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2Physics Departement, Harvard University, Cambridge, Massachusetts 02138, USA
(Dated: December 16, 2016)

We investigate numerically the momentum correlations in a two dimensional, harmonically
trapped interacting Bose system at T = 0 temperature, by using a particle number preserving
Bogoliubov approximation. Interaction induced quantum fluctuations of the quasi-condensate lead
to a large anti-correlation dip between particles of wave numbers k and −k for |k| ∼ 1/Rc, with
Rc typical size of the condensate. The anti-correlation dip found is a clear fingerprint of coherent
quantum fluctuations of the condensate. In contrast, for larger wave numbers, |k| � 1/Rc, a weak
positive correlation is found between particles of wave numbers k and −k, in accordance with the
Bogoliubov result for homogeneous interacting systems.
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I. INTRODUCTION

As demonstrated first by Hanbury Brown and Twiss,
quantum statistics are efficiently probed through de-
tecting noise correlations. In their seminal experi-
ments Hanbury Brown and Twiss observed positive cross-
correlations in the shot noise of photons emitted by in-
dependent light sources [1]. As understood later, this
photon bunching originates simply from constructive in-
terference between indistinguishable particles, obeying
Bose-Einstein statistics, and has lately been also demon-
strated by interferometry of bosonic atoms [2]. An anal-
ogous phenomenon is observed for fermions, where the
antisymmetry of the wave function results in an anti-
bunching behavior [3]. Quantum-statistics related corre-
lations play an important role in solids, too, where they
lead to the emergence of Pauli correlation-hole [4], or
can conspire with interactions to lead to the emergence
of magnetism [5].

Measuring Hanbury Brown Twiss-like noise correla-
tions in time of flight (ToF) images has also been pro-
posed as an efficient tool for detecting correlated states
in ultracold atomic systems [6]. Following this sug-
gestion, density correlations in expanding atomic clouds
have been used to demonstrate the emergence of ordered
phases both in interacting bosonic and fermionic systems
[7–18], proving that noise detection can also be used to
reveal interaction-induced strongly correlated structures.

Trapped cold atomic systems should provide an ideal
test ground to study quantum correlations in isolated
bosonic and fermionic systems, and the influence of in-
teractions on these correlations [19–24]. Time of flight
experiments in reduced dimensions [25] grant direct and
controlled access to the observation of the number n̂k of
particles with momentum h̄k as well as to the correlation
function C(k,k′) ≡ 〈δn̂kδn̂k′〉 [26–31].

For a very long time [32–35], theoretical predictions
regarding the nature of momentum space correlations

and ToF correlations in Bose-systems remained some-
what controversial. Two and three dimensional weakly
interacting homogeneous systems are quite well-described
by a Bogoliubov mean field approximation, where the
ground state is found to be a squeezed state generated by

the pair creation operators, b̂†kb̂
†
−k, with b̂†k denoting the

creation operator of a boson [36]. This squeezed struc-
ture would imply perfect positive correlations between
particles of wave numbers k and −k [32]. However, in a
one dimensional Luttinger liquid, both correlations and
anti-correlations have been predicted [32, 35], and anti-
correlations have also been predicted between particles
with opposite momenta [33] in harmonically confined
noninteracting Bose gases.

Very recently, experiments on one-dimensional inter-
acting bosons — corroborated by detailed theoretical
calculations — managed to clarify somewhat this con-
troversial situation [31]: they confirmed the predic-
tions of strong anti-correlations of Ref. [35] at the
momentum scale corresponding to the thermal length,
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FIG. 1. Sketch of the origin of quantum fluctuations in-
duced quasiparticle correlations in a trap. Even at T = 0,
interaction-induced quantum fluctuations of the condensate
induce virtual quasiparticle excitations, and amount in fluc-
tuations and correlations, measurable through ToF experi-
ments. The pair structure of excitations induces positive cor-
relation between particles with opposite wave numbers k and
−k.
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lφ = ρ1Dh̄
2/mkBT , with ρ1D the density of the one-

dimensional gas.
The purpose of the present work is to understand

the role of interaction-induced quantum fluctuations of
higher dimensional condensates. To be specific, we focus
on d = 2-dimensional interacting (quasi) condensates,
where the correlation function C(k,k′) is still directly
accessible experimentally, while a mean field approach
is still reliable. Extensions to d = 3 dimensions are
straightforward. Focusing on interaction-induced quan-
tum fluctuations, we consider the case of T = 0 temper-
ature only [37].

In the presence of interactions, quantum fluctuations
deplete the condensate wave function just as thermal fluc-
tuations do in an ideal gas (see Fig. 1). Anti-correlations
can be interpreted as a sign of conspiracy of particle num-
ber conservation and confinement: they stem from par-
ticle number preserving processes, coherently transfering
particle pairs between the single mode condensate and
the non-condensed fraction of the gas (see Sections III C
and III D).

To capture this physics in a trapped gas, we shall em-
ploy a particle number preserving Bogoliubov approxima-
tion, similar to the one described in Ref. [38]. For suffi-
ciently weak interactions, most of the atoms condense
into a single wave function, thereby forming a single-
mode condensate ϕ0(x). Correspondingly, the bosonic

field operator ψ̂(x) can be decomposed as

ψ̂(x) = ϕ0(x)b̂0 + δψ̂(x) , (1)

where b̂0 annihilates a particle from the condensate. If
the average number of particles in mode ϕ0(x) greatly
exceeds that of non-condensed particles, the operator

δψ̂(x), describing quantum fluctuations of the conden-
sate, is small, and can be accounted for by the particle
number conserving mean field approach used here, an ap-
proach well suited to describing experiments with a fixed
number of particles.

As we shall see, the spatial extension of the conden-
sate (Rc) takes over the role of lφ in one-dimensional
condensates [31], and determines the region of anti-
correlations in momentum space. However, in addition to
anti-correlation between small momentum particles with
k ≈ −k′ and |k| ∼ 1/Rc, a clear forward correlation
appears for particles of similar momenta, k ≈ k′. Mo-
mentum space correlations thus exhibit a p-wave struc-
ture. As already explained, these structures are due to
interaction induced coherent quantum fluctuations of the
condensate, present even at zero temperature.

The expected positive correlations, predicted by Bo-
goliubov theory, only appear at large wave numbers,
|k| � 1/Rc, where C(k,−k) displays a slowly decay-
ing positive tail of ”d-wave”-like structure in momentum
space. In this large momentum regime, short distance
correlations at a scale λ ∼ 2π/|k| are probed, where cor-
relations can be well approximated by those of a homoge-
neous system. The observation of Bogoliubov squeezing

and the corresponding positive pair correlations would
thus require investigating the tails of ToF images with
high resolution.

The paper is organized as follows: In Sec. II, we out-
line the particle number preserving Bogoliubov approx-
imation following the treatment of Ref. [38], and pro-
vide details on the numerical solution of the correspond-
ing equations (Sec. II B). Our results are discussed in
Sec. III. Our conclusions are summarized in Sec. IV.

II. METHODS

A. Particle number preserving Bogoliubov
approximation

We consider a closed, interacting quasi-two-
dimensional Bose gas in a harmonic trap. Such
quasi-two-dimensional gases can be experimentally
realized in highly anisotropic harmonic potentials, where
the transverse confinement, ωz, is much stronger than
the trapping frequencies in the remaining two directions
[21]. In this strong vertical confinement limit, the motion
of the particles is frozen along the z direction, and the
system is described by an effective d = 2 dimensional
Hamiltonian

H =

∫
d2x

(
ψ̂†(x)

(
− h̄2

2m
∇2 + U(x)

)
ψ̂(x)

+
g

2
ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x)

)
. (2)

Here ψ̂(x) denotes the bosonic field operator, and m is
the atomic mass. The harmonic potential

U(x) =
1

2
mω2x2

is responsible for the weak confinement of the atoms in
the lateral direction, and the interaction between the
atoms is described by a repulsive Dirac-delta potential,
V (x − x′) = g δ(x − x′) [39]. Here the effective inter-
action g depends sensitively on the vertical confinement,
ωz, and the three dimensional scattering length a3D [40].
It depends, however, only logarithmically on the local
chemical potential of the Bose gas, and can therefore be
replaced by its value at the center of the trap for our
purposes.

For sufficiently weak interactions, the majority of the
atoms condenses into a single wave function, and the sys-
tem can be analysed by using a Bogoliubov mean field
approximation. This approach is justified if the expec-
tation value of the number of non-condensed particles,
〈δN̂〉, is only a small fraction of the total particle num-
ber N ,

〈δN̂〉 � N. (3)

This condition is necessary for a usual mean field treat-
ment but, in d = 2 dimensions, considered here, it is
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not entirely equivalent to the requirement of weak in-
teractions. A d = 2 dimensional Bose gas can be consid-
ered weakly interacting even in the vicinity of the critical
(Kosterlitz-Thouless) temperature Tc, provided that the
dimensionless interaction strength g̃ satisfies [40]

g̃ ≡ gm

h̄2
� 1. (4)

Standard mean field theory can, however, be applied only
in the regime where where the system size is smaller than
the phase correlation length. For typical weakly interact-
ing trapped systems, the latter condition is satisfied only
for temperatures T/Tc <∼ 0.2 [40, 42]. At slightly larger
temperatures, but still below the critical temperature
of the Kosterlitz-Thouless phase transition, a so-called
quasi-condensate regime appears with large phase fluctu-
ations. Here usual Bogoliubov mean field approach fails,
however, the gradient of the phase still remains small
and allows a perturbative, generalized Bogoliubov treat-
ment [41, 42]. At T ≈ 0, however, condition (4) is not
necessary, and Eq. (3) is satisfied even for slightly larger
interaction values, g̃ ∼ 1.

Below we will concentrate on the regime of true con-
densate, and will perform calculations at T = 0 tem-
perature. To account for correlations between the con-
densate and non-condensed particles, we shall use a par-
ticle number conserving Bogoliubov approach described
in Ref. [38]. For that purpose, we decompose the field

operator ψ̂(x) according to Eq. (1), and separate the sin-
gle mode part ∼ ϕ0(x). The remaining part of the field

operator, δψ̂(x), describes interaction induced quantum
fluctuations of the condensate (see Fig. 1), and can be
chosen to be orthogonal to the wave function ϕ0(x),∫

d2xϕ∗0(x)δψ̂(x) ≡ 0 .

Next, following Refs. [38, 43], we introduce a new, parti-
cle number preserving field operator

Λ̂(x) ≡ 1

N̂
1/2
0

b̂†0 δψ̂(x), (5)

with N̂0 ≡ b̂†0b̂0 denoting the number of particles con-
densed into the single mode part of the condensate. The
field Λ̂(x) satisfies the commutation relations[

Λ̂(x), Λ̂(x′)
]

= 0 ,[
Λ̂(x), Λ̂†(x′)

]
= δ(x− x′)− ϕ0(x)ϕ∗0(x′) = 〈x|Q̂0|x′〉 ,

with Q̂0 ≡ Id − |ϕ0〉〈ϕ0| denoting the projection onto

the subspace orthogonal to |ϕ0〉. The operator Λ̂ trans-
fers one particle from the non-condensed fraction to the
condensate, while keeping the total particle number con-

stant. Notice that, in contrast to ψ̂(x), Λ̂(x) conserves
the particle number, and is therefore more appropriate to
describe fluctuations in a closed (microcanonical) trap.

To generate the Gross-Pitaevskii (GP) equation de-
termining the condensate wave function ϕ0(x), we use
the ansatz (1) and approximate the Hamiltonian (2) by

expanding up to second order in the operator Λ̂ ∼ δψ̂.
Particle number conservation is imposed by the exact re-
lations

N = N̂0 + δN̂ ,

δN̂ =

∫
d2x δψ̂†(x)δψ̂(x) =

∫
d2x Λ̂†(x)Λ̂(x),

which we also assert in course of the expansion. Requir-
ing the disappearance of terms linear in Λ̂ yields the usual
Gross-Pitaevskii equation for ϕ0(
− h̄2

2m
∇2 + U(x)

)
ϕ0(x) + gN |ϕ0(x)|2ϕ0(x) = µϕ0(x),

(6)
with the Lagrange-multiplier µ introduced to ensure that
ϕ0 remain normalized. Second order terms in Λ̂ generate
the equation of motion of the field operator,

i∂t

(
Λ̂(x)

Λ̂†(x)

)
= LGP (x)

(
Λ̂(x)

Λ̂†(x)

)
,

with the Bogoliubov operator LGP expressed as

LGP =

(
Q0

(
H+ gN |ϕ0|2

)
Q0 gN Q0 ϕ

2
0Q
∗
0

−gN Q∗0(ϕ∗0)2Q0 −Q∗0
(
H+ gN |ϕ0|2

)
Q∗0

)
,

(7)

and

H(x) = − h̄2

2m
∇2 + U(x)− µ+ gN |ϕ0(x)|2 (8)

denoting the mean field single particle Hamiltonian. The
Lagrange-multiplier µ appears here as a chemical poten-
tial, expressing that the condensate serves as a particle
reservoir for the non-condensed fraction of the gas.

The eigenvalues and eigenvectors of the non-Hermitian
operator LGP determine the excitation modes of the con-
densate. The Bogoliubov operator LGP has a pair of
zero-modes [38, 44]

(ϕ0(x), 0), (0, ϕ∗0(x))

corresponding to – physically meaningless – global phase
rotations of the condensate. All other, nonzero eigen-
values of LGP come in pairs, ±εs, and correspond to
quasiparticle excitations. By denoting the eigenvector of
positive eigenvalue εs > 0 (s = 1, 2, ...) by (us(x), vs(x)),
we find that (v∗s (x), u∗s(x)) is also an eigenvector of eigen-
value ε−s = −εs. The positive eigenvectors of s, s′ > 0
satisfy the orthogonality condition∫

d2x (u∗s(x)us′(x)− v∗s (x)vs′(x)) = δs,s′ .
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Moreover, together with the condensate wave function
they form a complete basis, expressed by the relation∑

εs>0

(us(x)u∗s(x
′)− v∗s (x)vs(x

′))

+ ϕ0(x)ϕ∗0(x′) = δ(x− x′). (9)

These eigenfunctions of LGP can then be naturally used
to expand the field operator Λ̂(x) as

Λ̂(x) =
∑
εs>0

[
b̂s us(x) + b̂†s v

∗
s (x)

]
, (10)

where the b̂s’s satisfy bosonic commutation relations and
annihilate quasiparticles of (positive) energy εs. In terms
of these quasiparticle excitations, within the Bogoliubov
approximation, the Hamiltonian takes on a simple diag-
onal form

H = E0 +
∑
εs>0

εsb̂
†
sb̂s .

The ground state of the system is thus simply the vac-

uum state of the annihilation operators b̂s. We remark
that the ground state energy, E0, incorporates interaction
dependent negative corrections to the Gross-Pitaevski
mean field energy, resulting from the quantum depletion
of the condensate.

Let us now turn to the computation of the expectation
value 〈n̂k〉 and the correlation function 〈n̂kn̂k′〉. The par-
ticle number operator n̂k corresponding to wave number
k is defined as

n̂k = ψ̂†kψ̂k,

where ψ̂k is the Fourier-transform of the field operator,

ψ̂k =

∫
d2x e−ikxψ̂(x).

In order to calculate the expectation value and correla-
tion function of the operator n̂k, we use Eqs. (1) and (5)

to express n̂k in terms of the operator Λ̂, to find

n̂k = N |ϕ0(k)|2 − |ϕ0(k)|2 δN̂ +
√
Nϕ∗0(k) Λ̂k (11)

+
√
Nϕ0(k) Λ̂†k + Λ̂†kΛ̂k +O(δN̂

3/2
N−1/2),

with Λ̂k denoting the Fourier transform of Λ̂,

Λ̂k =
∑
εs>0

[
b̂s us(k) + b̂†s v

∗
s (−k)

]
.

Notice that the second term in Eq. (11) does not ap-
pear in the usual Bogoliubov approach. It is a direct
consequence of the particle number conserving method,
and leads to corrections in the expressions of the cor-
relation functions. This term may be contrasted to the
third and fourth terms, which are also related to particle
number conserving processes but appear already within
the usual Bololiubov approach; these describe the anni-
hilation (creation) of a particle in the cloud of quantum
fluctuations, while adding (removing) a particle to the
condensate (from the condensate).

Notice that the usual and heuristic identification,

n̂k ↔ Λ̂†kΛ̂k is not appropriate for a trapped micro-
canonical condensate, where correlations between the

single mode part of the condensate and δψ̂(x) cannot
be neglected. For a homogeneous condensate, however,
ϕhom
0 (k 6= 0) ≡ 0, and Eq. (11) reduces to the simple

relation, n̂homk6=0 = Λ̂†kΛ̂k.
The ground state expectation value of n̂k is thus given

in terms of eigenfunctions (us(x), vs(x)) as

〈nk〉 =N |ϕ0(k)|2 +
∑
εs>0

|vs(−k)|2

− |ϕ0(k)|2
∑
εs>0

∫
d2x |vs(x)|2. (12)

Here the first term is simply the Gross-Pitaevskii result,
describing a situation when all particles belong to the
single-mode condensate. The sum

∑
s |vs(−k)|2 takes

into account the contribution of the non-condensed frac-
tion of the gas, while the last term originates from the
depletion of the condensate due to particle number con-
servation. Similarly, the correlation function of n̂k and
n̂k′ operators can be expressed as

C(k,k′) =〈ψ̂†kψ̂kψ̂
†
k′ ψ̂k′〉 − 〈ψ̂†kψ̂k〉〈ψ̂†k′ ψ̂k′〉 =

N
∑
s

(ϕ∗0(k)us(k) + ϕ0(k) vs(−k)) (ϕ0(k′)u∗s(k
′) + ϕ∗0(k′) v∗s (−k′))

+
∑

s1, s2, s3, s4

(δs1, s4δs2, s3 + δs1, s3δs2, s4)

(
vs1(−k)us2(k)− |ϕ0(k)|2

∫
d2x vs1(x)us2(x)

)
·(

v∗s4(−k′)u∗s3(k′)− |ϕ0(k′)|2
∫

d2x v∗s4(x)u∗s3(x)

)
.
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This equation can be rewritten in a form more conve-
nient for numerical calculations, using the completeness
relation Eq. (9). Expressing

∑
s us(k)u∗s(k

′) from the
Fourier transform of Eq. (9) allows us to separate the
singular, ∼ δ(k − k′) terms appearing in the diagonal
correlation function C(k,k). As a result, the correlation

function can be written as a sum of three contributions

C(k,k′) = (2π)2δ(k− k′)〈n̂k〉
+ C(1)(k,k′) + C(2)(k,k′), (13)

with 〈n̂k〉 given by Eq. (12), and

C(1)(k,k′) ≡ N
∑
s

[ϕ∗0(k)ϕ∗0(k′)us(k) v∗s (−k′) + ϕ0(k)ϕ0(k′) vs(−k)u∗s(k
′) + ϕ0(k)ϕ∗0(k′) vs(−k) v∗s (−k′)

+ ϕ∗0(k)ϕ0(k′) v∗s (−k) vs(−k′)]−N |ϕ0(k)|2|ϕ0(k′)|2, (14a)

C(2)(k,k′) ≡
∑
s1, s2

(
vs1(−k)us2(k)− |ϕ0(k)|2

∫
d2x vs1(x)us2(x)

)(
v∗s2(−k′)u∗s1(k′)− |ϕ0(k′)|2

∫
d2x v∗s2(x)u∗s1(x)

)
+
∑
s1, s2

(
vs1(−k)v∗s2(−k)− |ϕ0(k)|2

∫
d2x vs1(x)v∗s2(x)

)(
v∗s1(−k′)vs2(−k′)− |ϕ0(k′)|2

∫
d2x v∗s1(x)vs2(x)

)
− ϕ0(k)ϕ∗0(k′)

∑
s

vs(−k)v∗s (−k′)− |ϕ0(k)|2
∑
s

|vs(−k′)|2 − |ϕ0(k′)|2
∑
s

|vs(−k)|2

+ |ϕ0(k)|2|ϕ0(k′)|2
∑
s

∫
d2x |vs(x)|2. (14b)

Here, besides Eq. (9), we have used that the eigenfunc-
tions us and v∗s are orthogonal to the condensate wave
function ϕ0.

The first term in Eq. (13) denotes the shot noise.
The first correction, C(1)(k,k′), is proportional to the
total particle number N , and includes terms of sec-
ond order in fluctuations, O(|δψ|2), describing correla-
tions between the single mode condensate and the non-
condensed part of the wave function [45]. The sec-
ond correction, C(2)(k,k′), is of fourth order in fluctu-
ations, O(|δψ|4), and takes into account correlations in-
side the non-condensed cloud and subleading corrections
to the condensate - quasiparticle correlations contained
in C(1). These latter are generated by the second term
in Eq. (11), and account for the depletion of the single
mode condensate. The ”cylindrically symmetrical” terms
in Eq. (14b), proportional to |ϕ0(k)|2 (or |ϕ0(k′)|2), stem
from correlations between the condensate and the non-
condensed fraction of the gas, and only appear in the
particle number preserving Bogoliubov approach. The
remaining terms in C(2) describe correlations inside the
non-condensed cloud.

B. Numerical solution

To evaluate the expectation value (12) and the correla-
tion functions (14a) and (14b), we first need to compute
ϕ0 by solving the inhomogeneous Gross-Pitaevskii equa-
tions (6) numerically, and we then have to determine the
spectrum of LGP . For this purpose, we shall expand all
wave functions in terms of two dimensional harmonic os-

cillator eigenfunctions [46].
As a first step, we introduce the dimensionless vari-

ables [47]

ζ =
h̄ω

2µ
, yi =

xi
Rc
,

with Rc =
√

2µ/mω2 denoting the size of the conden-
sate, and rewrite all equations in terms of dimensionless
parameters. The dimensionless condensate wave function
φ0 of N bosons can then be expressed as

φ0(y) ≡
√
N Rc ϕ0(yRc).

This function is normalized to N and, by Eq. (6), mini-
mizes the dimensionless energy functional

E0 =

∫
d2y
(
ζ2|∇yφ0(y)|2 + (y2 − 1)|φ0(y)|2

+
g

2µR2
c

|φ0(y)|4
)
.

We can therefore determine it by expanding φ0(y) in
terms of d = 2 dimensional harmonic oscillator eigen-
functions,

φ0(y) =

kcut∑
k=0

ake
− y

2

2ζ Lk

(
y2

ζ

)
,

with Lk the k’th Laguerre-polynomial and kcut finite cut-
off introduced for numerical calculations, and then by
determining the coefficients ak via the gradient method.
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Having the condensate wave function φ0 at hand, we
determine the Bogoliubov eigenfunctions us(x) and vs(x)
by solving the eigenvalue equation of LGP . In order to
take into account the projection Q̂0 in Eq. (7), we modify
LGP by a ’Lagrange multiplier’

L′GP =

(
H+ g N |ϕ0|2 + λP0 g N ϕ2

0

−g N (ϕ∗0)2 −H− g N |ϕ0|2 + λP0

)
,

(15)

with P̂0 ≡ |ϕ0〉〈ϕ0| denoting the projection to the con-
densate wave function and H the mean field Hamilto-
nian, given by Eq. (8). The parameter λ is chosen to
be large enough to ensure that the low energy eigenfunc-
tions of L′GP , orthogonal to ϕ0, be clearly separated from
the high energy spectrum, having finite overlap with the
condensate wave function. By keeping only the eigen-
functions of low eigenvalues, annihilated by P̂0, we can
determine the excitation spectrum and eigenvectors of
the original projected Bogoliubov operator LGP .

Similar to φ0, we determine the eigenfunctions us(x)
and vs(x) from the eigenvalue equation of L′GP by ex-
panding them in terms of oscillator eigenfunctions. The
calculation can be simplified by making use of the rota-
tional symmetry of the condensate, and treating sectors
with different angular momenta m separately. Eigenvec-
tors can then be classified using radial and angular mo-
mentum indices, s = (n,m), and the eigenfunctions can
be expanded in polar coordinates as(

un,m(y)
vn,m(y)

)
=

kcut∑
k=0

(
α
(m)
nk

β
(m)
nk

)
eimϕ

(
y√
ζ

)|m|
L
|m|
k

(
y2

ζ

)
e−

y2

2ζ ,

(16)

with L
|m|
k denoting the generalized Laguerre polynomial

of indices k and |m|. Substituting this expression into
the eigenvalue equations (15) allows us to determine the

coefficients α
(m)
nk and β

(m)
nk . Finally, as a last step, we can

now take the Fourier transform of the functions φ0(y),
us(y) and vs(y) numerically and evaluate the expectation
value 〈n̂k〉 and the correlation function C(k,k′) [48].

III. RESULTS

A. Wave functions

Typical examples of the condensate wave functions
and the radial parts of the Bogoliubov eigenfunctions
are shown in Fig. 2. The anomalous component of the
quasiparticle wave function, vn,m(y), originates from the
interaction with the single-mode part of the condensate,
and its support is determined by the extension of the
latter. In contrast, the normal component un,m(y) is not
constrained to the regime ϕ0 6= 0, and for high energy
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FIG. 2. Radial part of the dimensionless Bogoliubov eigen-
functions Rcun,m(x), Rcvn,m(x) plotted as a function of the
dimensionless radial coordinate y = |x|Rc for (n,m) = (50, 0)
(top) and (n,m) = (40, 20) (bottom), corresponding to exci-
tation energies ε50,0/µ = 1.6 and ε40,20/µ = 1.5 respectively.

Here Rc =
√

2µ/(mω2) is the typical size of the condensate,
ζ−1 = 2µ/(h̄ω) = 100 and µR2

c/g = 1250, corresponding

to N = 1962 particles and 〈δN̂〉 = 608. In the top figure,
the dimensionless single-mode condensate wave function φ0 is
also displayed. The anomalous part vn,m is nonzero only in
the regime of the condensate, while the normal part un,m of
the wave function can be more extended. For m 6= 0 both
un,m → 0 and vn,m → 0 at the center of the trap.

quasiparticles it resembles to a harmonic oscillator wave
function. Furthermore, as the corresponding excitation
energy εn,m increases, the interaction energy becomes
negligible compared to the kinetic and potential energies,
leading to a decrease in the amplitude of vn,m(y).

The Fourier transforms of the radial parts of the eigen-
functions are plotted as a function of the dimensionless
wave number |k|Rc in Fig. 3. The normal component
un,m(k) involves many momenta, and is therefore quite
extended in Fourier space. The Fourier transform of the
anomalous component vn,m(k), however, exhibits a well-
defined peak at kpeak. This is explained by the fact that
vn,m(y) is constrained to the regime where the conden-
sate is present, and there it oscillates with an approxi-
mately constant radial wave number, k ≈ kpeak.

B. Particle number distributions

The expectation values of the particle number n̂k, de-
termined from Eq.(12), are plotted in Fig. 4 for different
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FIG. 3. Radial part of the dimensionless Fourier trans-
formed Bogoliubov eigenfunctions un,m(k)/Rc, vn,m(k)/Rc

as a function of the dimensionless wave number |k|Rc for
(n,m) = (50, 0) and (n,m) = (40, 20), corresponding to ex-
citation energies ε50,0/µ = 1.6 and ε40,20/µ = 1.5 respec-

tively. Here Rc =
√

2µ/(mω2) typical size of the condensate,
ζ−1 = 2µ/(h̄ω) = 100, and µR2

c/g = 1250, corresponding to

N = 1962 particles and 〈δN̂〉 = 608. The anomalous compo-
nent vn,m(k) has a well defined peak at wave number |kpeak|
and vanishes for lower |k|, while the normal part un,m(k) is
extended in momentum space.

dimensionless interaction strengths g̃. The contribution
〈δn̂k〉 of the non-condensed particles is shown separately.
The expectation values are dominated by the single mode
part of condensate, giving rise to a large and narrow
peak at small wave numbers, |k| <∼ 1/Rc. Increasing
g̃ amounts in more extended condensate wave functions
in real space, and thereby a narrower peak in 〈n̂k〉. The
non-condensed fraction, 〈δn̂k〉, gives only a negligible cor-
rection for small momenta, |k| <∼ 1/Rc. However, it de-
cays approximately as 1/|k|, much more slowly than the
central condensate peak, and dominates the large wave
number behavior, |k| > 1/Rc. For even larger values be-
yond the inverse healing length, |k| � √mµ/h̄ ≡ ξ−1h ,
〈δn̂k〉 goes rapidly to zero in a universal fashion as
∼ 1/|k|4 [30, 49, 50] (see also Fig. 5). Although small in
amplitude, the contribution from δnk hosts about∼ 30%
of the particles for the interactions considered here. In-
creasing g̃ depletes the condensate further and leads to a
gradual increase in 〈δn̂k〉.

The expectation value of the non-condensed fraction,
〈δn̂k〉, is investigated in more detail in Fig. 5, where we
compare our numerical results with the momentum dis-
tribution of a homogeneous gas. Decreasing the trapping
frequency ω, while keeping the density of the condensate
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FIG. 4. Dimensionless expectation values 〈n̂k〉/l20 as a func-
tion of |k| l0 for N = 1962 and for dimensionless interaction

strengths g̃ = 1 and g̃ = 4, corresponding to 〈δN̂〉 = 145

and 〈δN̂〉 = 608. Dotted lines represent contributions of non-

condensed particles 〈δn̂k〉/l20, with l0 =
√
h̄/(mω), multiplied

by a factor of 50 for better visibility. The extension of the
condensate increases with increasing g̃, and the peak in 〈n̂k〉
gets narrower. The long tail quasiparticle contributions 〈δn̂k〉
get more pronounced with increasing g̃.

at the center of the trap and the interaction strength (or,
equivalently, the healing length ξh = h̄/

√
mµ) constant,

amounts in a slowly varying condensate wave function in
a wide central region. Therefore, in this limit, a homoge-
neous system is expected to yield a good approximation
for the non-condensed fraction 〈δn̂k〉. To make a precise
comparison, however, we need to keep in mind that nk
is dimensionful, and scales as nk ∼ (length)2. In our
case, the size of the condensate Rc plays the role of the
system size L of a homogeneous system. Therefore, to
recover the homogeneous result, we need to investigate
the dimensionless expectation value 〈δn̂k〉/R2

c . Since the
density of the condensate at the center of the trap scales
as ρ(0) ∼ N/R2

c ∼ Nζ2/ξ2h, we calculated 〈δn̂k〉/R2
c for

different ζ values, while keeping Nζ2 and ξh constant.
As shown in Fig. 5, with decreasing ω, the height of the
peak in 〈δn̂k〉/R2

c scales as ∼ 1/ω, and the peak posi-
tion shifts to smaller wave numbers, such that the high
momentum part traces out a common envelope function,
just the momentum distribution of a homogeneous gas.

The momentum distribution of a homogeneous system
of size Rc and density ρ0 is given by [51]

〈δn̂k〉hom
R2
c π

=
1

2

(
(kξ0h)2 + 2√

(kξ0h)2((kξ0h)2 + 4)
− 1

)
, (17)

with ξ0h = h̄/
√
mgρ0 the healing length of the homo-

geneous gas, and R2
c π the volume of the cylindrically
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FIG. 5. Scaling collapse of 〈δn̂k〉/R2
c , plotted as a function

of k ξh for different ζ = h̄ω/(2µ)’s, while keeping g̃ = 4

and ρ(0) constant. Here Rc =
√

2µ/(mω2) is the typ-
ical size of the condensate, ξh = h̄/

√
mµ is the healing

length with µ = gρ(0), and we used ζ−1 = 25, ζ−1 = 50

and ζ−1 = 100, corresponding to (N, 〈δN̂〉) = (121, 34),

(N, 〈δN̂〉) = (489, 145) and (N, 〈δN̂〉) = (1962, 608) respec-
tively. The homogeneous momentum distribution, Eq. (17),
is also plotted for comparison, yielding good agreement with
the common envelope function traced out by 〈δn̂k〉/R2

c as ω
decreases. Inset: non-condensed contribution 〈δn̂k〉/R2

c , plot-
ted as a function of kRc for g̃ = 4 and ζ−1 = 25, using log-
arithmic scale on both axis. Homogeneous distribution, Eq.
(17), is also shown. For large wave numbers |k| � 1/ξh, the
universal power law decay ∼ 1/|k|4 is recovered.

symmetric system. To make a quantitative comparison
with our numerical results, plotted in Fig. 5, to Eq.
(17), we have chosen ρ0 as the average density of the
inhomogeneous trapped gas. In the limit of small confin-
ing frequency ω, the condensate is well described by the
Thomas-Fermi profile, yielding ρ0 = ρ(0)/2.

We find good agreement with the common envelope
function without any further fitting parameter. The non-
condensed contribution, 〈δn̂k〉, decays as ∼ 1/|k| for
wave numbers 1/Rc � |k| � 1/ξh, while for even larger
momenta, |k| � 1/ξh, the expected ∼ 1/|k|4 decay is
recovered (see inset of Fig. 5) [30, 49, 50].

C. Correlation functions

In Section II A, we derived the correlation function
C(k,k′) = 〈δn̂kδn̂k′〉 within the particle number con-
serving Bogoliubov approach, and separated the leading
(∼ |δψ|2) and subleading (∼ |δψ|4) contributions from
the leading shot noise signal in the terms C(1)(k,k′) and
C(2)(k,k′), respectively. These contributions, given by
Eqs. (14a) and (14b), are plotted in Fig. 6 for wave
numbers k′ = k and k′ = −k for various interaction

strengths g̃. The variance of the particle number n̂(k)
is given by the sum of the singular shot noise term and
the diagonal correlations C(k,k), so the diagonal part
C(k,k) is not necessarily positive. However, the off-
diagonal part C(k,−k) develops a more pronounced an-
ticorrelation dip, due to the depletion of the condensate
by quasiparticle excitations.

The non-connected part 〈n̂k〉〈n̂k′〉 of the correlator
〈n̂kn̂k′〉 does not distinguish between diagonal and off-
diagonal correlations, and follows readily from Fig. 4.
Although this large signal is subtracted in the correlation
function, Eq. (13), it still provides a large background in
an experiment and may therefore be hard to separate it
from the more interesting part of the signal (see Fig. 7).
Similar to 〈n̂k〉, the product 〈n̂k〉〈n̂k′〉 exhibits a sharp
peak with typical width |k′| ∼ |k| ∼ 1/Rc, originating
from the single-mode condensate, also shown in Fig. 4.
The expectation values 〈n̂k〉 being invariant under rota-
tions, 〈n̂k〉〈n̂k′〉 is clearly also independent of the relative
directions of k and k′, and is ’cylindrically’ symmetrical.

The leading contribution C(1), shown in the top pan-
els of Fig. 6, accounts for correlations between the
single-mode condensate and the non-condensed fraction
of the gas. Consequently, similar to ϕ0(k), C(1) is con-
strained to small wave numbers, and decreases rapidly
for |k| > 1/Rc. The function C(1) exhibits an anticorre-
lation dip in the off-diagonal k′ ≈ −k for wave numbers
|k| ∼ 1/Rc. This dip dominates the small momentum
behavior of C(k,k′), and gets more pronounced for in-
creasing interaction strength. The negative correlation
observed originates from particle number preserving pro-
cesses, where the interaction g creates quasiparticle pairs
from the condensate. The coherent transfer of these par-
ticle pairs between the single-mode condensate and the
non-condensed fraction of gas is responsible for the anti-
correlation dip in C(1) (see also Section III D) [52]. No-
tice that this anticorrelation also appears in the standard
grand canonical Bogoliubov approach: there the factors
ϕ0(k) and ϕ0(k′) in the first four terms of Eq. (14a)
emerge as the coherence factors of the condensate, and
ϕ0 and ϕ∗0 correspond to removing or adding a particle to
the condensate. Therefore, these terms can be associated
with particle number conserving processes, captured to
a certain degree already by the usual (non-conserving)
Bogoliubov approach.

Finally, the contribution C(2), shown in the bottom
panels of Fig. 6, describes correlations within the non-
condensed (more precisely, non single-mode condensed)
cloud, but also incorporates contributions arising within
the particle number conserving Bogoliubov approach,
generated by the term −|ϕ0(k)|2 δN̂ in the expression
of nk, Eq. (11). These latter contributions give rise to a
central peak of width ∼ 1/Rc, and yield a small correc-
tion to the leading order correlations between the single-
mode condensate and the non-condensed particles, con-
tained in C(1). Correlations within the non-condensed
fraction, captured by the other terms in C(2), result in
a slowly decaying positive correlation tail both in the di-
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FIG. 6. Different contributions to dimensionless diagonal and offdiagonal correlation functions C(k,k)/l40 and C(k,−k)/l40,
plotted as a function of dimensionless wave number |k| l0 for fixed N = 1962 and for two different interaction strength g̃ = 1

and g̃ = 4. Here l0 =
√
h̄/(mω) is the oscillator length, and the interaction values correspond to 〈δN̂〉 = 138 and 〈δN̂〉 = 608

respectively. The condensate-quasiparticle contribution C(1) gives a positive peak in diagonal correlations, but gets negative in
the offdiagonal, expressing that quantum fluctuations deplete the condensate. As in a homogeneous system, the quasiparticle-
quasiparticle correlation C(2) is positive both in the diagonal and in the offdiagonal. However, this contribution is much smaller
than C(1) for wave numbers of the order of 1/Rc. The amplitude of the correlations C(1) and C(2) increases with increasing
interaction strength, as the hybridization of the condensate with virtual excitations gets more pronounced.

agonal, k′ = k, and in the offdiagonal, k′ = −k. This
positive correlation is qualitatively similar to the simple
Bogoliubov result, valid for weakly interacting homoge-
neous condensates [32]. Albeit their contribution is small
compared to the amplitude of the central peaks in C(1),
quantum fluctuations dominate the correlation function
for wave numbers |k| � 1/Rc, showing that the fluctu-
ating part of the ground state consists of pairs of quasi-
particles, as visualized in Fig. 1. The amplitude of this
correlation tail is sensitive to interactions, and is further
enhanced by increasing interaction strength g̃.

To gain further insight into the structure of C(k,k′),
we have plotted in Fig. 8 the correlation functions
C(1)(k,k′) and C(2)(k,k′), as functions of k while keep-
ing k′ fixed. For |k′| of the order of 1/Rc, opposite to
the positive peak at k = k′, an anticorrelation dip arises
around the wave number k = −k′ in the condensate-
quasiparticle contribution C(1), in accordance with the
results plotted in Fig. 6. This structure, reflecting cor-
relations between the quasiparticles and the condensate,
disappears for wave numbers |k′| � 1/Rc (bottom row
in Fig. 8), where positive correlations appear for wave
numbers k opposite to k′.

As shown in the bottom row of Fig. 8, for |k′| � 1/Rc
two narrow positive peaks can be observed in C(2) around
wave numbers k = k′ and k = −k′. These positive
contributions originate from pair correlations inside the
non-condensed fraction of the gas, and are related to
the slowly decaying positive tail of the diagonal and off-

diagonal correlation function, plotted in Fig. 6. These
pair correlations dominate the tails of ToF images of the
condensate. For small momenta, |k′| ∼ 1/Rc, however,
the correlation function C(2) is dominated by a central
peak of typical width ∼ 1/Rc, originating from sublead-
ing, fourth order corrections in the fluctuations δψ.

D. Simple model for correlations

The structure of the correlation function C(k,k′),
discussed above, provides detailed information on the
ground state of the system. The slowly decaying pos-
itive tail around k = −k′ for |k| � 1/Rc is a sign of
excitations created in pairs k and −k, characteristic to
the familiar two-mode squeezed structure of the Bogoli-
ubov wave function. On the other hand, the negative
off-diagonal correlations found for |k| � 1/Rc show that
these pairs of excitations are created coherently from the
single mode condensate by quantum fluctuations.

To illustrate the latter point, let us consider the corre-
lations present in two different simple model states, both
showing a pair structure of excitations. We first consider
a pure state with coherently created excitations, then we
calculate the correlations for a mixed state as well, where
this coherence is lost. We show that a p-wave like struc-
ture of the correlation function only emerges in the first
case, for coherent quantum fluctuations.

Let us first take the following pure state, with excita-
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correlation function C(k,−k)/l40, plotted as a function of di-
mensionless wave number |k| l0 for particle number N = 1962
and interaction strength g̃ = 4, using logarithmic scale on
vertical axis. Here l0 =

√
h̄/(mω) is the oscillator length,

and the interaction corresponds to 〈δN̂〉 = 608. The back-
ground signal 〈n̂k〉〈n̂−k〉/l40 shows a steep decrease due to
the disappearance of condensate wave function, followed by
a slower decay as an effect of non-condensed particles. The
condensate-quasiparticle contribution C(1) is constrained to
the regime of the single-mode condensate, and converges to
zero rapidly for |k| � 1/Rc. The quasiparticle-quasiparticle

correlation C(2) gives a slowly decaying tail, dominating the
correlation function for |k| � 1/Rc.

tions created in pairs,

|A〉 =

[(
b̂+0

)2
− g b̂†+b̂

†
−

]
|0〉.

Here b̂†0 denotes a bosonic creation operator, correspond-
ing to the condensate with the cylindrically symmetric

wave function ϕ0(r) ≡ ϕs(r). Similarly, b̂†± represent
bosonic fluctuations (δψ), orthogonal to ϕ0. By orthogo-
nality they must have a p-wave structure in the simplest
case: ϕ±(r) ≡ ϕp(r)e

±iϕ, with (r, ϕ) denoting polar co-
ordinates. Indeed, we verified numerically that the exci-
tations with p-wave structure, s = (n,m = ±1), give rise
to the dominant contribution to C(1).

For a small admixture of the ϕ± states, g � 1,
the state |A〉 can be used as a simple model captur-
ing the ±k pair structure of the Bogoliubov ground
state, with fixed particle number 2. Let us now cal-
culate the correlations induced by |A〉, CA(k,k′) =

〈A|ψ̂†(k)ψ̂†(k′)ψ̂(k)ψ̂(k′)|A〉, and inspect the different
contributions ordered according to the power of g.

Using cylindrical coordinates k ↔ (k, θ), we can ex-
press the Fourier transforms of the wave functions ϕs,±

as

ϕs(k) ≡ ϕs(k) = 2π

∫
dr r ϕs(r)J0(kr),

ϕ±(k) ≡ −i ϕp(k)e±iθ = −i 2π

∫
dr r ϕp(r)J1(kr)e±iθ,

with J0 and J1 denoting Bessel functions. By using these
relations, it is easy to see that the ∼ g0 contribution to
CA(k,k′) will be cylindrically symmetric. However, the
terms proportional to g will give a contribution

∼ g ϕs(k)ϕs(k
′)ϕp(k)ϕp(k

′) cos(θ − θ′). (18)

This term has the same p-wave symmetry, as the
condensate-quasiparticle correlation function C(1), and
corresponds to positive correlations for k = k′, but re-
sults in an anticorrelation dip for k = −k′.

The terms proportional to g2 can be divided into a
cylindrically symmetric contribution, and an additional
term

∼ g2 ϕp(k)2ϕp(k
′)2 cos(2(θ − θ′)). (19)

As expected from the pair structure built into |A〉, the
d-wave symmetry of this contribution is consistent with
the large wave number behavior of the quasiparticle-
quasiparticle correlation function C(2), resulting in pos-
itive correlation for k = ±k′. At the tails of the ToF
image, however, all higher harmonics contribute to the
density profile. Repeating the preceding analysis with
ϕ±(r) ≡ ϕm(r)e±imϕ for arbitrary m shows that the
term proportional to g2 depends on the angles θ and θ′

as cos(2m(θ − θ′)), still leading to positive correlations
for θ − θ′ ≈ π. To contrast this even structure of C(2)to
the odd p-wave symmetry of C(1), we refer to it as a
”d-wave” structure – in spite of the presence of higher
harmonics.

In order to show, that the contribution given by Eq.
(18) can indeed be identified as a sign of coherent quan-
tum fluctuations, let us now consider a mixed state, ex-
hibiting a pair structure similar to |A〉, described by the
density matrix

ρ̂ = |B〉〈B|+ g2|C〉〈C|,

with |B〉 = (b†0)2|0〉 and |C〉 = b†+b
†
−|0〉. The calculation

of the correlation function Tr
(
ρ̂ ψ̂†(k)ψ̂†(k′)ψ̂(k)ψ̂(k′)

)
shows, that the first order contribution Eq. (18) disap-
pears, while the quasiparticle-quasiparticle term, given
by Eq. (19), persists. Thus the relative phase between
the two terms in |A〉, i.e. the coherence of the interaction
induced quasiparticle pairs, is crucial for the anticorrela-
tions observed here and in Ref. [31].

IV. CONCLUSION

We have studied the momentum distribution and the
density correlation function of a two-dimensional, har-
monically trapped interacting Bose gas. Concentrating
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FIG. 8. Dimensionless correlation functions C(1)(k,k′)/l40 and C(2)(k,k′)/l40 plotted as a function of dimensionless wave number

k l0, for fixed values of k′. Here l0 =
√
h̄/(mω) oscillator length, and we have used ζ−1 = 100 and g̃ = 4, corresponding to

N = 1962 particles and 〈δN̂〉 = 608. First row: k′ l0 = (0.16, 0). The condensate-quasiparticle correlation C(1) is positive if

k and k′ point to the same direction, and gives negative contribution in the k′ ≈ −k regime. The positive correlation C(2)

is concentrated to small k l0 wave numbers, due to subleading corrections to condensate-quasiparticle correlations contained
in C(1). Second row: k′ l0 = (2, 0). The dominant contribution here is the quasiparticle-quasiparticle correlation C(2), giving
negative values for small wave numbers, and narrow positive peaks around k = k′ and k = −k′, expressing correlations in the
non-condensed fraction of the gas.

on the interplay of quantum fluctuations, confinement
and particle number conservation, we performed the cal-
culations at zero temperature, using a particle number
preserving Bogoliubov-approach.

To characterize the system, we have first calculated
the momentum distribution function for various interac-
tion strengths g̃, which is dominated by a central peak
originating from the single-mode condensate. The am-
plitude of the non single-mode condensed fraction of the
gas is clearly overwhelmed by this central peak. How-
ever, this latter contribution is much more extended in
Fourier space, giving a slowly decaying tail. Therefore, it
can possibly be disentangled from the single-mode con-
densate peak experimentally.

By studying the correlation function C(k,k′) ≡
〈δn̂kδn̂k′〉, we showed that the anti-correlations between
opposite wave numbers k and −k, experimentally ob-
served for one-dimensional quasi-condensates [31], also
appear for higher, d = 2 dimensional systems. More-
over, by separating C(k,k′) into two parts, we identified
two distinct contributions to the correlation function, ex-
hibiting different symmetries.

The first contribution, C(1), describing correlations be-
tween the single-mode condensate and the non-condensed
fraction of the gas, is responsible for the development
of the anti-correlation dip around k′ = −k. This dip
seems to originate from particle number preserving pro-
cesses, coherently moving particle pairs between the sin-
gle mode condensate and the non-condensed cloud. For
our d = 2 dimensional system at T = 0 temperature, the
spatial extension of the condensate, Rc, takes over the
role of thermal wave length lφ, determining the region of
anti-correlations in a one-dimensional quasi-condensate
[31], thus the momentum-space extension of the anti-
correlation dip is set by 1/Rc.

In addition to the anticorrelations between nearly op-
posite wave numbers, k ≈ −k′, mentioned above, C(1)

also contains forward correlation for particles of simi-
lar momenta, k ≈ k′. The momentum space correla-
tions between the single-mode condensate and the non-
condensed fraction of the gas, C(1), thus exhibit a char-
acteristic p-wave structure, and dominate the full corre-
lation function C(k,k′) in the region of small wave num-
bers |k|, |k′| ∼ 1/Rc.
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The other part of the correlation function, C(2), stems
from correlations within the non-condensed fraction of
the gas. It decays slowly as ∼ 1/|k|2 with a positive tail
around the offdiagonal k′ ≈ −k, similarly to the Bogoli-
ubov result for homogeneous systems. This contribution
exhibits a ”d-wave”-like symmetry with positive corre-
lations both in the k′ ≈ k and k′ ≈ −k regimes, and
dominates the full correlation function in the region of
large wave numbers, |k|, |k′| � 1/Rc, where short dis-
tance correlations at scales λ� Rc are probed.

The anticorrelations observed seem to rely on several
important ingredients: First, they reflect the dominant
p-wave character of the quantum fluctuations, as sup-
ported by a careful analysis of the interaction-induced
quantum fluctuations [53]. Second, they evidence the
coherent nature of these quantum fluctuations. Finally,
they appear to be related to processes, where particles
move between the single mode part of the condensate and
the fluctuating part, δψ. Indeed, all important features
discussed in the previous paragraphs can be captured by
a simple toy model incorporating these three ingredients
(see Section III D). The contributions C(1) and C(2) re-
veal important information about the structure of the
interacting superfluid state. The even symmetry of C(2)

reflects that long wave length excitations are created in
pairs ±k from the single mode condensate, while the p-
wave structure of C(1) evidences the coherence of the
quantum fluctuations.

In actual experiments, one measures the full correla-
tor 〈n̂kn̂k′〉 instead of the connected part C(k,k′), yield-
ing a large, cylindrically symmetric background signal
〈n̂k〉〈n̂k′〉. This results in a background ∼ N1/2 times
larger than the anti-correlation dip in the connected part
around π/Rc. However, C(1) exhibits a different, p-wave
symmetry, making its experimental detection possible.

On the other hand, the positive ”d-wave”-like tail of
C(k,k′) scales as ∼ (Ng̃)2. Being of the same order
of magnitude as the background, it could be experimen-
tally accessible. To observe these correlations, however,
one needs to investigate the tails of the ToF image with
momenta |k| >∼ 1/Rc.
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