory that
the fundamental temperature fluctuations of a high-Q mi-
cro/nanoresonator can be remarkably squeezed via the strong
photothermal backaction from an optical wave launched into
the cavity, without cooling the device temperature. For a de-
vice at room temperature, the spectral intensity of temperature
fluctuations can be suppressed by five orders of magnitude and
the overall level (RMS value) of temperature fluctuations can
be squeezed by two orders of magnitude, resulting in a tem-
perature fluctuation as small as

√
〈(δ T̄ )2〉 ∼ 10 nK achiev-

able in a micro/nanoresonator. Such temperature squeezing
would have profound impact on the application of optical mi-
cro/nanoresonators. To date, high-Q micro/nanoresonators
have been applied for a vast variety of applications such as
diverse sensing [6, 8], laser frequency stabilization [38], op-
tical frequency comb generation and potential frequency syn-
thesis [52], quantum squeezing [53], among many others. A
majority of applications operate at room temperature and the
fundamental temperature fluctuation of device is likely to be
an ultimate limiting factor. The temperature squeezing pro-
posed here offers an elegant solution to significantly reduce
this impact, with great potential for realizing ultra-quiet mi-
cro/nanoresonators for broad applications.
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Appendix A: Thermo-optic coupling and mode-averaged
temperature variation

For a distribution of the temperature variation ∆T (r, t)
across a monolithic optical resonator, the thermo-optic ef-
fect leads to a change of the dielectric function of the device
material as ∆εr(r,T ) = dεr

dT ∆T (r, t) = 2n dn
dT ∆T (r, t), where

n(r,T ) is the refractive index and dn
dT is the thermo-optic co-

efficient of the material. As a result, the cavity resonance ω0
is perturbed by an amount that can be obtained from the per-
turbation theory [54, 55] as

δω =−ω0

2

∫
∆εr|E|2d3r∫
εr|E|2d3r

=−ω0

n
dn
dT

∫
εr∆T |E|2d3r∫

εr|E|2d3r
, (A1)

where E(r) is the optical mode field and εr(r) is the dielec-
tric function of the device material. In the last expression of
Eq. (A1), we have assumed the thermo-optic coefficient is uni-
form across the device. Equation (A1) shows clearly that the
thermo-optic perturbation to the cavity resonance depends es-
sentially on the temperature variation averaged over the opti-
cal mode field profile, δω = gT ∆T̄ , where the photothermal

coupling coefficient is defined as gT ≡ dω0
dT =−ω0

n
dn
dT and the

mode-averaged temperature variation is given by

∆T̄ ≡
∫

∆T (r)εr|E|2d3r∫
εr|E|2d3r

. (A2)

The resulting cavity resonance under temperature perturba-
tion is thus given by ω ′0(T̄ ) = ω0 + δω = ω0 + gT ∆T̄ . The
dynamics of the optical field a(t) inside the cavity is well de-
scribed by the coupled mode theory [55, 56] as

da
dt

= [i(ωl−ω
′
0(T̄ ))−Γt/2]a+ i

√
ΓeA, (A3)

where ωl is the frequency of the input laser, Γt and Γe are
the photon decay rate and external coupling rate, respectively,
of the loaded cavity, with a corresponding optical Q given by
Qt = ω0/Γt . a and A are the amplitudes of the intracavity
field and the input field, respectively, normalized such that |a|2
and |A|2 represent the intracavity energy and the input power,
respectively. Substitute the expression of ω ′0 into Eq. (A3), we
obtain Eq. (1) in the main text.

Appendix B: Dynamics of temperature fluctuations

The dynamics of the temperature fluctuations is governed
by the equation of thermal diffusion as [1, 2, 10, 13]

∂ (∆T )
∂ t

−DT ∇
2(∆T ) =

αT pabs(r, t)
Cρ

+FT (r, t), (B1)

where DT , C, and ρ are the thermal diffusivity, specific heat
capacity, and density of the device material, respectively.
FT (r, t) is the Langevin source of thermal fluctuations. pabs
is the optical power density absorbed by the device material
and αT is the fraction of the absorbed power that is converted
into heat. pabs is given as

pabs(r, t) = Γa
ε0εr(r)

2
|a(t)|2|E(r)|2, (B2)

where Γa is the absorption rate of optical energy by the device
material and a(t) is the intracavity field amplitude normalized
such that |a(t)|2 represents the optical energy inside the cavity.

As shown in the previous section, what matters the optical
field inside the cavity is the mode-averaged temperature fluc-
tuations. Substitute Eq. (B2) into Eq. (B1) and integrate it
over the optical mode profile, we find that the mode-averaged
temperature variation satisfies the following equation

∂ (∆T̄ )
∂ t

−
∫

DT ∇2(∆T )εr|E|2d3r∫
εr|E|2d3r

= ηT |a(t)|2 +ξ (t), (B3)

where ηT is the photothermal heating coefficient defined as

ηT ≡
αT Γaε0

2Cρ

∫
ε2

r |E|4d3r∫
εr|E|2d3r

, (B4)

and ξ (t) is the mode-averaged Langevin thermal source given
as

ξ (t)≡
∫

εrFT (r, t)|E|2d3r∫
εr|E|2d3r

. (B5)
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The thermal Langevin source F(r, t) exhibits the following
statistics in the frequency domain [1]

〈F̃(k,ω)F̃∗(k′,ω ′)〉

= (2π)4 2DT kBT 2
0

ρC
|k|2δ (k−k′)δ (ω−ω

′), (B6)

where F̃(k,ω) is the Fourier transform of F(r, t), kB is the
Boltzmann constant, and T0 is the device temperature at ther-
mal equilibrium. Accordingly, the corresponding statistics in
the real space is given by

〈F(r1, t1)F(r2, t2)〉

=
2DT kBT 2

0
ρC

δ (t1− t2)∇r1 ·∇r2 [δ (r1−r2)], (B7)

where ∇r j ( j = 1,2) denotes gradient over r j. As a result,
the mode-averaged thermal source ξ (t) exhibits the following
statistics

〈ξ (t)ξ (t + τ)〉 =
2DT kBT 2

0
ρC

∫
|∇(εr|E|2)|2d3r

(
∫

εr|E|2d3r)2 δ (τ)

≡ Sξ δ (τ). (B8)

On the other hand, as the thermal diffusion transfers the
heat to surrounding areas which reduces the magnitude of
temperature variation, the second term of Eq. (B3) can be well
approximated by a thermal relaxation term as [14, 57]∫

DT ∇2(∆T )εr|E|2d3r∫
εr|E|2d3r

=−ΓT ∆T̄ , (B9)

where ΓT represents the thermal relaxation rate. Although the
exact behavior of thermal diffusion in a device depends on
the specific boundary conditions of the device [1, 2, 10, 11],
the simple thermal relaxation given by Eq. (B9) provides an
excellent description of thermodynamics in various microres-
onators [14, 16–22, 24–27, 57]. Therefore, Eq. (B3) becomes

d(∆T̄ )
dt

=−ΓT ∆T̄ +ηTUo +ξ (t), (B10)

where Uo = |a|2 is the optical energy inside the cavity. Equa-
tion (B10) is Eq. (2) in the main text.

In the absence of photothermal heating, Eq. (B10) results
in 〈(∆T̄ )2〉= Sξ

2ΓT
. As thermodynamics [28] requires the tem-

perature fluctuation to be 〈(∆T̄ )2〉 = kBT 2
0

ρCV , where V is the ef-
fective mode volume, it infers that

Sξ =
2ΓT kBT 2

0
ρCV

, (B11)

which is expected from the fluctuation-dissipation of the sys-
tem. Compare Eq. (B11) with Eq. (B8), we can find the ther-
mal relaxation rate is related to the device parameter as

ΓT = DTV
∫
|∇(εr|E|2)|2d3r

(
∫

εr|E|2d3r)2 . (B12)

Appendix C: Spectrum of temperature fluctuations

Assume that a continuous-wave (CW) laser is launched
into the cavity. The photothermal effect would heat the de-
vice, leading to a static temperature change of ∆T̄0. As a
result, the temperature variation consists of both the funda-
mental thermal fluctuations and the static temperature rise
induced by photothermal heating, which can be written as
∆T̄ = ∆T̄0 + δ T̄ (t). Accordingly, the cavity field becomes
a = a0+δa(t) where a0 is the cavity field under the impact of
static temperature rise ∆T̄0 and δa(t) represents the field fluc-
tuation induced by the temperature fluctuations. From Eqs. (1)
and (2) of the main text, we can find that ∆T̄0 and a0 satisfy
the following equations

da0

dt
= (i∆0− igT ∆T̄0−Γt/2)a0 + i

√
ΓeA, (C1)

d(∆T̄0)

dt
= −ΓT ∆T̄0 +ηT |a0|2, (C2)

which result in ∆T̄0 and a0 given as

∆T̄0 =
ηT

ΓT
|a0|2, a0 =

i
√

ΓeA
Γt/2− i∆′0

, (C3)

where ∆′0 ≡ ∆0− gT ∆T̄0 = ∆0− gT ηT |a0|2/ΓT . The mode-
averaged temperature thus increases to T̄ ′0 = T0 +∆T̄0. Conse-
quently, Eq. (B11) becomes

Sξ =
2ΓT kB(T0 +∆T̄0)

2

ρCV
=

2ΓT kB

ρCV

(
T0 +

ηT

ΓT
|a0|2

)2

. (C4)

δ T̄ (t) and δa(t) are governed by Eqs. (4) and (5) in the
main text, which can be solved analytically in the frequency
domain to find the spectral intensity of temperature fluctua-
tions as

Sδ T̄ (Ω) =
Sξ∣∣ΓT − iΩ+2ηT gT |a0|2∆′0L+(Ω)L−(Ω)

∣∣2 , (C5)

where L±(Ω) ≡ 1/[i(∆′0 ±Ω)∓ Γt/2] and Sξ is given by
Eq. (C4). In general, the thermal relaxation rate is much
smaller than the photon decay rate of the optical cavity, ΓT �
Γt , and the modulation frequency Ω thus falls in the regime
Ω� Γt . As a result, Eq. (C5) reduces to a simple expression
given in Eq. (6) of the main text.

Appendix D: Optimal temperature squeezing

From Eq. (9) of the main text, it is straightforward to find
that the optimal temperature squeezing is achieved at an opti-
cal energy of

|a0|2 =
ΓT T0

ηT

1−ΓtΓT L0 +1/(gT T0∆′0L0)

1−4gT T0ΓT Γt∆
′
0L2

0
, (D1)

where L0 ≡ 1/[(∆′0)
2 +(Γt/2)2]. In general, optical materials

have thermo-optic coefficients in the order of | dn
dT | ∼ 10−5/K
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[39]. For a device at room temperature, |gT T0| ∼ ω0
103 which is

much larger than Γt for a device with a loaded optical Qt �
103. As a result, gT T0∆′0L0 � 1. On the other hand, as dis-
cussed previously, the thermal relaxation rate is much smaller
than the photon decay rate of the optical cavity, ΓT � Γt ,
which leads to ΓtΓT L0 � 1. Consequently, Eq. (D1) is well
approximated by

|a0|2 ≈
ΓT T0/ηT

1−4gT T0ΓT Γt∆
′
0L2

0
. (D2)

Substitute this expression into Eq. (9) of the main text and use
the same conditions gT T0∆′0L0� 1 and ΓtΓT L0� 1, we can
find the optimal temperature squeezing is given by

Fo ≈ 4ΓT ΓtL0−
2

gT T0∆′0L0
, (D3)

At the optimal laser-cavity detuning of ∆′0 = Γt/2, Eqs. (D2)
and (D3) become

Fo ≈
8ΓT

Γt
+

2Γt

|gT |T0
, (D4)

|a0|2 ≈
ΓT T0/ηT

1+8|gT |T0ΓT/Γ2
t
, (D5)

which are Eqs. (10) and (11) of the main text.

Appendix E: Theory of the impact of laser noises

A CW laser exhibits fundamental fluctuation on its power
and/or phase which would perturb device temperature via pho-
tothermal heating. To thoroughly describe such effect, we
treat the optical field quantum mechanically. The device tem-
perature, however, is a thermodynamic parameter and is well
described as a classical variable. The Hamiltonian of the op-
tical cavity system is given by

H = h̄ω
′
0(T̄ )a

†a− h̄
√

Γe
[
a†Ae−iωl t +A†aeiωl t

]
, (E1)

where ω ′0(T̄ ) = ω0 + gT ∆T̄ as described in the previous sec-
tion. For convenience, in Eq. (E1), the intracavity field oper-
ator a is now normalized such that a†a represents the photon
number operator and A is the field operator of the incoming
wave at carrier frequency ωl inside the coupling waveguide
normalized such that A†A represents the operator of the input
photon flux.

Using Eq. (E1) and counting in the intrinsic cavity loss [58],
we obtain the following equation of motion in the Heisenberg
picture governing the wave dynamics inside the cavity:

da
dt

= (i∆0−Γt/2)a− igT ∆T̄ a+ i
√

ΓeA+ i
√

Γ0u, (E2)

where Γ0 is the photon decay rate of the intrinsic cavity, which
is related to the loaded cavity as and Γt = Γ0 +Γe. u is the
noise operator associated with intrinsic cavity loss, which sat-
isfies the commutation relation of [u(t),u†(t ′)] = δ (t − t ′).
For convenience, in Eq. (E2), we have made a transform

a→ ae−iωl t to remove the laser carrier e−iωl t . The dynamics
of the mode-averaged temperature fluctuation ∆T̄ is governed
by Eq. (B10) where the optical energy Uo is now given by
Uo = h̄ω0a†a.

In general, the input CW laser is accompanied with clas-
sical noises on its intensity and phase and the fundamental
quantum fluctuation of the optical field. To describe the fluc-
tuations of the input laser, the input CW wave can be treated
as a classical field with a constant amplitude of A0, accompa-
nied with two fluctuation terms: A(t) = A0 +Ac(t)+AQ(t),
where Ac(t) stands for the classical noises (in both inten-
sity and phase) and AQ(t) represents the quantum fluctuation.
AQ(t) satisfies the commutation relation of [AQ(t),A

†
Q(t
′)] =

δ (t− t ′). The classical noise term Ac(t) consists of both in-
tensity and phase noises: Ac(t) = A0[

1
2 fP(t)+ iδφ(t)] where

fP(t)≡ δP(t)
P is the relative intensity noise with a spectral den-

sity given by SRIN(Ω), and P = h̄ω0|A0|2 stands for the input
laser power. δφ(t) represents the phase fluctuation of the in-
put laser, with a spectral density given by Sω (Ω)

Ω2 where Sω(Ω)
is the spectral intensity of the laser frequency noises. There-
fore, Ac(t) exhibits a spectral density given as

SAc(Ω) = |A0|2
[

1
4

SRIN(Ω)+
1

Ω2 Sω(Ω)

]
, (E3)

where, for simplicity, we have assumed the laser intensity
noise and frequency noise are independent with each other.

Similar to the previous section, the intracavity optical field
and the temperature fluctuation each can be separated into a
static term and a fluctuation term, a = a0 + δa(t) and ∆T̄ =
∆T̄0 + δ T̄ (t). ∆T̄0 and a0 are given by Eq. (C3) (where |a0|2
is now replaced by h̄ω0|a0|2 due to the different field normal-
ization used in this section and A is replaced by A0 because of
the notation change). δ T̄ (t) and δa(t) are now governed by
the following equations which includes both the classical and
quantum fluctuations of the optical field

d(δa)
dt

= (i∆′0−Γt/2)δa− igT a0δ T̄ + i
√

ΓeAc

+i
√

ΓeAQ + i
√

Γ0u, (E4)
d(δ T̄ )

dt
= −ΓT δ T̄ +ηT h̄ω0(a∗0δa+a0δa†)+ξ (t).(E5)

These two equations can be solved analytically in the fre-
quency domain to obtain the spectral intensity of temperature
fluctuations as

Sδ T̄ (Ω) =
Sξ +SQ +SL∣∣Γt − iΩ+2ηT gTUo∆′0L+(Ω)L−(Ω)

∣∣2
≈

Sξ +SQ +SL

(Γ′T )
2 +(κT Ω)2 , (E6)

where Uo = h̄ω0|a0|2 is the optical energy inside the cavity,
Γ′T and κT are given by Eqs. (7) and (8) in the main text, and
Sξ is given in Eq. (C4). Equation (E6) is Eq. (14) in the main
text.

In Eq. (E6), SQ describes the effect of quantum backac-
tion from the quantum fluctuations of the input laser, which
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is given by

SQ(Ω) = η
2
T h̄ω0UoΓt |L−(Ω)|2 ≈ η2

T h̄ω0UoΓt

(∆′0)
2 +(Γt/2)2 , (E7)

which is Eq. (16) in the main text. SL describes the effect of
the classical noises accompanied with the input laser, which
is given by

SL(Ω) = η
2
TU2

o |L+(Ω)L−(Ω)|2
{

SRIN(Ω)[(ΩΓt/2)2 +1/L2
0]

+(2∆
′
0)

2Sω(Ω)
}

≈ η
2
TU2

o

{
SRIN(Ω)+

(2∆′0)
2Sω(Ω)

[(∆′0)
2 +(Γt/2)2]2

}
, (E8)

which is Eq. (17) in the main text.
Equations (E6)-(E8) provide a complete description of the

temperature spectrum under the impact of photothermal back-
action, quantum backaction, and the laser classical noises.

Appendix F: The thermo-elastic coupling

The same theory can be applied to describe the thermo-
elastic effect [1, 11, 12]. In this case, the temperature fluc-
tuations of the device change the geometry and boundary of
the device through thermal expansion, which in turn perturb
the cavity resonance by an amount given by [54]

δω = −ω0

2

∫ dh
dT ∆T (r)

[
∆εr|E‖|2−∆(ε−1

r )|D⊥|2
]

dA∫
εr|E|2d3r

= −ω0

2
1
h

dh
dT

∫
h(r)∆T (r)

[
∆εr|E‖|2−∆(ε−1

r )|D⊥|2
]

dA∫
εr|E|2d3r

,

(F1)

where the integration in the numerator
∫

dA is over the device
boundary [54]. 1

h
dh
dT is the linear thermal expansion coeffi-

cient of the device which is assumed to be uniform around
the device broundary. Therefore, the thermo-elastic perturba-
tion to the cavity resonance can be written as δω = gT ∆T̄ ,
where the photothermal coupling coefficient is now given as
gT ≡ dω0

dT =−ω0
2h

dh
dT and the mode-averaged temperature vari-

ation is given by

∆T̄ ≡
∫

h(r)∆T (r)
[
∆εr|E‖|2−∆(ε−1

r )|D⊥|2
]

dA∫
εr|E|2d3r

. (F2)

Following a similar procedure as Section II, we can find the
dynamics of ∆T̄ is governed by an equation with a same
form of Eq. (B10) while the photothermal heating coefficient
ηT , the thermal relaxation rate ΓT , and the mode-averaged
Langiven thermal source ξ (t) have different values from the
thermo-optic case. Therefore, we expect that the photother-
mal temperature squeezing would behave in a similar manner
for the thermo-elastic effect.

[1] V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys.
Lett. A 264, 1 (1999).

[2] V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys.
Lett. A 271, 303 (2000).

[3] K. Numata, A. Kemery, and J. Camp, Phys. Rev. Lett. 93,
250602 (2004).

[4] M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, and G.
Ogin, Phys. Rev. D 78, 102003 (2008).

[5] K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. Mc-
Clelland, and N. Mavalvala, Phys. Rev. A 72, 043819 (2005).

[6] M. R. Foreman, J. D. Swaim, and F. Vollmer, Adv. Opt. Photon.
7, 168 (2015).

[7] F. Vollmer and S. Arnold, Nature Methods 5, 591 (2008).
[8] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y.

Sun, Anal. Chem. ACTA 620, 8 (2008).
[9] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.

Phys. 86, 1391 (2014).
[10] M. L. Gorodetsky and I. S. Grudinin, J. Opt. Soc. Am. B 21,

697 (2004).
[11] A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, J. Opt.

Soc. Am. B 24, 1324 (2007).
[12] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, and L.

Maleki, J. Opt. Soc. Am. B 24, 2988 (2007).
[13] A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S.

Ilchenko, J. Opt. Soc. Am. B 22, 459 (2005).
[14] T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742

(2004).
[15] T. J. Johnson, M. Borselli, and O. Painter, Opt. Express 14, 817

(2005).
[16] W.-S. Park and H. Wang, Opt. Lett. 32, 3104 (2007).
[17] C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O.
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