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Abstract

We consider electron impact-driven single and double ionization of magnesium in the 10-100 eV

energy range. Our classical Hamiltonian model of these (e, 2e) and (e, 3e) processes sheds light on

their total cross sections and reveals the underlying ionization mechanisms. Two pathways are at

play in single ionization: Delayed and direct. In contrast, only the direct process is observed in

double ionization, ruling out the excitation-autoionization channel. We also provide evidence that

the so-called TS2 (Two-Step 2) mechanism predominates over the TS1 (Two-Step 1) mechanism,

in agreement with experiments.
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FIG. 1: (Color online) Trajectory of each of the three electrons in configuration space during a

double ionization of a target by electron impact. The impact electron is in black, the two electrons

of the target are in gray (red) and light gray (blue). The position of the ionic core is identified by

a cross.

I. INTRODUCTION

A complete understanding of the electronic dynamics and the structure of atoms and

molecules has been the focus of many theoretical and experimental studies. A common

technique to extract information from such small entities is to perturb the system. The

perturbation must be strong enough to compete with the strong Coulomb interactions inside

atoms. Typical methods are the application of intense laser pulses in strong field physics

or the impact of particles in atomic collision physics. The products of such processes are

emitted light or multiple ionization, which are then measured in experiments. Here, we

consider multiple ionization by electron impact to recover some information on the energy
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exchanges between electrons, the electronic dynamics inside atoms, and the structure of

the target. Electron impact processes have a wide range of applicability, ranging from

modeling in fusion plasmas (for a review, see Ref. [1]) to astrophysics (as in planetary upper

atmospheres) [2].

In electron impact experiments [so-called (e, ne) processes], an electron beam is directed

on a target gas of atoms or ions. The gas beam and the electron beam move in perpendicular

directions (crossed-electron-beam– fast-atom-beam method). The target is usually in the

ground state. If the impact energy is in a certain energy range, some of the target atoms

ionize. The scattered and ejected electrons are detected in coincidence so as to properly

compute the various total and differential cross-sections [3]. The (n− 1)-tuple ionization of

a target X by electron impact is described by

X + e− → X(n−1)+ + ne−, (1)

whereX(n−1)+ is the ion with charge (n−1)e. In this article we focus on single and double ion-

ization, i.e. n = 2, 3. The basic mechanisms at play in the ionization of atoms are classified

in two main categories: Direct ionization processes, where the ionization occurs immediately

after the impact, and indirect ionization processes, such as excitation-autoionization, where

the ionization occurs some time after the impact. The following energy regions associated

with different values of the impact energy are sequentially defined [3]:

• The low energy region, where only the outer shell is involved in the ionization processes.

• The intermediate energy region, where the inner shell can also be involved in the

ionization processes.

• The high energy region, where very few atoms are ionized because interaction times

are too brief.

Between the low energy region and the intermediate energy region for Mg, Okudaira

et al [4] (1970), McCallion et al [5] (1992), and Boivin et al [6] (1998), have reported a

“discontinuity” in the total cross section of the double ionization, i.e. (e, 3e) process, in the

40 − 60 eV energy range, evidencing different ionization channels at play. This so-called

discontinuity is a crossover between the direct and the indirect processes [7]. The double

ionization crossover has been observed for a wide variety of targets other than Mg: Be-like
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ions like B+ [8, 9], Ba [10, 11], Ca and Sr [4, 12], Ar and Xe ions [13, 14] (see also Ref. [15]

for other targets).

Reference [16] attributes this discontinuity to the rise of the Auger effect in the interme-

diate energy region. For Mg, the Auger effect is predicted to start at 55.8 eV, and for impact

energy higher than 60 eV, this effect dominates the direct ionization processes. The indirect

processes are usually very well described theoretically with good quantitative agreement

with experimental data. Perturbative methods provide good results for indirect processes

involving tightly bound inner shell electrons of heavy atoms. In contrast, the direct double

ionization is more intricate to handle theoretically since it is driven by strong correlations

between the three electrons (see Refs. [17, 18]).

The double ionization problem is too complex to be treated fully quantum mechanically,

and cannot be treated by sequential approximations or perturbative methods. Reduced

non-perturbative methods have been designed to reproduce quantitatively experimentally

observed cross sections. For example, time-dependent close coupling (TDCC) [19], R-matrix

with pseudostates (RMPSs) [20], and convergent close coupling (CCC) [21], are tested and

benchmarked (see, e.g., Refs. [18, 22, 23]). Cross sections for Mg have been measured

experimentally since the 70s and analyzed theoretically ever since (see Refs. [4–6, 18, 23–

26]).

When it comes to gaining qualitative understanding and uncovering mechanisms, classical

trajectory methods have an excellent track record [27]. Uncovering the influence of the strong

electron-electron interaction on the ionization processes by classical-mechanical means is the

main focus of the present work. We consider a target with two strongly coupled electrons,

such as Mg, and consequently we consider the fully coupled four body Coulomb problem.

Figure 1 shows a typical double ionization trajectory in configuration space, computed from

the Hamiltonian model proposed in Sec. II. An impact electron is sent from the left, far away

from the target, in the direction of the latter, with a given impact energy ǫ0. As a result of

the three electron interaction, the impact electron is scattered and the two target electrons

are ejected from the target. The specific objective of this article is to understand classically

the mechanisms behind the total cross section of the single and the double ionization of Mg.

Our focus is on the direct double ionization where only the two 3s electrons are involved. To

this end, we propose a two-active electron model with a soft-Coulomb interaction potential.

The strong electron-electron interaction inside the target atom is fully taken into account
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in our model. The main advantage of a classical model is two-fold: First, it is easy to

integrate numerically, and second, classical trajectories allow one to visualize the electronic

dynamics in phase space and understand the ionization mechanisms and their occurrence as

parameters (such as impact energy or target) are varied. The proposed classical model is

complementary to quantum approaches. Despite the simplicity of our model, we also provide

evidence that the so-called Two-Step 2 mechanism (TS2, in which the impact electron hits

both 3s outer shell electrons), predominates over the Two-Step 1 mechanism (TS1, in which

the impact electron hits only one 3s electron), in agreement with experiments.

The article is organized as follows: In Sec. II, we introduce the classical two-active electron

model, and we compute and discuss the single and double ionization probability curves as

functions of the impact energy ǫ0. The mechanisms behind these curves are identified and

analyzed in Sec. III. The probability of each mechanism as a function of the impact energy

ǫ0 is computed and compared with the literature.

II. OUR MODEL AND ITS IONIZATION PROBABILITY CURVES

In this section we present the classical Hamiltonian model we choose for the description of

the (e, 2e) and (e, 3e) processes. We consider a two-active electron model for Mg, describing

the dynamics of the two most loosely bound electrons, the 3s electrons. Using this model,

we compute and discuss the single and double ionization probabilities as a function of the

impact energy ǫ0.

A. The model

We consider a d-dimensional configuration space, Rd with d = 1, 2 or 3. The positions

and the canonical momenta of the two active electrons of the target are denoted rk and pk

respectively, with k = 1, 2. We consider a static ionic core (Born-Oppenheimer approxima-

tion) located at the origin of the configuration space. We have checked that all the results

we present below are the same with and without the Born-Oppenheimer approximation, in
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the energy range we consider. In atomic units, the Hamiltonian of the isolated target reads

HT =
|p1|2
2

+
|p2|2
2

− 2
√

|r1|2 + a2
− 2

√

|r2|2 + a2

+
1

√

|r1 − r2|2 + b2
. (2)

Initially, the target is in its ground state of energy Eg defined as the sum of the first two ion-

ization potentials, i.e. Eg = E1+E2 = −0.83 a.u. for Mg. The charged particle interaction we

use is the soft-Coulomb potential [28] which is widely used in strong field atomic physics [27].

The softening parameters a and b, which control the electron-ion and the electron-electron

interaction respectively, are chosen such that the ground state energy surface is not empty

and there is no self-ionization. For Mg, these conditions are satisfied for a = 3 a.u. and any

b [29], so unless otherwise specified, b = 1 a.u. The value of b does not have a qualitative

influence on the ionization mechanisms, as we show in Sec. IIIC.

The position and the canonical momentum of the impact electron are denoted r0 and p0.

The dynamics of the impact electron with its interaction with the target is described by the

following Hamiltonian

HI =
|p0|2
2

− 2
√

|r0|2 + a2

+
1

√

|r0 − r1|2 + b2
+

1
√

|r0 − r2|2 + b2
,

such that the total Hamiltonian is

H = HT +HI . (3)

Initially, the impact electron has a given kinetic energy, denoted by ǫ0, and its position

is far away from the target. This Hamiltonian system has 3d degrees of freedom. We

notice that Hamiltonian (3) is invariant under time translations and rotations (for d ≥ 2).

Consequently, the total energy and the total angular momentum of the system are conserved,

corresponding to d conserved quantities. For any d, the dynamics could potentially exhibit

chaotic behavior. Because of energy conservation, at any time, Hamiltonian (3) satisfies

H = ǫ0 + Eg. (4)
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B. The probability curves

In order to compute single and double ionizations, we count the number of electrons at a

distance greater than L from the target at the end of the simulation. In practice we choose

L = 150 a.u. in order to ensure that the interaction between the ionic core and an electron

at a distance L from the target is negligible. The final integration time is tf = 800 a.u., i.e.

a total integration time of tf − ti.

We initiate the three electron dynamics at a time ti = −100 a.u., launching the impact

electron in the direction of the target in the positive x-direction (see Fig. 1) with a kinetic

energy ǫ0. Consequently, the initial condition of the impact electron is

p0(ti) =
√
2 ǫ0 x̂,

and

r0(ti) = ti p0(ti),

such that t = 0 corresponds to the moment when the impact electron reaches the origin of

the configuration space in the absence of target. If d ≥ 2, this configuration corresponds to

an impact parameter y0(ti) = 0. We notice that considering a range of impact parameters

has no qualitative influence on the ionization probability curves and on the various processes

at play. Its main quantitative effect is to decrease the ionization probabilities for increasing

impact parameters. As we show in Sec. IIIC, we choose y0(ti) = 0 in order to maximize

the ionization probability. The two-active electron target is initiated with a microcanonical

distribution with energy Eg as in Ref. [29]. Figure 2 shows, respectively in the upper and

the lower panel, the single and the double ionization probabilities of Hamiltonian (3), for

d = 1, 2, 3, as a function of the impact energy ǫ0. These curves are obtained by generating

107 trajectories for each value of ǫ0.

All single ionization curves display the same qualitative behavior: An increase of single

ionization with increasing impact energy, followed by a decrease for larger values of the

impact energy. For low values of ǫ0, there is not enough energy to be transferred to the

target, and for higher values of ǫ0, the impact electron is too fast to transfer energy to the

target. This leaves a rather narrow interval for single ionization, here, ǫ0 ∈ [10, 100] eV, in

qualitative agreement with the experimental data of Ref. [5]. In the upper panel of Fig. 2,

we observe that for d = 1, the single ionization probability is significantly smaller than the
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FIG. 2: (Color online) In the upper and the lower panel, respectively the single ionization (SI) and

the double ionization (DI) probability of Hamiltonian (3), for 1D, 2D and 3D models (respectively

d = 1, 2, 3), measured at tf = 800 a.u. The vertical vertical line is at ǫ0 = |Eg|. The solid diamonds

are the experimental results of Ref. [5]. Cross sections in Mb (1 Mb = 10−18 cm2) and ǫ0 in eV.

ones for d = 2 and d = 3, and is non-zero only in a too narrow range ǫ0 ∈ [|Eg|, 60] eV, in
contrast with the ionization probability obtained for d = 2 and d = 3. We observe that the

maximum of single ionization for d = 2 and d = 3 is obtained for ǫ0 close to |Eg| which is

qualitatively consistent with the experimental data of Ref. [5]. In Sec. III, we will show that

the location of this maximum depends on the chosen integration time of the simulation.

In the lower panel of Fig. 2, we observe that there is no double ionization for any value

of the impact energy in d = 1, in stark disagreement with d > 1 and with the experimental

data. For both single or double ionization no significant differences are observed between

the two cases d = 2 and d = 3. The double ionization probability curves for d = 2 and d = 3

are non-zero in the range ǫ0 ∈ [|Eg|, 60] eV, and reach a maximum for ǫ0 = 40 eV. These

curves resemble the total cross section of Ref. [5] in the low energy region. Even though

the d = 1 model is more easily analyzed due to the low dimensionality of its phase space,

it needs to be discarded since it leads to erroneous conclusions. Indeed, given that the two
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3s electrons are aligned, they are ejected in the same direction. Then, the electron-electron

repulsion pushes at least one electron (the closest to the core) back to the core. For d ≥ 2,

the electron-electron repulsion moves the electrons in opposite direction in the transverse

plane, opening the double ionization channel. For practical purposes, we consider the case

d = 2 for the analysis of the impact ionization dynamics.

The striking feature of the experimental double ionization curve is the presence of a bump

in the low energy part. This has been referred to as a “discontinuity” in Refs. [5, 6, 23], but

here we prefer to call it a “knee” in analogy to the knee in the double ionization of atoms by

strong laser pulses [27]. The double ionization curve obtained for d = 2 and the experimental

one are significantly different for large values of the impact energy. If ǫ0 > 50 eV, the direct

ionization processes’ contribution becomes smaller with increasing impact energy, and the

inner shell contribution cannot be neglected. Our two-active electron model captures the

first part of the knee, that corresponding to the outer shell contribution, which is due to

some three-electron processes which we analyze in what follows. The second part of the

knee corresponds to the inner shell contribution, which is not taken into account in our

inherently outer shell model. In order to reproduce the entire experimental total double

ionization cross section, one should add a third electron (with an energy given by the third

ionization potential) in the model. This is beyond the scope of the present work.

III. MECHANISMS OF SINGLE AND DOUBLE IONIZATION

In this section we investigate the mechanisms involved in the single and double ionization

of the two-active electron model (3) for d = 2. We study where and how often these

mechanisms occur in phase space. We show the contribution of each mechanism building

up the single and double ionization probability curves.

A. Single ionization mechanisms

Two distinct single ionization mechanisms have been identified in this process: Direct

single ionization and delayed single ionization. In the upper panels of Figs. 3 and 4 we

represent a typical three-electron trajectory in configuration space for each kind of single
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ionization for ǫ0 = 40 eV. In the lower panels, the interaction potentials

Vkj(t) =
1

√

|rk(t)− rj(t)|2 + b2
, (5)

between the electrons k and j for (k, j) = (0, 1), (0, 2) and (1, 2) are represented as func-

tions of time. The peaks indicate collisions between two electrons. The maximum of the

interaction energy (5) is 1/b = 27.2 eV, and occurs when the two electrons overlap.

Figure 3 represents a delayed single ionization. We observe some collisions between the

impact electron and the target electrons around t = 0, as expected. Then the impact

electron leaves the target region after losing some energy to excite the target. The two

target electrons stay bounded to the ionic core up to t = 1500 a.u. and collide with each

other several times, exchanging energy. We notice that most of the time the two target

electrons are far away from each other after the impact, interacting only at some specific

times by collisions. Finally, one of the target electrons (e−1 in Fig. 3) leaves the target region

while the other one remains bounded.

Figure 4 represents a direct single ionization. We observe one peak on each of the impact-

target electron interaction curves near t = 0 where the impact occurs. The first interaction

is between the impact electron and e−1 , which does not leave the ionic core but is excited.

Then, the impact electron collides with e−2 . The interaction is stronger than the first one,

and makes e−2 ionize.

In order to gain insight into the dynamics, we would like to address the following ques-

tions: What are the conditions leading to one or the other single ionization mechanism?

Is any mechanism favored by the dynamics? These questions are addressed by examining

the organization of the dynamics in phase space. Figures 5 and 6 depict the outcomes

of electron impact with ǫ0 = 40 eV as a function of the initial conditions of the atom,

that is the conditions at time ti. For these figures, the initial conditions are constrained

to a slice of the phase space defined by y1(ti) = y2(ti) = 0, p1(ti) = (P/
√
2,−P/2), and

p2(ti) = (
√
2P/4,

√
2P/4) where P is chosen to satisfy the energy condition

Eg =
P 2

2
− 2

√

|x1(ti)|2 + a2
− 2

√

|x2(ti)|2 + a2

+
1

√

|x1(ti)− x2(ti)|2 + b2
. (6)

In this way, we only select (x1(ti), x2(ti)). All possible (x1(ti), x2(ti)) for which there is a

solution P to Eq. (6) are contained within the contour lines drawn in Figs. 5 and 6. Similar
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results are obtained for different slices. Figure 5 indicates the ionization mechanism, TS1,

TS2 double ionization, or delayed or direct single ionization, undergone by the trajectory for

each initial condition. Meanwhile, Fig. 6 displays the energy of the atom E at tf = 2000 a.u.

From now on, we distinguish “the target” from “the atom” in order to define E. Before

the impact, it is clear which electron is the impact electron and which electrons belong to

the target. After the impact, the impact electron might be captured by the atom. But for

ǫ0 ≥ |Eg|, at least one electron reaches the detector. Thus, “the atom” refers to the ionic core

and the two remaining electrons, namely those that are not the first to reach the detector.

We define the energy of the atom E as the sum of the energy of the two remaining electrons.

The energy conservation law imposes E = Eg + ǫ0 − Tfirst, where Tfirst is the kinetic energy

of the first electron reaching the detector.

In Fig. 5, we observe clearly delimited areas associated with each single ionization mecha-

nism with a slight predominance of the direct single ionization on this slice. The mechanism

areas are intertwined in phase space in a rather complex way (more visible in the inset of

Fig. 5). We observe a similar intertwining in Fig. 6. This intertwining is mostly due to the

chaotic nature of the dynamics of the target electrons before the impact. The noticeable

difference between Figs. 5 and 6 comes from the delayed single ionization region. We observe

that regions associated with the delayed ionization mechanism in Fig. 5 in gray, correspond

to negative energy regions in Fig. 6 in dark gray (blue online). In Fig. 6, these dark gray

(blue online) regions are very regular in the sense that a small variation of initial conditions

leads to small energy variation E of the atom. However, in Fig. 5 we observe that the delayed

single ionization region has a chaotic nature, in the sense that nearby initial conditions can

lead to drastically different ionization times ∆t that can be arbitrarily large (see inset of

Fig. 5). This behavior is expected since delayed single ionization occurs by chaotic diffusion

of an excited atom. In contrast, direct single ionization seems regular in the sense that

nearby initial conditions lead to the same outcome in a generic way.

During delayed single ionization, the two target electrons are both bound for some time

after the impact (which can be arbitrarily long). These electrons share the energy supplied

by the impact electron, such that one of them describes large orbits. For instance, in Fig. 3,

after the impact, e−1 describes large orbits while e−2 stays close to the ionic core. In this

situation, in particular when e−1 is on the furthest point of the orbit, e−2 screens the charge
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of the ion. Since |r1| is large, the energy of the atom is E = E1 + E2, with

E1 =
|p1|2
2

− 2
√

|r1|2 + a2
+

1
√

|r1 − r2|2 + b2
,

≃ |p1|2
2

− 1

|r1|
,

the energy of e−1 , and

E2 =
|p2|2
2

− 2
√

|r2|2 + a2
,

the energy of e−2 . The electron e−1 remains bounded since it comes back to the ionic core,

imposing E1 < 0. Moreover, e−2 also remains bounded, so E2 < 0. As a consequence,

delayed single ionization can occur only if the energy of the target after impact is negative,

i.e. E < 0. This is confirmed by comparing Figs. 5 and 6, where we observe that E < 0 for

delayed single ionization. This is a necessary energy condition, but it is not sufficient, since

E < 0 can also lead to direct single ionization.

Figure 7 represents the probability of each mechanism as a function of the impact energy

ǫ0. Figure 8 represents the probability density function of E as a function of ǫ0, i.e. the

probability that the energy of the atom long after the impact is E, for a given impact energy

ǫ0. We have also represented 〈E〉, the average of the energy of the atom after impact for a

given impact energy ǫ0. Since the mechanisms are related to energy conditions, we examine

the relationships between the probability of each mechanism (Fig. 7) and the probability

density function and 〈E〉 (Fig. 8).
In Fig. 7, we observe that the most probable scenario for single ionization is usually

delayed ionization, and its maximum is reached for ǫ0 ∼ 15 eV, similarly to the maximum

of the experimental total cross section of single ionization (see Fig. 2). A dip in the delayed

single ionization probability is observed when the direct single ionization channel is no

longer negligible, namely in the region ǫ0 ∈ [|Eg|, 60] eV. A necessary condition for a delayed

single ionization process is that E < 0, and we observe a dominance of the delayed single

ionization process for the impact energy range where the probability of having E > 0 is

zero. However, there are no constraints for the direct single ionization process. We observe

that the larger 〈E〉 is (Fig. 8), the larger is the direct ionization probability (Fig. 7). This

observation suggests that direct single ionization may depend on efficient energy transfer

from the impact electron to the atom. In the inset of Fig. 8, we observe that for a constant

impact energy ǫ0 ∈ [50, 80] eV, the probability density function has two distinct bumps

12



(visible for ǫ0 = 60 eV in the inset of Fig. 8). The lowest bump in the probability density

function is peaked around E < Eg. Consequently, this bump corresponds to non-ionization.

The highest bump in the probability density function is peaked around E > Eg. This bump

corresponds to single and double ionization. Moreover, this bump is wider in the region

ǫ0 ∈ [|Eg|, 40] eV, leading to larger energy transfers to the target and hence potentially more

ionization.

In summary, the classical model displays two mechanisms of single ionization, delayed

and direct. For the delayed (indirect) single ionization, the correlation between the electrons

of the atom plays a prominent role, and the mechanism involves chaotic diffusion. The

necessary condition to obtain delayed single ionization is that the energy of the atom after the

impact is negative, i.e. E < 0. Delayed ionization, also called excitation-autoionization, is

the most probable process for single ionization. This is particularly true when ǫ0 < |Eg|. For
direct single ionization, the energy transfer from impact electron to the target is important,

while the electron-electron correlation inside the target plays a lesser role.

B. Double ionization mechanisms

By examining a large set of double ionizing trajectories associated with Hamiltonian (3),

only two distinct double ionization mechanisms have been identified in agreement with the

literature: The two-step one interaction (TS1) and two-step two interaction (TS2) mecha-

nisms [30–33].

Figure 9 represents the TS1 mechanism. We observe peaks on the curves V02(t), V01(t),

and V12(t) near the impact time t ≈ 0. First, the impact electron collides with e−2 as the first

peak to occur is for V02, and subsequently the impact electron leaves the ionic core. Then,

e−2 collides with e−1 , and they both leave the ionic core. During the second collision, the

peaks in both V01(t) and V12(t) indicate that the impact electron and e−2 are both involved

in the ionization of e−1 . Nonetheless, the impact electron contributes less to the ionization

process during the second collision, so the dominant interaction is between the two electrons

of the target. So, we consider that the impact electron has had only one interaction with

the electrons of the target, and this makes it a TS1 mechanism.

In the TS2 mechanism, the impact electron interacts with both electrons of the target.

Figure 10 represents the TS2 mechanism. In a similar way as for the TS1 mechanism, we
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observe peaks on the V02, V01 and V12 interaction curves near the impact time t ≈ 0. First,

the impact electron collides with e−2 , and e−2 leaves the ionic core. Subsequently, the impact

electron collides with e−1 , and both leave the ionic core.

Comparing the local maxima of V01 and V02 around t = 0 (time of impact), we numeri-

cally discriminate trajectories belonging to TS1 or TS2. In Fig. 5, we observe that double

ionizations occur in highly localized regions in phase space (at least in the slice we consider

in Fig. 5). Moreover, the TS1 and TS2 regions are intertwined, i.e. it is difficult to predict

which mechanism will be involved for a given initial condition. Also on the slice depicted on

this figure, we have found that the number of TS2 trajectories is roughly three times larger

than that of TS1.

The atom is doubly ionized if the positions of the electrons are such that |rk| → ∞ for

all k = 0, 1, 2 as t → ∞, i.e. the interaction between the ionic core and the electrons is

negligible. Consequently, Hamiltonian (3) reduces to

H =

2
∑

k=0

|pk|2
2

+
∑

j>k

1
√

|rk − rj|2 + b2
≥ 0,

irrespective of the relative positions of the three electrons. Using Eq. (4), a necessary energy

condition to obtain double ionization is

ǫ0 + Eg ≥ 0,

as confirmed by the double ionization probability in Fig. 2. During an ionization process,

electrons have a tendency to escape with large relative distances because of electron-electron

repulsion, i.e. |rk − rj | → ∞. Consequently, the interaction between the electrons vanishes

and the Hamiltonian can be decomposed as the sum of the final three kinetic energies,

denoted Tk = |pk|2/2, such that

ǫ0 + Eg = T0 + T1 + T2. (7)

Since Tk ≥ 0, the final energy of each electron does not exceed the total energy of the system,

i.e.

Tk ≤ ǫ0 + Eg, (8)

for all k = 0, 1, 2. In particular, because of inequality (8) and since E is composed of the

sum of the energy of two electrons, Eq. (7) leads to E ≥ 0. This is confirmed by comparing
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Figs. 6 and 5, where we observe that the double ionization regions on Fig. 5 correspond

to dark gray (dark red online) regions on Fig. 6, representing E ≥ 0. Double ionization

occurs only if the final energy of the target atom is positive, which happens, as we observe

on Fig. 8, only in the region ǫ0 ∈ [|Eg|, 70] eV. We notice that this range contains the

range where double ionization probability is non-zero (see Figs. 2 and 7). From Fig. 8, we

see that the maximum of the average energy of the atom 〈E〉 after impact is obtained for

ǫ0 ∼ 40 eV, which is consistent with the impact energy leading to the maximum double

ionization probability (see Fig. 2).

In the lower panel of Fig. 7, we observe that for any impact energy, double ionization

is clearly dominated by the TS2 mechanism. The TS1 mechanism occurs in the range

ǫ0 ∈ [|Eg|, 45] eV, while TS2 occurs in a broader range of impact energies ǫ0 ∈ [|Eg|, 60] eV,

which is the range of impact energy where double ionizations are detected. So here again,

the results of Figs. 2 and 8 are consistent with the energy conditions.

In summary, the classical model (3) displays only two double ionization mechanisms which

are direct, ruling out indirect mechanisms like excitation-autoionization for our two-active

electron model. For the TS1 mechanism, the correlation between the electrons of the target

atom is largely involved, whereas this correlation is neglected in the TS2 mechanism. A

necessary condition to obtain double ionization is that the energy of the atom after the

impact is positive, i.e. E ≥ 0. The TS2 mechanism is the dominant scenario for double

ionization. This is in agreement with the experimental results of Refs. [34–37].

C. Robustness of the results

The question we address now is how generic and robust these results are, in particular,

with respect to some parameters of model (3): Softening parameter b, impact parameter

y0(ti), and integration time tf . Figure 11 shows the probability of each ionization mechanism

for b = 0.3 a.u., i.e. for a stronger electron-electron interaction than on Fig. 7, measured

for tf = 800 a.u. and tf = 3, 000 a.u. Figure 12 shows the probability of each ionization

mechanism, where for each trajectory the impact parameter y0(ti) is chosen randomly in the

range [0, 3] a.u.

Comparing Figs. 7 and 11, we observe that decreasing the softening parameter b increases

the double ionization probability as expected, and extends the range of impact energy ǫ0
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where double ionization is observed. The behavior before the maximum double ionization

probability is similar, but after the maximum, the decrease is smoother, as observed in the

experimentally measured total double ionization cross sections. The TS2 mechanism is even

more dominant than for b = 1 a.u. in comparison with the TS1 contribution. Concerning the

single ionization mechanisms, we notice that the contribution of the direct single ionization

is increased and even dominant for large values of the impact energy, in contrast with the

b = 1 a.u. case. However, we will see below that this is an artifact of a finite integration

time tf . Moreover, we have seen that for decreasing b, the intertwining observed in Figs. 5

and 6 is more regular (not pictured). In contrast, if b increases, we observe an increase of

the sensitivity to initial conditions, and the appearance of a chaotic sea.

Comparing Figs. 7 and 12, we observe that if y0(ti) 6= 0, the ionization probabilities

decrease significantly, but the qualitative features of the curves remain almost identical.

The influence of the impact parameter on the probability curves is only quantitative. Taking

y0(ti) = 0 allows a higher probability to obtain ionization.

Finally, we observe that the integration time tf does not influence the double ionization

probability nor the direct single ionization probability curves, but it does influence the de-

layed ionization probability curve. Indeed, because delayed ionization processes can take an

arbitrarily long time, the longer the integration time tf is, the higher the delayed ionization

probability will be. We notice that delayed ionization becomes more dominant with increas-

ing tf . Furthermore, increasing tf moves the maximum of the single ionization probability

to the left. However, for sufficiently long integration times (e.g. 1500 a.u.) the delayed single

ionization converges, so that considering larger integration times is unnecessary for practical

purposes.

In summary, the softening parameter b, the impact parameter y0(ti), and the integration

time tf influence some features of the ionization probability curves, like for instance the

amount of single and double ionization. However, some features remain unchanged, like

the predominance of delayed single ionization and of TS2 double ionization. In terms of the

mechanisms, the analysis we presented is robust with respect to changes in these parameters.
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Conclusions

In summary, we proposed a two-active electron classical Hamiltonian model for the (e, 2e)

and (e, 3e) processes for a target atom with two loosely bound electrons, which reproduces

notable features of the experimentally measured single and double ionization cross sections.

We have shown that a two-dimensional model is capable of capturing some features of the

experimentally measured curves. The classical approach allowed us to identify the mech-

anisms involved in the ionization processes by examining trajectories in phase space, and

their relative contributions by analyzing families of trajectories. Four mechanisms have been

observed: Direct and delayed single ionization, and the TS1 and TS2 mechanisms. The be-

havior of these mechanisms as a function of the impact energy ǫ0 has been studied, as well

as where they occur in phase space. The delayed single ionization displays a strong depen-

dence with respect to initial conditions, and is associated with single ionization by chaotic

diffusion. The TS2 mechanism is found to dominate in the double ionization processes, in

agreement with existing experiments.

The significant disagreement between the double ionization probability from Hamilto-

nian (3) and the experimentally measured double ionization cross section [5] suggests a large

contribution of the inner shell electrons in the double ionization processes for ǫ0 > 55 eV.

A two-active electron model can not reproduce this feature, nor reproduce fully the knee

observed in the double ionization cross section. However, a two-active electron model is able

to capture the behavior in the low energy region, the first part of the knee.
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FIG. 3: (Color online) Delayed single ionization. Upper panel: Trajectory of each of the three

electrons in configuration space (x, y). Only the trajectory for positive times (i.e. after the impact)

is represented. The black trajectory corresponds to the impact electron. The gray (red) and

the light gray (blue) trajectories correspond to the two electrons of the target. In the inset the

trajectory of the electrons of the atom for t ∈ [500, 700] a.u. is represented. The instant of the

collision is indicated by a pair of stars. The position of the ionic core is indicated by a cross. Lower

panel: Corresponding Vkj, defined by Eq. (5), as a function of time for (k, j) = (0, 1), (0, 2), and

(1, 2). The impact energy is ǫ0 = 40 eV. Here Vkj in eV and all other quantities in atomic units.
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FIG. 4: (Color online) Direct single ionization. Upper panel: Trajectory of each of the three elec-

trons in configuration space (x, y). Only the part of the trajectory after the impact is represented.

The black trajectory corresponds to the impact electron e−0 . The gray (red) and the light gray

(blue) trajectories correspond to the two electrons of the target e−1 and e−2 . The position of the

ionic core is indicated by a cross. Lower panel: Corresponding Vkj, defined by Eq. (5), as a function

of time for (k, j) = (0, 1), (0, 2), and (1, 2). The impact energy is ǫ0 = 40 eV. Here Vkj in eV and

all other quantities in atomic units.
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FIG. 5: (Color online) Ionization scenario as a function of the initial conditions (x1(ti), x2(ti)) for

y1(ti) = y2(ti) = 0, p1(ti) = (P/
√
2,−P/2) and p2(ti) = (

√
2P/4,

√
2P/4), with P the solution of

Eq. (6). Outside the gray (red) contour line P is not defined. The impact energy is ǫ0 = 40 eV,

ti = −500 a.u., and tf = 2000 a.u. For delayed single ionization, the time ∆t spent by the atom

to lose an electron after the impact is represented. The white areas inside the contour zone (red)

represent the initial conditions where the atom does not ionize (or eventually ionize with a delay

which is too long). All quantities in atomic units.
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FIG. 6: (Color online) Energy of the atom E at tf = 2000 a.u. as a function of the initial conditions

(x1(ti), x2(ti)) for y1(ti) = y2(ti) = 0, p1(ti) = (P/
√
2,−P/2) and p2(ti) = (

√
2P/4,

√
2P/4), with

P the solution of Eq. (6). Outside the gray (red) contour line P is not defined. The impact energy

is ǫ0 = 40 eV, and ti = −500 a.u. Here E in eV and all other quantities in atomic units.
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FIG. 7: (Color online) Upper panel: Single ionization (SI) probability as a function of the impact

energy ǫ0 by delayed and direct mechanisms. Lower panel: Double ionization (DI) probability as

a function of the impact energy ǫ0 by TS1 and TS2 mechanisms. The vertical line is at ǫ0 = |Eg|.

The integration time is tf = 800 a.u. Here ǫ0 in eV.
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FIG. 8: (Color online) Probability density function of E in logarithmic scale as a function of the

impact energy ǫ0, where E is the energy of the atom when at least one electron has reached the

detector. The white line is 〈E〉, the average of E for a fixed ǫ0 with the bars indicating one standard

deviation. The inset shows the probability density function as a function of the final energy of the

atom E for fixed impact energy ǫ0. Here E and ǫ0 in eV.
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FIG. 9: (Color online) Upper panel: Sample trajectory undergoing TS1 in configuration space.

Only the part of the trajectory after the impact is represented. Lower panel: Corresponding Vkj(t)

as a function of time for (k, j) = (0, 1) , (0, 2) and (1, 2). The position of the ionic core is identified

by a cross. The impact energy is ǫ0 = 40 eV. Here Vkj in eV and all other quantities in atomic

units.
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FIG. 10: (Color online) Upper panel: Sample trajectory undergoing TS2 in configuration space.

Only the part of the trajectory after the impact is represented. Lower panel: Corresponding Vkj(t)

as a function of time for (k, j) = (0, 1) , (0, 2) and (1, 2). The position of the ionic core is identified

by a cross. The impact energy is ǫ0 = 40 eV. Here Vkj in eV and all other quantities in atomic

units.

25



FIG. 11: (Color online) Upper panels: Total single ionization (SI) probability as a function of the

impact energy ǫ0 and its decomposition in delayed and direct mechanisms. Lower panels: Total

double ionization (DI) probability as a function of the impact energy ǫ0 and its decomposition in

TS1 and TS2 mechanisms. Single and double ionization both computed with b = 0.3. Left panels:

The measurement is performed at tf = 800 a.u. after the impact. Right panels: The measurement

is performed at tf = 3000 a.u. after the impact. The vertical line is at ǫ0 = |Eg|. Here ǫ0 in eV.
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FIG. 12: (Color online) Upper panels: Total single ionization (SI) probability as a function of the

impact energy ǫ0 and its decomposition in delayed and direct mechanisms. Lower panels: Total

double ionization (DI) probability as a function of the impact energy ǫ0 and its decomposition

in TS1 and TS2 mechanisms. Single and double ionization both computed with b = 1 a.u. and

tf = 800 a.u. For each trajectory, the impact parameter y0(ti) is chosen randomly in a range

[0, 3] a.u. Here ǫ0 in eV, all other quantities in atomic units.
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