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X-ray spectroscopy is an important tool for the investigation of matter. X rays primarily interact
with inner-shell electrons creating core (inner-shell) holes that will decay on the time scale of at-
toseconds to few femtoseconds through electron relaxations involving the emission of a photon or an
electron. The advent of femtosecond x-ray pulses expands x-ray spectroscopy to the time domain and
will eventually allow the control of core-hole population on timescales comparable to core-vacancy
lifetimes. For both cases, a theoretical approach that accounts for the x-ray interaction while the
electron relaxations occur is required. Here we describe a time-dependent framework, based on solv-
ing the time-dependent Schrédinger equation, that is suitable for describing the induced electron

and nuclear dynamics.

PACS numbers: 42.50.Tx, 42.65.Ky, 32.30Rj

I. INTRODUCTION

For nearly a century, x rays have evolved into an impor-
tant tool for spectroscopic applications primarily due to
their element specificity [1]. X-ray absorption, emission,
and Auger as well as photoelectron spectroscopy have
been used to investigate systems ranging from atoms and
molecules in the gas phase [2] to surfaces, interfaces, and
solids [3].

Over the past decades optical spectroscopy has rapidly
progressed towards time-resolved approaches. The ad-
vent of femtosecond laser spectroscopy opened the possi-
bility to observe very fast nuclear dynamics and have
access to resolve even the vibrational motion of some
molecular systems in real time. The wide active area
of research that resort to those time-resolved studies is
nowadays known as Femtochemistry [4]. In the field of
Femtochemistry, the common experimental setup is the
use of two femtosecond optical lasers, the first one, the
pump, excites the molecule while the second one, the
probe, probes the induced molecular dynamics. Fem-
tosecond laser spectroscopy has provided real-time stud-
ies of dynamics in chemical reactions, materials, and bi-
ological systems.

The field of time-resolved x-ray spectroscopy has devel-
oped over the past years [5, 6] and ultra-intense femtosec-
ond pulses from free-electron lasers have opened the door
for ultrafast investigations on time-scales similar to core-
vacancy decay [7-10]. New approaches for pump/probe
techniques involving inner-shell electrons using either op-
tical pump schemes at high-harmonic sources [11-16] or
xuv [17, 18] and x-ray pump schemes at free-electron
lasers [19-22] are pursued.
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From the fundamental point of view, the x-ray inter-
action of such short pulses with matter yields interest-
ing questions to be explored, as the timescale of the x-
ray probing is comparable with the electron relaxation
processes triggered by the absorption of the same x-ray
pulse. When an x-ray photon is absorbed by a molecule,
a core electron is promoted into a highly-excited state
leaving behind a core-hole state. Those states are quite
unstable and decay rapidly between hundreds of attosec-
onds to few femtoseconds. Hence, it is possible to tailor
the dynamics of the core-hole states before their decay,
a unique feature of these ultrashort x-ray pulses. The
understanding of this interaction is crucial for the devel-
opment of unprecedented nonlinear spectroscopy meth-
ods with few-femtosecond and attosecond time resolution
[23].

The theoretical models for x-ray spectroscopy are still
mostly tailored towards the static case [2] but in light of
the rapidly developing time-resolved x-ray experiments
new time-dependent theoretical approaches are needed.
In this paper I describe a time-dependent approach that
is based on a time-dependent Schrodinger equation for-
malism that includes core-level states, which are rele-
vant to x-ray spectroscopy. Similar time-dependent ap-
proaches have been developed in the past in the context
of vibrational interference effects on autoionizing electron
spectra [24]. The approach introduced here can describe
both resonant and nonresonant x-ray excitations. The
formalism is benchmarked against x-ray absorption and
Auger emission data of diatomic molecules and it shows
excellent agreement with experimental spectra. With the
time-dependent Schrodinger approach we have a new tool
at hand to describe time-resolved experiments in the x-
ray domain that can easily expanded to larger systems.



II. THE THEORETICAL MODEL

The theoretical approach is based on solving the time-
dependent Schrodinger equation (TDSE) restricted to
those electronic states that are involved in the main dy-
namics. In a molecule, the Hamiltonian may be written
in two terms, the electronic and nuclear Hamiltonian

Hy=H, + H, (1)
where
i, = ZK +ZV”€>+ZV;§.‘?), (2)
i>j'

HH_ZK +ZV“%”’). (3)
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The wavefunction of the system depends both
on the electronic and nuclear coordinates ¥ =

U(X,R), where X = {x1,X2,..Xj,..xn} and R =
{R1,Rq,..Ri,...Rm}. The wavefunction can be ex-
panded as ¥ = > b (R)BY (X, R), being &L an

eigenstate of the electronic Hamiltonian for a specific nu-
clear coordinates R, that is

H.9(X,R) = EYR)2{?(X,R). (4)

Calculating the Coulomb electron repulsion of all elec-
trons is an impossible task for molecules having more
than two electrons. It is the aim of Quantum Chem-
istry codes to perform calculations approximating the
Coulomb repulsion and obtaining a solution close to con-
sidering all electron correlations. In general, we can al-
ways assume that the electronic Hamiltonian of the sys-
tem is composed by two terms

He = I—:’eff + V;" (5)

where H.g is the effective Hamiltonian that approximates
the electron correlations, and V. is the residual term that
is not accounted. As better our approximation to the
electron correlations is, as smaller the contribution of the
residual potential is. Within the Hilbert space given by
the effective Hamiltonian, the wavefunction can be ex-
panded as ¥ = > b,(R)®,(X,R), being ®, now an
eigenstate of the effective Hamiltonian

I—:’effq)a(X7 R) = Ea(R)(I)a(Xv R) : (6)

The total Hamiltonian of the molecule is expanded, by
using ansatz (1), as

HyW = 0u(X,R)[H, + Es(R) + V2(R)]ba(R)

+) ba(R)

In the Born-Oppenheimer (BO) approximation, the
change of the nuclear wavepacket is considered much
slower in time than the electronic wavepacket, and the
second term of Eq. (7) is neglected during the time

> Kidu(X.R).(7)

evolution. If we consider the coupling with an electro-
magnetic wave field V;(t), the total Hamiltonian H(t) =

Ho + Vi(t) is time-dependent and then our wavefunction
will have an explicit dependence with time as U(t) =
> uba(R, )P (X, R). Assuming that the external field
mainly couples with the electrons, the total Hamiltonian
is, within the dipole approximation,

H(t)U(t) =
Z(I)X

+Zba(R

The time evolution of the quantum system will be
described by the time-dependent Schrédinger equation
10V (t)/0t = H(t)V(t), using equation (8) this is

sz (R, t)®

> 0o (X,R)[Hy + Vi(t) + Eo(R) + Vi (R)]ba (R, 2)

a

) Hn + Eo(R) + Vo (R) + Vi(1)]ba(R, t)

t)[Z K;®,(X,R). (8)

JX,R) =

+3 ba(R,1) [Z Ki®,(X,R)].(9)

We can interpret the written time-dependent
Schrédinger equation as nuclear wavepackets prop-
agating along different potential energy surfaces (pes),
and those nuclear wavepackets can jump to different
electronic pes via the light interaction and nonadiabatic
couplings, but also due to the residual potential V.
not accounted in the effective Hamiltonian. Note that
the nuclear wavepacket amplitudes b,(R,t) are in the
space representation, instead of using the conventional
expansion in vibrational states. This has a numerical
advantage in solving the TDSE for ultrashort pulses. In
the common ultrafast experiments, the molecule is in
the ground state or some low-lying excited state. The
ultrashort pulse excites the molecule into several states,
but due to the localized action of the light-interaction
coupling, the excited superposition is well localized in
space. If the timescale of the interaction is on the order
of hundreds of femtoseconds, we can contain the entire
wavefunction in a small spatial grid. With this spatial
representation we do not need to calculate explicitly
then vibrational or dissociative states.

Solving the complete TDSE is quite demanding, an
for numerical purpose, it is a better strategy to limit
the electronic states to those that are important during
the time evolution of the system. Similar models have
been used before, see for example Refs. [22, 24, 25]. In
the following, we discuss in detail two particular cases of
the time-dependent Schroédinger equation for inner-shell
dynamics (TDSE-IS), the nonresonant and resonant core
excitation with Auger decay. However, this approach is
quite general and it can be extended to more complex
systems by considering more electronic states.



A. Nonresonant core excitation

In this section we consider the physical scenario that a
core electron is ionized, leaving behind a core-hole state.
We will assume that the core-hole state mainly decays
by Auger processes (this is the case for light atomic ele-
ments). We restrict the ansatz of the system to

b(t) = bo(R, )X, R) + ) > beyi(R, 1) i (X, R) +

Z Z bee,ij (R, t)q)aea;ij (X, R) (10)
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where by stands for the amplitude of the ground state,
be,; for the core-hole states after x-ray photoionization,
and be.,.;; for the final states after Auger decay. Using
the ansatz (10) in Eq. (9), and projecting onto an specific
electronic state and integrating over the electron coordi-
nates we obtain a system of equations of motion (EOM)
for the amplitudes

ibo(R, ) = [Hy + Eo(R)] bo(R, ) +
PIPBUACEDIEIOR

(11)
ibeii(Ryt) = [Hy + Eoi(R)]boii (R, t) +
(€:4[VI(8)|0) bo(R, 1) +
Z Z(E;i|%|5'; i'Y berir (R, 1) +
el#e i #i
Z Z<5§ i|Vele'eqsi's’) berersivjr (R, 1)
elel, i'j’
(12)

ibee,ij (R, t) = [Hp + Eec,ij(R)] bee, i (R, 1) +
Z Z<55a§ ij|Vele's @) berwr (R, £) +

o> (eearifVile'el; i) x

g'el Feeq iV jF#ij
bs’sg;i’j’ (Rv t) y
(13)

where
(Vi) = [ 4X (X R) Vi(t) 0 (X.R)
(a|V,|d") = /dX " (X,R) V. (R) 2, (X,R)

The energies of the ground state, core-excited states,
and final states are given by Fy, F.,;, and E..,;; respec-
tively. We have neglected the nonadiabatic coupling in
Eq. (9), also the terms

(e5i[V2]0) = 0

(eeq; 14| Vr|0) = 0
are not considered, as those are quite small compared to
the other dominant terms that we discuss in the follow-
ing.

In core-shell ionization, when the ionization may come
from several degenerate states or close by in energies, for
example the ionization of 3d electrons in Xe or C 1s elec-
trons in acetylene, then the Random Phase Approxima-
tion (RPA) at the Hartree-Fock level or the multichannel
Hartree-Fock theory provide a good theoretical descrip-
tion of the involved electron correlations, see for example
Refs. [2, 26-29]. The RPA has also been applied at the
level of algebraic-diagrammatic construction (ADC) [30].
The RPA can also be applied in the calculations of Auger
decay transitions [31]. In these approaches, the coupling
between different channels in the final state are consid-
ered. In this work, we consider those electron-correlation
couplings to be zero, that is

(g;i|Vi|e';i")y = 0

(e€a;ij|Vi|e'el;i' 3"y = 0

The system of equations (11), (12), and (13) can be
further decoupled by using the adiabatic approximation,
also known as local approximation [32, 33]. The adi-
abatic approximation can be applied to the ionization
step, this is known in the Quantum Optics community
as Markov approximation [34, 35], and to the Auger de-
cay step. Within these approximations, see more details
in appendix A, the EOMs can be reduced with the deriva-
tion of decay rates I' that accounts for the ionization of
the ground state and the Auger decay of the core-hole
state, and Stark shifts R that account for the dephasing
introduced by the continuum part that has been decou-
pled:
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The symbol P stands for the principal value. The Rabi
frequency of the pulse is given by Q(t), the frequency of
the pulse by w, the dipole moments between ground state
and core-hole states by (0|Vy|e; é), where V7 stands for the
electric dipole moment, i.e. —},q; r; - s where s is the
polarization direction. The ionization rate of the ground
state is related to the term I'y(¢), which depends on the
envelope (intensity) of the pulse. The Auger transitions
are given by the couplings (g;i|V;|e”e!;i"5"”). The de-
cay of the core-excited state is related to the term I'¢; o4,
which is the sum of all Auger transitions allowed in the
system.

B. Resonant core excitation

In this section we consider the physical scenario in
which a core electron is promoted into a bound highly-
excited state, leaving behind a core-hole state. After core
resonant excitation, the system is still neutral (no loss
of electrons). We will assume that the core-hole state
mainly decays by Auger processes. Similarly to the non-
resonant case, we limit the Hilbert space to the electronic
states mainly involves in the dynamics. We consider the
ansatz of the system to be

P(t) = bo(R, )P (X, R) + b:(R,1)P.(X,R) +

Z Z beeasij (R, t)q)caa;ij (X, R),

ca  ij

(15)

where by stands for the amplitude of the ground state,
b. for the core-hole state after resonant excitation, and

ZZ OIViles e l¥410)

Eei+Reiei — By —w
Eo —w)?+ (Tiei/2)?

51 + Rai,ai -

bee,;i; for the final states after Auger decay. Using the
ansatz (15) in Eq. (9), projecting onto an specific elec-
tronic state and integrating over the electron coordinates,
we obtain the EOM for the resonant excitation

ibo(R,t) = [Hy + Eo(R)] bo(R, 1)
+(0[Vr(t)]e) be(R, 1) ,
ibe(R,t) = [H, + E.(R)]b.(R, 1)

+(c[Vi(t)|0) bo(R, 2)

+3 > elVileel; i)
el iy

[ﬁn + Ecaa;ij (R)] bcsa;ij (Rv t)

+ (cea;if|Vrlc) be(R, 1)

+ Z Z (ceq;if|Vylcel; i
el Fea Vj #ij

beer sirjr (R, 1)

bcsg;i’j’ (Rv t) P
i bcaa§ij (R7 t) =

J') %

(16)

We can decouple the EOMs by using the adiabatic ap-
proximation in the Auger step and further reduce the
EOM by using decay rates I' and Stark shifts R parame-
ters. Within the adiabatic approximation, neglecting the



RPA terms, we obtain

ibo(R,t) = [Hyn + Eo(R)] bo(R, 1)

+(0[Vi(t)le) be(R, 1)

ibe(R,t) = [Hy, + E.(R)]be(R, 1)
+(c|V7(£)]0) bo (R, t)

FC(R)
2

+iR.(R)| b(R, 1),

ibee,ij (R, 1) = [Hy + Eee, i (R)] bee, 5 (R, 1)
+ {ceq; 14| Vilc) be(R, E) .

(17)

where
(R L
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IIT. NUMERICAL IMPLEMENTATION

In the introduced theoretical model, the time evolu-
tion of the system is governed by EOMs such as Eqgs.
(14) and (17). By calculating all the electronic prop-
erties at different nuclear geometries -energies, electric
dipole transitions, and Auger dipole transitions-, the nu-
merical problem reduces to solving a system of coupled
ordinary differential equations. For that purpose, we can
use common numerical methods such as Runge-Kutta or
Crank-Nicolson methods.

The electronic calculations can be calculated with stan-
dard Quantum Chemistry codes, besides those matrix
elements involving continuum orbitals. Most common
Quantum Chemistry codes are based on multi-center
grids expanded with localized basis set, most commonly
Gaussian basis. For calculating the energies of the
ground state, core-hole states, and final state, we need
first to choose a level of description for the electronic
correlations, for example Hartree-Fock (HF), Configura-
tion Interaction (CI), Coupled Cluster (CC), or Multi-
Reference CI (MRCI), which determines the Hamiltonian
H.g and the residual V.. Often, for a better description
of the system, we need to use a different level of electron
correlations for different electronic states. For example,
the core-hole state energies have a high-degree of electron
relaxation and a second self-consistent field (SCF) calcu-
lation by imposing a hole in the corresponding core or-
bital results in a much better accuracy [36-38]. If we con-
sider electronic states with different He.g, then we need
to modify correspondingly the EOMs given by Eqgs. (14)
and (17) by including terms with overlapping factors, as
the eigenstates would not be orthogonal anymore.

Most Quantum Chemistry codes do not include the
possibility to calculate continuum orbitals, which are
needed for obtaining matrix elements such as electric

dipole (ionization) and Auger transitions. There are sev-
eral approaches to calculate continuum orbitals, such as
Dyson orbital methods [39, 40] or single-center expan-
sions based on scattering theory [41, 42]. A Stieltjes
imaging is often use in the literature to obtain observ-
ables such as photoionization cross sections [43, 44] or
Auger decay transitions [45]. However, this method do
not allow to obtain the continuum waves required for the
TDSE-IS.

The initial state bg(R, to) has to be calculated prior to
solve the TDSE-IS. Once we have the pes for the ground
state, we can diagonalize the nuclear Hamiltonian, in the
absence of any external field, to obtain the vibrational
states of the ground state, or we can also use an imagi-
nary time-evolution method for this pourpose.

IV. COMPARISON WITH EXPERIMENTAL
DATA

By solving the TDSE-IS we can calculate the most rel-
evant observables to be measured in experiments, even
in static experiments, such as x-ray absorption or Auger
spectra. In the following section we explain in details how
to calculate those observables within this time-dependent
framework and compare it to previously published exper-
imental results.

A. X-ray absorption spectroscopy

X-ray absorption spectroscopy is a very common tech-
nique at synchrotrons. Nowadays those techniques have
been highly refined, mainly due to the experimental ad-
vances in selecting and tuning the photon energy of the
x-ray pulses with a narrow bandwidth. In a x-ray ab-
sorption spectrum we can distinguish two domains: the
x-ray absorption near-edge structure (XANES) and the
extended x-ray absorption fine structure (EXAFS), cor-
responding to low and high photon energies respectively.
XANES contains information about the resonant exci-
tations and continuum excitations near resonances, pro-
viding information about the electronic configuration and
local chemical environment with respect to the absorber.
EXAFS is the high-energy domain where continuum pho-
toelectrons are dominated by single scattering events,
providing information about the coordination number,
type, and distance of ligating atoms with respect to the
absorber. X-ray absorption spectroscopy is a powerful
spectroscopic technique that is used in a wide range of
applications ranging from photochemistry and solar en-
ergy conversion [46-49)], interfacial electron transfer in
photocatalysis and biological enzymatic systems [50], to
materials characterization.

We start discussing the case of static x-ray absorp-
tion spectroscopy. The time evolution of the system is
mainly given by the nuclear wavepackets amplitudes ob-
tained by solving the TDSE-IS. At the end of the x-ray



— TDSE-IS
—— Experiment 1

0015

0.010

0.005

Arbitrary units

0.000

534.0 535.0 536.0
Photon Energy (eV)

5330

FIG. 1. X-ray absorption spectrum for CO in the energy range
of the O 1s — 7" resonance. The TDSE-IS was solved for 50-
fs x-ray pulses at different photon energies with 10'* W /cm?
peak intensity. The vibrational states of the electronic 1s~7*
level is resolved. The experimental data is taken from Ref.
[53].

pulse interaction, the system keeps evolving (electron re-
laxations and nuclear propagation), but the population
in the ground state will remain constant. The difference
of population of what we have at the beginning and af-
ter the x-ray pulse in the ground state will be related
to the absorption signal for a specific photon energy. If
we perform the TDSE-IS using x-ray pulses with different
photon energies, we can then obtain the x-ray absorption
spectrum. We show the calculated x-ray absorption spec-
trum for carbon monoxide in Fig. 1 in the energy range of
the O 1s — 7™ resonance. The pes were calculated using
the quadruple-zeta Dunning basis cc-pVQZ [51] at the
level of multi reference configuration interaction (MRCI)
by using the quantum chemistry code COLUMBUS [52].
In the equilibrium distance the molecule is well-described
by a single reference, and it is a good approximation to
calculate the electric dipole and Auger transitions at the
single reference level, see for example Ref. [54]. We con-
sider a spatial grid for the internuclear distance from 1.2
to 25 a.u., with a spatial resolution of dR = 0.01 a.u..
We solve the TDSE-IS using a fourth-order Runge-Kutta
method. We observe that the vibrational structure of
the resonance is perfectly resolved in spite of the spatial
coordinate representation of the TDSE-IS. The energy
spacing matches very well with the experiment, this is
mainly due to the good description of the pes for the
core-hole state. In the calculations we approximate the
electric dipole moment calculated at the equilibrium dis-
tance to be equal at all nuclear geometries. As the ini-
tial wavepacket in the ground state is well localized, this
approximation is quite good and results in a good agree-
ment between the relative peaks of the vibrational states
in the spectrum. Note that no detector or natural width
broadening have been used in the calculated spectrum,
the represented black line is directly obtained from the
TDSE-IS calculations.

Similarly, for time-resolved studies we can keep track
of the population in the transient states induced by the

pump pulse and then obtain the transient x-ray absorp-
tion spectrum by taking the population difference before
and after the probe pulse.

B. Auger electron spectroscopy

Auger electron spectroscopy is a common technique
used in gas-phase experiments and surfaces of condensed
matter systems [55]. This technique is based on detect-
ing the Auger electron emitted after core-hole decay. Be-
cause we may select a particular electronic state by de-
tecting the Auger electron, we can retrieve information
about the electronic configuration of the system. Also,
the Auger electron may be emitted from the valence shell
and provides thus information about the local chemical
environment with respect to the absorber.

The calculation of the Auger electron spectrum using
the TDSE-IS will be slightly different for the resonant
and nonresonant core excitation. We start discussing the
nonresonant case, in which two electrons are located in
the continuum; the photoelectron and the Auger elec-
tron. Within the TDSE-IS framework we can calculate
the two-electron coincidence measurements, i.e. the mea-
surement of the photoelectron and Auger electron in co-
incidence, given by

P(e,eq) = E&Z/dmbaem(r{, HeE o (18)
ij

In the previous formula, although it is not written ex-
plicitly, we consider also the sum over the other quantum
numbers of the photoelectron and Auger electron. If we
are also interested in the angular resolution of the emit-
ted electrons, then we need to remove the sum over the
orbital angular momenta of the continuum orbitals. The
photoelectron spectrum and the Auger spectrum are then
given by

Pph(g) = Z P(Ev Ea) ) (19)
Pa(ga) = Z P(Eu Ea) ; (20)

respectively. In the resonant case, the previous formulas
of the Auger electron spectrum are reduced to

Pa(ea) :tnrgoz/decga;ij(R, DE. @)
ij

—

In Fig. 2 we show the Auger decay spectrum for CO at
534.5 €V in the O 1s — #* resonance. In the TDSE-IS,
we have only included the thirteen dominant low-lying-
excited states after Auger decay, corresponding to the
emission of Auger electrons with high kinetic energies.
The calculated Auger spectrum is in good agreement
with the experimental spectrum of Ref. [54]. In the
calculated spectrum we are able to observe vibrational
structure, while they are smoothed out in the experimen-
tal spectrum. This could be due to the 350 meV electron
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FIG. 2. Auger electron spectrum for CO excited at 534.5
eV in the O 1s — 7" resonance. The TDSE-IS was solved
for a 50-fs x-ray pulse with 10'® W/cm? peak intensity. The
experimental data is taken from Ref. [54].

energy resolution of the experiment. Also, the peaks lo-
cated in the calculated spectrum around 500 eV should
be shifted to higher kinetic energy by 3 eV. However, the
spectrum is overall well-described and this clearly shows
the versatility of the TDSE-IS to obtain observables that
can be measured in experiments.

V. CONCLUSIONS

In conclusion, we have derived a theoretical approach
that accounts both for x-ray excitation and electron re-
laxation of the core hole in a time-dependent framework.
This approach allows us to describe and explore the un-
derlying mechanism of few-femtosecond and attosecond
x-ray pulses interacting with molecules. This might open
the possibility to explore the role of Auger processes in
the coherent evolution of the nuclear wavepackets as well
as nonadiabatic effects during x-ray excitation. Also, the
introduced theoretical approach is ideal for calculating
momenta distribution retrieved from electron-ion coin-
cidence measurements, which are very sensitive to both
electronic configurations and nuclear geometries. These
techniques will be significantly enhanced at future x-ray

sources with high-repetition rate capabilities. The in-
troduced framework can also be extended in order to
include the interaction of a strong-field laser with the
system and thus study interesting topics of charge mi-
gration in molecules with high-harmonic generation [56—
58]. The strong-field laser is well described within the
Strong-Field Approximation (SFA), and the connection
of the SFA with a quantum formalism has been shown
in Ref. [59], which can be adapted to the present frame-
work. This will enable to explore the SFA in molecules,
both in the ionization as well as the Auger-decay step
[60, 61]. Within this formalism we could also explore elec-
tron dynamics induced by the coupling between different
core-hole states, analogously to previous approaches used
in atomic systems [62, 63].
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Appendix A: Adiabatic approximation

In this section we derive the adiabatic approximation
for the Auger transition step. We start taking the inte-
gral form of Eq. (13)
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t 'y /
/ d' Mt Fecaris RN N 3| Vife' ') boriar (R, 1)

0 el

and including this form into Eq. (12) to obtain a new
equation without the amplitudes of the final states
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The second line can be reduced to a decay rate I' factor
that accounts for the Auger decay yield and a Stark shift
R factor that accounts for the dephasing. In order to
perform the integration in the second line, the core-hole

el

amplitude b./,; (R, ') needs to be expressed in the eigen-
basis of the operator [H,, + Errcir.v 5 (R)]. Therefore, we



express the core-hole amplitude as
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where first we expand the core-hole state nuclear
wavepacket in the core-hole vibrational basis, then ev-
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assuming that (e”e;i"§"|V,|e’;i’) slowly changes with
R. Within the ad1abatlc (Markov) approximation, we
split the time-dependent factors in slow and fast time
variant:
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Note in the second line, that from the sum over all the
vibrational states in the core-hole state () and the final
dication state ('), the energy conservation imposed by
the delta function fixed the value of the Auger electron
energy. Therefore, for every (v,v’) we have a different
Auger electron energy determined by the energy conser-
vation. If we assume that the Auger matrix transitions
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ery vibrational core-hole state wavefunction is expanded

in vibrational states of the electronic level &”¢”i"j",
11 s

t,'j ;l “" 7" heing the coefficients of the transformation

(related to the Frank-Condon factors).
this expansion in order to convert the operators [fln +
Eciennin(R)] into energies and be able to perform the
integration over time ¢’

Now we use
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and we will have a new integral that can be written as
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where P stands for the principal part. Hence, the inte-
gration is split into two terms, and the previous EOM is
then reduced to
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pendent on &, (as it is expected because they should
be mainly dependent on the pes of the electronic core-
hole and dication levels), we can finally derive the second
equation of the EOMs (14) by defining
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Similary, we can use the adiabatic approximation in
the ionization step in order to derive the first equation

of the EOMs (14).

First, we take the integral form of

the second equation (14) and we substitute it into Eq.
(11). We obtain an integral over ¢’. Following a similar
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procedure than in the previous calculations, we divide
the time-dependent factors in slow and fast time vari-
ant. Then we perform the integration and we obtain a
ionization rate I'; and a Stark shift R; factor.
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