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The insertion of a small polarizable particle in an arbitrarily large optical cavity signifi-

cantly alters the quantum-mechanical state of the electromagnetic field in that the photon 

ground state of the empty cavity and that of the cavity with the particle become mutually or-

thogonal and, thus, cannot be connected adiabatically in the infinite limit. The photon problem 

can be mapped exactly onto that of a many-body system of fermions, which is known to exhibit 

an orthogonality catastrophe when a finite-range local potential is introduced. We predict that 

the motion of polarizable objects inside a cavity, no matter how slow, as well as their addition 

and removal from the cavity, will generate a macroscopic, diverging number of low-energy 

photons. The significance of these results in regard to the quantum measurement problem and 

the dynamical Casimir effect are also discussed. 
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Quantum systems with an infinite number of degrees of freedom differ substantially from 

those with a finite number of variables in that they can be described alternatively by mutually 

orthogonal and, thus, inequivalent Hilbert spaces [1]. This well-known feature of quantum field 

theory is exemplified by the unitarily inequivalent representations resulting from the application 

of Bogoliubov-type transformations, which are central to many problems involving spontane-

ous symmetry breaking and, in particular, to the Higgs and BCS mechanisms for mass genera-

tion and superconductivity. Somehow less known outside condensed matter theory, is that a 

weak local potential can have a similar effect on a many-body system, as the overlap between 

the unperturbed and the ground state in the presence of the potential can vanish in the thermo-

dynamic limit. This orthogonality catastrophe [2], broadly related to an infrared divergence, has 

been extensively studied for fermions (electrons) as it plays a crucial role in the understanding 

of the x-ray edge singularity in metals [3,4] and the Kondo problem [5]. Here we show that a 

closely related catastrophe can occur for photons in a cavity. Our approach distinguishes itself 

in many respects from the few, previously proposed boson (phonon) models exhibiting infrared 

divergences [6,7,8], all of which rely on chemical-bond displacements and depend quite sensi-

tively on their long-wavelength behavior to produce the catastrophe. 

Consider an arbitrarily-shaped cavity of volume V, partially filled with inclusions, which 

occupy a small volume V<<v  and are made of one or more substances, all assumed to be 

isotropic, non-magnetic and lossless, so that the permeability is 1μ =  everywhere, whereas the 

permittivity ε depends both on frequency ω and position r and, for simplicity, is assumed to be 
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real. Classically, the energy associated with a single mode of the cavity is [9] 

2 2 31 [ ( , )] ( ) ( )
16 V

d d
dω ω ω

ωε ω⎧ ⎫= +⎨ ⎬π ω⎩ ⎭∫
r E r B r rH                                   (1) 

where ω  is the mode frequency, ωE  and ωB  are the electric and magnetic field and ...  

denotes time average  (we recall that, for 1ε ≠ , these fields are the macroscopic quantities 

which appear in Maxwell’s equations for continuous media, and that one must consider an infi-

nitesimally narrow range of frequencies about ω to derive this expression [9]). The fields are 

assumed to have a time-dependence of the form exp( )i t− ω , which is hereafter omitted. Let Φ  

and ωA  be, respectively the scalar and vector potentials; ω ω= ∇ ×B A . Choosing the genera-

lized Coulomb gauge where 0Φ= , we get 1i c−
ω ω= − ωE A  so that 

[ ]2 2( , ) ( ) ( ) 0c−
ω ωε ω ω −∇× ∇× =r A r A r . After integration by parts, Eq. (1) becomes 

2
2 3

2

( ) ( )
16 V

d d
c dω ω

ω ωε⎡ ⎤= +ε⎢ ⎥π ω⎣ ⎦∫ A r rH   .               (2) 

The gauge is fixed by imposing the transversality condition .[ ( ) ] 0ω∇ ε =r A . 

The first step in the quantization of the theory is the search for a classical Lagrangian that is 

consistent with both, the Hamiltonian, Eq. (1), and Maxwell’s equation for ωA [1011121314-151617181920], a 

problem that is rather involved for a medium that is both dispersive and inhomogeneous [13 

141516-17181920]. Instead of pursuing a step-by-step path, we follow the heuristic, shortcut approach de-

scribed in [15] and write ( ) ( )C Qω ω ω ω=A r g r  where 

2 3( )8 / .
V

dC c d
d

∗
ω ω ω

ωε⎡ ⎤= π + ε⎢ ⎥ω⎣ ⎦∫ g g r        .             (3) 
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This gives 2 2 / 2Qω ω= ωH , which has the form of the average energy of a harmonic oscillator 

whose coordinate is Qω  [15]. Using the rigorous result (valid for the empty cavity as well as 

for homogeneous or inhomogeneous dielectric media) that the Lagrangian involving fields re-

duces to that of a set of independent classical oscillators [13 -14151617181920], it follows that Qω  and the 

canonical oscillator coordinate must be one and the same. Considering all the modes, the clas-

sical Hamiltonian is therefore ( )† 2 † / 2s s s s s
s

P P Q Q= + ω∑H , where 1, 2, ..s = ∞  is the mode 

index ( 1 2 ..ω < ω < ) and sP  is the momentum conjugate to sQ . The modal solutions satisfy the 

orthogonality condition 2 2 3( , ) ( , ) ( ). ( ) 0
s ts s t t

V

d∗
ω ω⎡ ⎤ω ε ω − ω ε ω =⎣ ⎦∫ r r g r g r r  ( s p≠ ) [14,18] and 

can be normalized to give 1/22C cω ≡ π  for all eigenfrequencies (since V<<v , the required 

normalization condition is approximately 3. 1
V

d∗
ω ω =∫ g g r ). Thus, the classical field is 

1/2( , ) 2 ( ) s

s

i
Q s

s
t c Q e− ω

ω= π ∑A r g r   .                     (4)  

The analogous expression for the empty cavity is  

1/2( , ) 2 ( ) s

s

i
U s

s
t c U e− Ω

Ω= π ∑A r f r                         (5) 

where 
sΩf  sU  and sΩ  denote, respectively, the vector field, coordinate and eigenfrequency 

of a particular mode, with 3( ). ( )
s p spV

d∗
Ω Ω = δ∫ f r f r r . We recall that the set { }Ωf  is complete, 

that is, an arbitrary field inside the cavity can be expressed as a sum over all the modes. 

To quantize the model, we replace Qω  and UΩ  with the corresponding quantum operators 

in the Schrödinger picture, or with ( )†/ 2i a aω ωω −h  and ( )†/ 2i a aΩ ΩΩ −h  where † †( )a aω Ω  

and ( )a aω Ω  are the dressed (bare) photon creation and annihilation operators. The associated 

canonically conjugated operators are given by the well-known expressions /i Qω− ∂ ∂h  and 
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/i UΩ− ∂ ∂h . Using (4) and (5), and assuming that the set { }ωg  is also complete [20,21], we 

obtain the following, linear relationships involving the two coordinate sets 

1
s sp p p ps sp s

U D Q Q D U−= =∑ ∑                       (6) 

where  
3( ). ( )sp s pV

D d∗= ∫ f r g r r      .                    (7) 

Note that, for dispersionless media, 3( ) ( ). ( )
s p spV

d∗
ω ωε = δ∫ r g r g r r  [10] and, thus, 

1 3( ) ( ). ( )ps s pV
D d− ∗= ε∫ r f r g r r . It is apparent that the completeness of the set { }ωg  is tantamount 

to the existence of the inverse matrix 1
psD− . 

We now have all the ingredients to calculate the overlap between the two ground states: 

0 Ω  (empty cavity) and 0 ω  (with inclusions). To that end, we use the familiar ground-state 

wavefunction of a harmonic oscillator to calculate the partial overlap 

2 2

1

2 2

1 1

1 ( )
2

1

1/2 1/2

1 1

...
( )

... ...

N

i i i i
i

N N

i i i i
i i

U Q

N

U Q

N N

e dQ dQ
S N

e dQ dQ e dQ dQ

=

= =

+∞ − Ω +ω

−∞

+∞ +∞− Ω − ω

−∞ −∞

∑

=
⎧ ⎫ ⎧ ⎫∑ ∑⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∫

∫ ∫

 ,        (8) 

 

defined as the overlap between states corresponding to the first N cavity modes. Clearly, 

0 0 ( )S NΩ ω = → ∞ . Introducing the symmetric matrix 
1,

sp j js jp
j N

C D D
=

= Ω∑ , and using the 

Jacobian (= det N spD ) for the change of variables, we finally obtain 

( 1) 1/4 1/4

1

det
( ) 2

det

N
N spN

i i
i N s sp sp

D
S N

C
+

=

⎛ ⎞= Ω ω⎜ ⎟ ω δ +⎝ ⎠
∏                           (9) 



6 | P a g e  
 

where det | |N spD  comprises overlaps associated with the first N modes, that is, , 1, .. ,s p N=  

in Eq. (7). Some reflection shows that det | |N spD  can be interpreted in terms of the 

many-body overlap between two Slater determinants representing the unperturbed and local-

ly-perturbed ground states of a system of N free electrons, which is known to be of order 

( 0)N −η η >  in the thermodynamic limit [2]. Central to our contention that perturbations due to 

small polarizable particles can lead to orthogonality catastrophes, this mode-to-wavefunction 

mapping of overlaps defines the close relationship that exists between the electron and photon 

problems, notwithstanding obvious differences in regard to boundary conditions, the vector vs. 

scalar and the bosonic vs. fermionic nature of the states [22]. 

In the following, we apply the general theory to a cavity delimited by a perfectly-conducting 

spherical shell of radius R, which contains a concentric sphere of radius a << R, whose permit-

tivity is S ( )ε ω . Solutions divide into transverse-electric (TE) and transverse-magnetic (TM) 

modes and can be found exactly [ 23 ]. In particular, ( , ) ( )lm lm lg r= θ ϕg X  with 

( ) / ( 1)lm lmi Y l l= − ×∇ +X r  for TE modes ( lmY  are spherical harmonics). Using the re-

quirement that the electric field vanish at r R= , and the continuity of the electric field and the 

tangential component of the magnetic field at r a= , we obtain the unnormalized TE solutions  

S

S

( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

l

l l l l l
l

l l l l

j n kr r a
g r j kr y kR y kr j kRj n r a

j y kR y j kR

<⎧
⎪= −⎨ β ≥⎪ β − β⎩

                     (10) 

and the equation giving the resonant wavevectors 
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S

S S

( ) ( ) ( ) ( ) ( )
[ ( )]' [ ( )]' ( ) [ ( )]' ( )

l l l l l

l l l l l

j n j y kR y j kR
n j n j y kR y j kR

β β − β=
β β β β − β β

  .                        (11) 

Here, /k c= ω  (c is the speed of light in vacuum), kaβ = , and S Sn = ε ; lj  ( ly ) is the 

spherical Bessel function of the first (second) kind of order l. The corresponding expressions for 

TM modes are easily derived [23]. For the empty cavity, the unnormalized TE solutions are 

simply ( ) ( )l lf r j qr= , where /q c= Ω , while ( ) 0lj qR =  gives the eigenfrequencies. 

Because of the symmetry of the problem, the single-function overlaps entering spD , Eq. (7), 

vanish unless the two states share the same l and m. Hence, spD  divides into separate blocks 

identified by specific values of these quantum numbers. Within a block, overlaps can be 

straightforwardly obtained using the asymptotic form of the spherical Bessel functions 

sin( / 2) /lf qr l qr≈ − π  and ( ) sin[ ( )] /lg r k r R kr≈ − , valid for qr l>> . In particular, for 

odd values of l, 

2 2

2 (cos cos )

sin 2 sin 2( ) 1 1
2 2

k k qR kR

kR Rk q R
kR qR

q
q

−=
⎛ ⎞⎛ ⎞− − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

     .          (12) 

Central-cell corrections accounting for the differences between the exact and the asymptotic- 

form overlaps are not important in the limit R → ∞ . Finally, we recall that the eigenvalues for 

the two problems are related through /t t lk q R= + δ , where ( )l tqδ  is the scattering phase 

shift, which can be gained without difficulty from the Mie coefficients buried in Eq. (10) [24].  

The above discussion has not yet revealed the anticipated orthogonality catastrophe, except 

for a brief comment on the relationship between det | |N spD  and overlaps of electron Slater 
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determinants. To do so, we examine the problem of a sphere made of a metal that obeys Drude’s 

formula 2 2 2 2
S P P( ) 1 / 1 /k kε ω = − ω ω = − , where Pω  P( )ck=  is the plasma frequency [25]. For 

simplicity, we consider from now on only 1l =  TE states for which the resonant wavevectors 

of the empty cavity obey tan( )qR qR= . The results in Fig. 1 reveal the orthogonality catastro-

phe. The contour plot, Fig. 1(a), shows calculated values of det | |N spD  at P 5 /k a=  as a 

function of N and R, while Fig. 1(b) both reproduces the contour data and shows 2 ( , )S N R  

along the line / 1.88Na R =  where the determinant is smallest for fixed N or R. The calcula-

tions were performed using Eq. (12) for the single-mode overlaps and the exact resonant wave-

vectors of the empty cavity. The 1l =  phase shift, gained from Eq. (10) and well-known ex-

pressions from scattering theory [24], was used to obtain the corresponding wavevectors for the 

cavity containing the Drude sphere; see below. The linear fit to the determinant data in Fig. 1(b) 

translates into 0.39det | |N spD N −∝ . 2S  decreases with N with roughly the same exponent.  

The calculated 1l =  TE phase shift, 1δ , is shown in Fig. 2. The main peak occurs slightly 

above Pk  whereas the other features are due to Fabry-Pérot- like resonances at integer mul-

tiples of / aπ . We find that 1 1/ kδ ∝  for k → ∞  [26] while, as expected, 2
1 kδ ∝  for 0k → . 

Note that a Drude metal behaves as a perfect mirror for Pk k<  where the refractive index is 

purely imaginary. The value of /Na R  in Fig. 1(b) corresponds to the wavevector P1.18k k≈  

at which the phase shift is a maximum. It should be noted that the peak height in Fig. 2 increas-

es with increasing Pk  and that it can attain values larger than π .  

The results of Fig. 1 as well as calculations for many other values of the parameters indicate 
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that the determinant of spD  controls the behavior of S at large N and that, at a given value of  

/Na R , det | | ( 0)N spD N −η η > . Moreover, the dependence of the exponent η on /Na R  

closely follows that of the phase shift on the wavevector /k N R= π . Note, in particular, the 

strong asymmetry with respect to the line / 1.88Na R =  in Fig. 1(a), which faithfully repro-

duces the asymmetry of the phase shift with respect to the peak at P1.18k k≈ ; see Fig. 2. Since 

1( ) 0kδ ≠ , except at 0k =  and k = ∞ , this means that, other than for constantN ≡  and 

constantR ≡ , the states become orthogonal in the infinite limit for arbitrary values of /Na R .   

The behavior of the electromagnetic field vis-à-vis the insertion of a polarizable particle, es-

pecially the power-law decrease of the overlap with N and the dependence of the exponent on 

the phase shift at /Na R , strongly resembles that of a system of electrons perturbed by a local 

potential [2,4]. More precisely, the photon problem for the first N modes of a cavity of radius R 

relates to that of a system of N free electrons with Fermi wavevector F /k N R= π . This map-

ping of overlaps, alluded to earlier, is a key result which allows us to make predictions for the 

electromagnetic field based on what is already known from electron studies. In particular, the 

fact that the exponent η depends only on the scattering phase shift strongly suggests that the 

catastrophe is a general phenomenon, not limited to Drude-type spherical inclusions. Also, 

since an exceedingly small phase shift leads to orthogonality, the ground states with and with-

out inclusions cannot be adiabatically connected in the infinite limit because their overlap 

changes abruptly from one to zero, regardless of how close the inclusion’s permittivity is to the 

vacuum’s value. We further recall that the Fermi ground state of the perturbed system is not on-
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ly orthogonal to the unperturbed ground state, but to all states containing a finite number of 

electron-hole excitations [2]. Since the total energy change is finite when a local potential is 

added, it follows that its insertion must be accompanied by a divergence in the number of exci-

tations as their energy approaches zero. This is the infrared divergence mentioned in the intro-

duction which, by analogy, should reveal itself in the creation of a macroscopic number of 

low-frequency photons when a polarizable particle is inserted in or removed from a cavity. 

Another important aspect of the catastrophe is that it also applies to the overlap between states 

corresponding to different positions of the local potential [27]. In photon terms, this means that 

the displacement of a polarizable particle inside a large cavity must also result in the creation of 

a diverging number of low frequency photons. This prediction, which bears on the dynamical 

Casimir effect, that is, the generation of photons from vacuum due to the motion of uncharged 

boundaries [28,29,30], can be tested experimentally.  

Finally, we comment briefly on the possible relevance of these results to the quantum mea-

surement problem. In [31], we argue that there are only two types of measuring devices involv-

ing (i) phase transformations (e. g., the bubble chamber) or (ii) macroscopic transfers of charge 

(e. g., the Geiger counter). It is apparent that, by locally changing the permittivity or the boun-

dary conditions on the electric field, a single measurement with either class of devices perturbs 

the electromagnetic modes (of the universe!) as much as the insertion of a polarizable particle 

perturbs a cavity. Hence, the effect of a measurement on the photon Hilbert space is that of a 

transformation leading to a unitarily inequivalent representation. One could then argue, as done 
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in [31], that coherent superpositions of the Schrödinger’s cat type cannot be allowed, since they 

violate the uniqueness of the Hamiltonian. Within this context, and given that the infinite limit 

extends beyond the range of frequencies where electrodynamics of continuous media applies, it 

would be of interest to widen our studies to x-ray and gamma-ray frequencies. 

To summarize, we presented arguments and numerical calculations uncovering catastrophic 

effects caused by the insertion of a small polarizable object in a large electromagnetic cavity, 

thereby revealing the existence of a mapping from the photon problem to that of a many-body 

system of electrons perturbed by a local potential. Using this relationship, we made the predic-

tion that the insertion, removal or displacement of a polarizable particle must be accompanied 

by the production of photons with a diverging distribution at low frequencies.       

Work supported by the MRSEC Program of the NSF under Grant No. DMR-1120923.
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FIGURE CAPTIONS 
 

 

FIG. 1 (color online). Drude sphere of radius a inside a cavity of radius R. Data for 1l =  TE 

modes at P 5.k a =  (a) Contour plot of det | |N spD  as a function of R/a and the number of 

modes N. (b) N-dependence of det | |N spD  and square of the partial ground-state overlap for 

/ 1.88Na R = .  

 

FIG. 2.  Wavevector dependence of the 1l =  phase shift for TE modes, δ1 (units of π) for a 

Drude sphere; P 5 /k a=  is the plasma wavevector.  
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