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The interaction of two excited hydrogen atoms in metastable states constitutes a theoretically
interesting problem because of the quasi-degenerate 2P1/2 levels which are removed from the 2S
states only by the Lamb shift. The total Hamiltonian of the system is composed of the van der
Waals Hamiltonian, the Lamb shift and the hyperfine effects. The van der Waals shift becomes
commensurate with the 2S–2P3/2 fine-structure splitting only for close approach (R < 100 a0, where
a0 is the Bohr radius) and one may thus restrict the discussion to the levels with n = 2 and J = 1/2
to good approximation. Because each S or P state splits into an F = 1 triplet and an F = 0
hyperfine singlet (8 states for each atom), the Hamiltonian matrix a priori is of dimension 64. A
careful analysis of symmetries the problem allows one to reduce the dimensionality of the most
involved irreducible submatrix to 12. We determine the Hamiltonian matrices and the leading-
order van der Waals shifts for states which are degenerate under the action of the unperturbed
Hamiltonian (Lamb shift plus hyperfine structure). The leading first- and second-order van der
Waals shifts lead to interaction energies proportional to 1/R3 and 1/R6 and are evaluated within
the hyperfine manifolds. When both atoms are metastable 2S states, we find an interaction energy
of order Eh χ (a0/R)6, where Eh and L are the Hartree and Lamb shift energies, respectively, and
χ = Eh/L ≈ 6.22 × 106 is their ratio.

PACS numbers: 31.30.jh, 31.30.J-, 31.30.jf

I. INTRODUCTION

Inspired by recent optical measurements of the 2S hy-
perfine splitting using an atomic beam [1], we here aim to
carry out an analysis of the hyperfine-resolved (2S; 2S)
system composed of two hydrogen atoms. This paper
follows a previous work of ours (Ref. [2]) in which we
analyzed the long-range interaction between two hydro-
gen atoms, one of which was in the 1S ground state, and
the other one in the metastable 2S state. Here we turn
to the case where both atoms are in an excited state.
For that we use the simplest case at hand, namely that
where both atoms are in the 2S state. The 2S–2S van der
Waals interaction has been analyzed before in Refs. [3, 4],
but without any reference to the resolution of the hyper-
fine splitting [5]. The entire problem needs to be treated
using degenerate perturbation theory, because the van
der Waals Hamiltonian couples the reference 2S state to
neighboring quasi-degenerate 2P states. The latter are
displaced from the former only by the Lamb shift (in
the case of 2P1/2) or by the fine structure (in the case of
2P3/2). As was noted in Ref. [2], significant modifications
of the long-range interactions between two atoms result
from the presence of quasi-degenerate states, and the ef-
fects lead to observable consequences. In a more general
context, one may regard our investigations as example
cases for a more general setting, in which two excited
atoms interact, while in metastable states (with quasi-
degenerate levels nearby).

The present work combines the challenges described
in Ref. [3], where the 2S–2S interaction is studied (but

without taking account of the fine and hyperfine struc-
tures), with the intricacies of the hyperfine correction to
the long-range interaction of two atoms, which have been
studied in Refs. [6–9]. Indeed, it had been anticipated
in Ref. [3] that a more detailed study of the combined
hyperfine and van der Waals effects will be required for
the 2S–2S system when a more detailed understanding is
sought. The main limitation of the method followed here
is that we will only consider dipole-dipole terms in the in-
teratomic interaction, in contrast to Refs. [3, 4]. Hence,
our analysis only yields reliable results for sufficiently
large interatomic separation. Inspection of the higher-
order multipole terms obtained in Refs. [3, 4] clarifies that
the dipole-dipole approximation is already largely valid
for interatomic separations of the order of R = 20 a0.
(This is true for the 2S–2S system, upon which we focus
here. Judging from Fig. 2 in Ref. [4], for higher prin-
cipal quantum number (n = 4), the range of relevance
of higher-order multipole terms extends further out, but
these cases are beyond the scope of the current investi-
gation.)

Throughout this article, we work in SI mksA units and
keep all factors of ~ and c in the formulas. In the choice
of the unit system for this paper, we attempt to opti-
mize the accessibility of the presentation to two different
communities: the QED community in general uses the
natural unit system with ~ = c = ǫ0 = 1, and the elec-
tron mass is denoted as m. The relation e2 = 4πα then
allows to identify the expansion in the number of quan-
tum electrodynamic corrections with powers of the fine-
structure constant α. This unit system is used, e.g., in
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the investigation reported in Ref. [10] on relativistic cor-
rections to the Casimir–Polder interaction (with a strong
overlap with QED). In the atomic unit system, we have
|e| = ~ = m = 1, and 4πǫ0 = 1. The speed of light, in the
atomic unit system, is c = 1/α ≈ 137.036. This system of
units is especially useful for the analysis of purely atomic
properties without radiative effects. As the subject of the
current study lies in between the two mentioned fields of
interest, we choose the SI mksA unit system as the most
appropriate reference frame for our calculations. The for-
mulas do not become unnecessarily complex, and can be
evaluated with ease for any experimental application.
We organize this paper as follows. The combination of

the orbital and spin electron angular momenta, and the
nuclear spin, add up to give the total angular momen-
tum of the hydrogen atom; the conserved quantities are
discussed in Sec. II, together with the relevant two-atom
product wave functions. In Sec. III, we proceed to inves-
tigate the Hamiltonian matrices in the subspaces of the
spectrum of the total Hamiltonian into which it naturally
decouples. Namely, the magnetic projection of the to-
tal angular momentum (summed over both atoms) com-
mutes with the total Hamiltonian, and this leads to ma-
trix subspaces with Fz = +2, 1, 0,−1,−2. For each one
of these five hyperfine subspaces, we shall identify two
irreducible subspaces of equal dimensionality. This prop-
erty considerably simplifies the treatment of the prob-
lem. Finally, some relevant energy differences for the 2S
hyperfine splitting (with the spectator atom in specific
states, namely either 2S or 2P ) are analyzed in Sec. IV.
Conclusions are drawn in Sec. V.

II. FORMALISM

A. Total Hamiltonian of the system

In order to evaluate the 2S–2S long-range interaction,
including hyperfine effects, one needs to diagonalize the
Hamiltonian

H = HLS,A +HLS,B +HHFS,A +HHFS,B +HvdW . (1)

Here, HLS is the Lamb shift Hamiltonian, while HHFS

describes hyperfine effects; these Hamiltonians have to
be added for atoms A and B. They are given as follows,

HHFS =
µ0

4π
µBµN gsgp

∑

i=A,B

[

8π

3
~Si · ~Ii δ3 (~ri)

+
3
(

~Si · ~ri
)(

~Ii · ~ri
)

− ~Si · ~Ii ~r2i
|~ri|5

+
~Li · ~Ii
|~ri|3



 (2a)

HLS =
4

3
α2mc2

(

~

mc

)3

ln
(

α−2
)

∑

i=A,B

δ3 (~ri) , (2b)

HvdW = α ~c
xA xB + yA yB − 2 zA zB

R3
. (2c)

Here, α is the fine-structure constant, m the electron

mass, ~ri, ~pi and ~Li are the position (relative to the re-
spective nucleus), linear momentum and orbital angular

momentum operators for electron i; also, ~Si is the spin

operator for electron i and ~Ii is the spin operator for
proton i [both are dimensionless]. The electronic and
protonic g factors are gs ≃ 2.002 319 and gp ≃ 5.585 695,

while µB ≃ 9.274 010 ×10−24Am2 is the Bohr magneton
and µN ≃ 5.050 784 × 10−27Am2 is the nuclear magne-
ton. The subscripts A and B refer to the relative coor-
dinates within the two atoms, while R is the interatomic
distance. The expression for HLS shifts S states rela-
tive to P states by the Lamb shift, which is given in the
Welton approximation [11], which is convenient within
the formalism used for the evaluation of matrix elements.
(The important property of HLS is that it shifts S states
upward in relation to P states; the prefactor multiply-
ing the Dirac-δ can be adjusted to the observed Lamb
shift splitting.) Indeed, for the final calculation of en-
ergy shifts, we shall replace

〈2S1/2|HLS |2S1/2〉 − 〈2P1/2|HLS|2P1/2〉

=
4α

3π

α4

8
mc2 ln(α−2) → L , (3)

where L = h 1057.845(9)MHz is the “classic” 2S–2P1/2

Lamb shift [12]. The Hamiltonian H given in Eq. (1)
defines the zero of the energy to be the hyperfine cen-
troid frequency of the 2P1/2 states. The result for HHFS

in the given form is taken from Ref. [13]. The Hamil-
tonians HHFS,A and HHFS,B are obtained from HHFS by
specializing the coordinate ~r to be the relative coordi-
nate (electron-proton) in atoms A and B, respectively,
and correspondingly for HLS,A and HLS,B.
We shall focus on the interatomic separation regime

where the van der Waals energy is commensurate with
the hyperfine splitting and Lamb shift energies, but much
smaller than the fine structure (the 2P1/2–2P3/2 splitting
and likewise, the 2S–2P3/2 splitting). Hence,

EvdW ∼ EHFS ∼ HLS ≪ EFS (4)

This is fulfilled for R > 100 a0, as can be seen from
Eq. (2c) and will be confirmed later. Hence, we only con-
sider 2S and 2P1/2 states. We shall neglect the influence
of the 2P3/2 states, assuming that they are sufficiently
displaced. Because the van der Waals interaction (2c)
has nonvanishing diagonal elements between 2S and 2P
states, the interaction energy between the two 2S atoms
can be of order 1/R3.
The z component of the total angular momentum op-

erator of both atoms is

Fz = Fz,A + Fz,B = Jz,A + Jz,B + Iz,A + Iz,B

= Lz,A + Lz,B + Sz,A + Sz,B + Iz,A + Iz,B

= Lz,A + Lz,B + 1
2 σe,z,A + 1

2 σe,z,B

+ 1
2 σp,z,A + 1

2 σp,z,B , (5)
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where ~J = ~L + ~S is the total angular momen-
tum of the electron. Let us investigate if Fz com-
mutes with the total Hamiltonian H . In Eq. (5),
the subscript e denotes the electron, while p de-
notes the proton. The following commutators vanish
separately, [Sz,a + Sz,b, HLS] = [Sz,a + Sz,b, HvdW] =
[Iz,a + Iz,b, HLS] = [Iz,a + Iz,b, HvdW] = 0. We then turn
to the non-trivial commutators. For that, it is very useful

to notice that the orbital angular momentum ~Li of elec-
tron i commutes with all spherically symmetric functions
of the radial position operator |~ri| of the same electron.
This immediately yields [Lz,a + Lz,b, HLS] = 0. We can
also show that

[Sz,a + Sz,b, HHFS] + [Iz,a + Iz,b, HHFS]

+ [Lz,a + Lz,b, HHFS] = 0 ,

[Lz,a + Lz,b, HvdW] = α ~c
i~

R3
[yA xB + xA yB

−yA xB − xA yB] = 0. (6)

The component Fz of the total angular momentum of the
two-atom system [see Eq. (5)] thus commutes with the
total Hamiltonian H . We can classify states according
to the eigenvalues of the operator Fz = Fz,a + Fz,b.

B. Addition of Momenta and Total Hyperfine

Quantum Number

In order to calculate the matrix elements of the total
Hamiltonian (1), we first need to identify the relevant
states of the two atoms. For each atom, we easily iden-
tify the following quantum numbers within the hyperfine
manifolds:

2S1/2(F = 0) : ℓ = 0, J = 1
2 , F = 0 ⇒ gF = 1 , (7a)

2S1/2(F = 1) : ℓ = 0, J = 1
2 , F = 1 ⇒ gF = 3 , (7b)

2P1/2(F = 0) : ℓ = 1, J = 1
2 , F = 0 ⇒ gF = 1 , (7c)

2P1/2(F = 1) : ℓ = 1, J = 1
2 , F = 1 ⇒ gF = 3 . (7d)

Here ℓ, J , and F are the electronic orbital angular mo-
mentum, the total (orbital+spin) electronic angular mo-
mentum and the total (electronic+protonic) atomic an-
gular momentum, while gF = 2F + 1 is the number of

states. At this stage, we remember that we discarded
2P3/2 states from our treatment because of their rel-
atively large energy separation from 2S1/2 and 2P1/2

states. Thus, we have a total of 8 states per atom. For the
system of two atoms, we have 8× 8 = 64 states. Due to
the conservation of the total hyperfine quantum number
Fz = Fz,a+ Fz,b, established above, the 64-dimensional
Hilbert space is decomposed into five subspaces as

Fz = Fz,a + Fz,b = ±2 ⇒ g = 4 , (8a)

Fz = Fz,a + Fz,b = ±1 ⇒ g = 16 , (8b)

Fz = Fz,a + Fz,b = 0 ⇒ g = 24 . (8c)

The most complicated case is the subspace for which
Fz = 0, in which case the Hamiltonian matrix is, a priori,
24-dimensional. Thus, we have to generate the matrix,
diagonalize it and choose the eigenvalues which corre-
sponds to the unperturbed (with respect to dipole-dipole
interaction) states.

Let us add angular momenta to obtain the single-atom
states of definite hyperfine quantum number. First, we
add the electron spin with its orbital angular momentum
to obtain the J = 1/2 states within the n = 2 manifold
of hydrogen. These are given as follows,

∣

∣ℓ = 0, jz = ± 1
2

〉

= |±〉e |ℓ = 0,m = 0〉e = |±〉e |0, 0〉e ,

(9a)

∣

∣ℓ = 1, jz = ± 1
2

〉

= ∓
[

1√
3

|±〉e |1, 0〉e

−
√

2

3
|∓〉e |1,±1〉e

]

. (9b)

Here, |±〉e is the electron spin state, and |ℓ,m〉e denotes
the Schrödinger eigenstate (without spin). The principal
quantum is n = 2 throughout. We also remember that
the J = 3/2 states are displaced by the fine structure
shift and, therefore, far away in the energy landscape
given the scale of energies considered here. With the
help of Clebsch–Gordan coefficients, we add the nuclear
(proton) spin |±〉p to obtain the eight states in the single-
atom hyperfine basis. First, we have for the four S states,

|ℓ = 0, F = 0, Fz = 0〉 = −
|+〉p |−〉e − |−〉p |+〉e√

2
|0, 0〉e , (10a)

|ℓ = 0, F = 1, Fz = 0〉 =
|+〉p |−〉e + |−〉p |+〉e√

2
|0, 0〉e , (10b)

|ℓ = 0, F = 1, Fz = ±1〉 = |±〉p |±〉e |0, 0〉e . (10c)
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The P states are more complicated,

|ℓ = 1, F = 0, Fz = 0〉 = 1√
3
|+〉p |+〉e |1,−1〉e −

1√
6
|+〉p |−〉e |1, 0〉e +

1√
3
|−〉p |−〉e |1, 1〉e −

1√
6
|−〉p |+〉e |1, 0〉e

(11a)

|ℓ = 1, F = 1, Fz = 0〉 = − 1√
3
|+〉p |+〉e |1,−1〉e +

1√
6
|+〉p |−〉e |1, 0〉e +

1√
3
|−〉p |−〉e |1, 1〉e −

1√
6
|−〉p |+〉e |1, 0〉e

(11b)

|ℓ = 1, F = 1, Fz = ±1〉 = ∓ 1√
3
|±〉p

[

|±〉e |1, 0〉e −
√
2 |∓〉e |1,±1〉e

]

. (11c)

In the following, we shall use the notation |ℓ, F, Fz〉 for
the eigenstates of the unperturbed Hamiltonian

H0 = HHFS,A +HHFS,B +HLS,A +HLS,B , (12)

within the 2S–2P1/2 manifold. The notation |ℓ, F, Fz〉
is rather intuitive; the first entry clarifies if we have an
S (with ℓ = 0) or a P state (with ℓ = 1), the second
entry specifies if we have a hyperfine triplet (F = 1) or a
hyperfine singlet (F = 0) state, and the last entry is the
magnetic projection of the total angular momentum.

C. Matrix Elements of the Total Hamiltonian

We now turn to the computation of the matrix ele-
ments of the total Hamiltonian (1) in the space spanned
by the two-atom states which are product states built
from any two states of the types (10) and (11). We choose
a basis in which the Lamb shift and hyperfine Hamilto-
nians are diagonal, so that the only non-trivial task is
to determine the matrix elements of the van der Waals
interaction Hamiltonian.
With the definition of the spherical unit vectors [14],

ê+ = − 1√
2
(êx + i êy) , (13a)

ê− =
1√
2
(êx − i êy) , (13b)

ê0 = êz , (13c)

and the states defined by (10) and (11), we obtain the
non-zero matrix elements of the electronic position oper-
ator ~r as follows:

〈0, 0, 0|~r |1, 1, 0〉 =
√
3 a0 êz , (14a)

〈0, 0, 0|~r |1, 1,±1〉 =
√
3 a0 ê± , (14b)

〈0, 1, 0|~r |1, 0, 0〉 =
√
3 a0 êz , (14c)

〈0, 1,±1|~r |1, 0, 0〉 =
√
3 a0 (ê±)

∗
, (14d)

〈0, 1,±1|~r |1, 1,±1〉 = ±
√
3 a0 êz , (14e)

〈0, 1,±1|~r |1, 1, 0〉 = ±
√
3 a0 ê∓ , (14f)

〈0, 1, 0|~r |1, 1,±1〉 = ∓
√
3 a0 ê± . (14g)

All the other matrix elements vanish. We define the pa-
rameters

H ≡ α4

18
gN

m

mp
mc2 → h 59.1856114(22)MHz , (15a)

L ≡ α5

6 π
ln(α−2)mc2 → h 1057.845(9)MHz , (15b)

V ≡ 3α~c
a20
R3

, (15c)

where the data used after the replacements indicates one-
third of the hyperfine splitting of the 2S state [1] and
the classic Lamb shift [12], respectively. These data are
used in all figures for the plots of the distance-dependent
energy levels. Note thatH and L obviously are constants,
whereas V depends on the interatomic separation R. The
expectation values of the hyperfine HHFS and Lamb shift
HLS Hamiltonians (for states of both atoms A and B)
are given as follows

〈ℓ, F,MF |HLS|ℓ, F,MF 〉 = L δℓ0, (16a)

〈0, 1,MF |HHFS|0, 1,MF 〉 =
3

4
H , (16b)

〈0, 0, 0|HHFS|0, 0, 0〉 = − 9

4
H , (16c)

〈1, 1,MF |HHFS|1, 1,MF 〉 =
1

4
H , (16d)

〈1, 0, 0|HHFS|1, 0, 0〉 = − 3

4
H . (16e)

The hyperfine splitting energy between 2P1/2(F = 1) and
2P1/2(F = 0) states thus amounts to H, while the S-
state splitting is 3H. Additionally, the energies of the S
states are lifted upward by L, irrespective of the hyperfine
effects. For the product state of atoms A and B, we shall
use the notation

|(ℓA, FA, Fz,A)A (ℓB, FB, Fz,B)B 〉 , (17)

which summarizes the quantum numbers of both atoms.
We anticipate that some of the eigenstates of the
combined and total Hamiltonian (Lamb shift plus hy-
perfine effects plus van der Waals) do not decou-
ple into simple unperturbed eigenstates of the form
|(ℓA, FA, Fz,A)A (ℓB, FB, Fz,B)B〉 but may require the use
of superpositions of these states, as we had already ex-
perienced for the (1S; 2S) interaction in Ref. [2].
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FIG. 1. (Color online.) Evolution of the energy levels within the Fz = +2 hyperfine manifold as a function of
interatomic separation. The eigenstates given in the legend are only asymptotic; for finite separation these states
mix. One has H = 0.055 949L according to Eq. (15). The unit of energy used for the ordinate axis is interaction
energy divided by the Planck constant h (left ordinate axis) and given in Hertz (Hz). On the right ordinate axis, we
use the Lamb shift L as defined in Eq. (3) as an alternative unit of frequency. The Born–Oppenheimer approximation
is used in plotting the interaction energy as a function of the internuclear distance R.

III. HAMILTONIAN MATRICES IN THE

HYPERFINE SUBSPACES

A. Manifold Fz = +2

We have already pointed out that the n = 2, J =
1/2 Hilbert space naturally separates into subspaces with
fixed total hyperfine quantum number Fz = Fz,a + Fz,b,
according to Eq. (8). We can identify two irreducible
subspaces within the Fz = +2 manifold: the subspace I
is composed of the states

|φ(I)1 〉 = |(0, 1, 1)A (0, 1, 1)B〉 , (18a)

|φ(I)2 〉 = |(1, 1, 1)A (1, 1, 1)B〉 , (18b)

where the Hamiltonian matrix reads

H
(I)
Fz=+2 =

(

2L+ 3
2H −2V

−2V 1
2H

)

. (19)

Subspace II is composed of the states

|φ(II)1 〉 = |(0, 1, 1)A (1, 1, 1)B〉 , (20a)

|φ(II)2 〉 = |(1, 1, 1)A (0, 1, 1)B〉 , (20b)

where the Hamiltonian matrix reads

H
(II)
Fz=+2 =

(

L+H −2V
−2V L+H

)

. (21)

These subspaces are completely uncoupled. Namely, no
state in subspace I is coupled to a state in subspace II.

The eigenvalues of H
(I)
Fz=+2 are given by

E
(I)
+ = H+ L+

√

4V2 + (12H+ L)2

= 3
2 H+ 2L+ 4

V2

H + 2L +O(V4) , (22a)

E
(I)
− = H+ L −

√

4V2 + (12H+ L)2

= 1
2 H− 4

V2

H + 2L +O(V4) , (22b)

with the corresponding eigenvectors

|u(I)+ 〉 = 1√
a2 + b2

(

a |φ(I)1 〉+ b |φ(I)2 〉
)

, (23a)

|u(I)− 〉 = 1√
a2 + b2

(

b |φ(I)1 〉 − a |φ(I)2 〉
)

. (23b)
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Here the coefficients a and b are given by

a = −
2L+H +

√

(2L+H)
2
+ (4V)2

4V , (24a)

b = 1 . (24b)

The eigenenergies of H
(II)
Fz=+2 are given by

E
(II)
± = H±L± 2V , (25)

with the corresponding eigenvectors,

|u(II)± 〉 = 1√
2
(|φ(II)1 〉 ± |φ(II)2 〉) . (26)

For V → 0, which corresponds to the large separation
limit R → +∞, these eigenvalues tend toward the (de-

generate) diagonal entries of the matrix H
(II)
Fz=+2.

The eigenstates within the degenerate subspace II ex-
perience a shift of first order in the van der Waals in-
teraction energy V , because of the degeneracy of the di-
agonal entries L + H in Eq. (21); this pattern will be
observed for other subspaces in the following. In Fig. 1,
we plot the evolution of the eigenvalues (22) and (25)
with respect to interatomic separation. The two levels
within the subspace II noticeably experience a far larger
interatomic interaction shift from their asymptotic value
L + H, commensurate with the parametric estimate of
the corresponding energy shifts.

B. Manifold Fz = +1

We can identify two irreducible subspaces within the
Fz = +1 manifold. Subspace I is composed of the follow-
ing states, with both atoms either being in S, or both in
P states,

|ψ(I)
1 〉 = |(0, 0, 0)A (0, 1, 1)B〉 , |ψ(I)

2 〉 = |(0, 1, 0)A (0, 1, 1)B〉 , |ψ(I)
3 〉 = |(0, 1, 1)A (0, 0, 0)B〉 ,

|ψ(I)
4 〉 = |(0, 1, 1)A (0, 1, 0)B〉 , |ψ(I)

5 〉 = |(1, 0, 0)A (1, 1, 1)B〉 , |ψ(I)
6 〉 = |(1, 1, 0)A (1, 1, 1)B〉 ,

|ψ(I)
7 〉 = |(1, 1, 1)A (1, 0, 0)B〉 , |ψ(I)

8 〉 = |(1, 1, 1)A (1, 1, 0)B〉 ,

(27)

and the Hamiltonian matrix reads

H
(I)
Fz=+1 =

























2L− 3
2H 0 0 0 0 −2V V −V

0 2L+ 3
2H 0 0 −2V 0 −V V

0 0 2L− 3
2H 0 V −V 0 −2V

0 0 0 2L+ 3
2H −V V −2V 0

0 −2V V −V − 1
2H 0 0 0

−2V 0 −V V 0 1
2H 0 0

V −V 0 −2V 0 0 − 1
2H 0

−V V −2V 0 0 0 0 1
2H

























. (28)

Subspace II is composed of the following states, where one atom is in a S, and the other, in a P state,

|ψ(II)
1 〉 = |(0, 0, 0)A (1, 1, 1)B〉 , |ψ(II)

2 〉 = |(0, 1, 0)A (1, 1, 1)B〉 , |ψ(II)
3 〉 = |(0, 1, 1)A (1, 0, 0)B〉 ,

|ψ(II)
4 〉 = |(0, 1, 1)A (1, 1, 0)B〉 , |ψ(II)

5 〉 = |(1, 0, 0)A (0, 1, 1)B〉 , |ψ(II)
6 〉 = |(1, 1, 0)A (0, 1, 1)B〉 ,

|ψ(II)
7 〉 = |(1, 1, 1)A (0, 0, 0)B〉 , |ψ(II)

8 〉 = |(1, 1, 1)A (0, 1, 0)B〉 , (29)

and the Hamiltonian matrix reads

H
(II)
Fz=+1 =























L− 2H 0 0 0 0 −2V V −V
0 L+H 0 0 −2V 0 −V V
0 0 L 0 V −V 0 −2V
0 0 0 L+H −V V −2V 0
0 −2V V −V L 0 0 0

−2V 0 −V V 0 L+H 0 0
V −V 0 −2V 0 0 L − 2H 0
−V V −2V 0 0 0 0 L+H























. (30)

These two submanifolds are, again, completely uncou-
pled, as a consequence of the selection rules between S

and P states. One observes that within the subspace I,



7

FIG. 2. (Color online.) Evolution of the S–S and P–P energy levels of the submanifold I within the Fz = +1
hyperfine manifold as a function of interatomic separation. The asymptotic eigenstates given in the legend mix for
finite separation. The labeling of the axes is as in Fig. 1.

no two degenerate levels are coupled to each other, result-
ing in second-order van der Waals energy shifts. On the
other hand, the following subspaces, within the subspace
II, can be identified as being degenerate with respect to
the unperturbed Hamiltonian, and having states coupled
by nonvanishing off-diagonal elements. We first have a
subspace spanned by

|ψ(A)
1 〉 = |ψ(II)

1 〉 , |ψ(A)
2 〉 = |ψ(II)

7 〉 . (31)

These states are composed of a singlet S and a triplet
P state, and hence the diagonal entries in the Hamilto-
nian matrix are (− 9

4H + L) + (14H) = −2H + L. The
Hamiltonian matrix is

H
(A)
Fz=+1 =

(

L − 2H V
V L − 2H

)

. (32)

The eigenvalues are

E
(A)
± = L − 2H± V , (33)

with the corresponding eigenvectors,

|u(A)
± 〉 = 1√

2

(

|ψ(A)
1 〉 ± |ψ(A)

2 〉
)

. (34)

Note that the designation of a degenerate subspace, for
the Fz = +1 subspace, does not imply that there are
no couplings to any other states within the manifold;
however, the couplings relating the degenerate states will
become dominant for close approach.
A second degenerate subspace is given as

|ψ(B)
1 〉 = |ψ(II)

3 〉 , |ψ(B)
2 〉 = |ψ(II)

5 〉 . (35)

These states are composed of a triplet S and a singlet P
state, and hence the diagonal entries in the Hamiltonian
matrix are (34H + L) − (34H) = L. The Hamiltonian
matrix is

H
(B)
Fz=+1 =

(

L V
V L

)

. (36)

The eigenvalues are

E
(B)
± = L ± V , (37)

with the corresponding eigenvectors,

|u(B)
± 〉 = 1√

2

(

|ψ(B)
1 〉 ± |ψ(B)

2

)

. (38)
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FIG. 3. (Color online.) Evolution of the energy levels of the submanifold II within the Fz = +1 hyperfine manifold
as a function of interatomic separation. The eigenstates given in the legend are only asymptotic. The curve for the
seventh state in the legend (counted from the top) has been slightly offset for better readability, in actuality it is
virtually indistinguishable from that for the sixth state in the legend.

The most complicated degenerate subspace is given by
the vectors

|ψ(C)
1 〉 = |ψ(II)

2 〉 , |ψ(C)
2 〉 = |ψ(II)

4 〉 , (39)

|ψ(C)
3 〉 = |ψ(II)

6 〉 , |ψ(C)
4 〉 = |ψ(II)

8 〉 . (40)

The Hamiltonian matrix is

H
(C)
Fz=+1 =







L+H 0 0 V
0 L+H V 0
0 V L+H 0
V 0 0 L+H






, (41)

which again decouples into two 2 × 2 matrices, just like
we saw in the case of HFz=+2. The eigenvalues are

E
(C)
± = H+ L ± V , (42)

where the eigenvectors for |u(C)
±,i 〉 (with i = 1, 2 because

of the degeneracy of the eigenvalues) are given by

|u(C)
±,1〉 =

1√
2

(

|ψ(C)
1 〉 ± |ψ(C)

4

)

〉 , (43a)

|u(C)
±,2〉 =

1√
2

(

|ψ(C)
2 〉 ± |ψ(C)

3

)

〉 . (43b)

In Figs. 2 and 3, we plot the evolution of the eigenval-
ues of the matrices (28) and (30) with respect to inter-
atomic separation. The larger energy shifts within the
subspace II are noticeable. A feature exhibited by the
Fz = +1 manifold which was not present in the Fz = +2
manifold is that of level crossings: for sufficiently small
interatomic separation (R < 500 a0), the eigenenergies
of some of the states from the submanifolds I and II in
fact cross (these crossings would be visible if one were
to superimpose Figs. 2 and 3), while there are no level
crossings between states belonging to the same subman-
ifold.

C. Manifold Fz = 0

We can identify two irreducible subspaces within the
Fz = 0 manifold: the subspace I is composed of states
with both atoms in S, or both atoms in P levels,
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FIG. 4. (Color online.) Evolution of the energy levels of the submanifold I within the Fz = 0 hyperfine manifold
as a function of interatomic separation. Energetically, the S–S states are above the P–P states. The eigenstates
given in the legend are only asymptotic; for finite separation these states mix. Some of the curves [namely, the
third (from the top), sixth and twelfth] have been slightly offset for better readability. Notice that, for sufficiently
close separation (R < 1 000 a0), we witness some level crossings between levels within the same submanifold I. The
coefficients α± and β± are determined by second-order perturbation theory and given by Eq. (83).

|Ψ(I)
1 〉 = |(0, 0, 0)A (0, 0, 0)B〉 , |Ψ(I)

2 〉 = |(0, 0, 0)A (0, 1, 0)B〉 , |Ψ(I)
3 〉 = |(0, 1,−1)A (0, 1, 1)B〉 ,

|Ψ(I)
4 〉 = |(0, 1, 0)A (0, 0, 0)B〉 , |Ψ(I)

5 〉 = |(0, 1, 0)A (0, 1, 0)B〉 , |Ψ(I)
6 〉 = |(0, 1, 1)A (0, 1,−1)B〉 ,

|Ψ(I)
7 〉 = |(1, 0, 0)A (1, 0, 0)B〉 , |Ψ(I)

8 〉 = |(1, 0, 0)A (1, 1, 0)B〉 , |Ψ(I)
9 〉 = |(1, 1,−1)A (1, 1, 1)B〉 ,

|Ψ(I)
10 〉 = |(1, 1, 0)A (1, 0, 0)B〉 , |Ψ(I)

11 〉 = |(1, 1, 0)A (1, 1, 0)B〉 , |Ψ(I)
12 〉 = |(1, 1, 1)A (1, 1,−1)B〉 (44)

and the Hamiltonian matrix reads

H
(I)
Fz=0 =







































2L− 9
2H 0 0 0 0 0 0 0 −V 0 −2V −V

0 2L− 3
2H 0 0 0 0 0 0 V −2V 0 −V

0 0 2L+ 3
2H 0 0 0 −V V 2V −V V 0

0 0 0 2L− 3
2H 0 0 0 −2V −V 0 0 V

0 0 0 0 2L+ 3
2H 0 −2V 0 V 0 0 V

0 0 0 0 0 2L+ 3
2H −V −V 0 V V 2V

0 0 −V 0 −2V −V − 3
2H 0 0 0 0 0

0 0 V −2V 0 −V 0 − 1
2H 0 0 0 0

−V V 2V −V V 0 0 0 1
2H 0 0 0

0 −2V −V 0 0 V 0 0 0 − 1
2H 0 0

−2V 0 V 0 0 V 0 0 0 0 1
2H 0

−V −V 0 V V 2V 0 0 0 0 0 1
2H







































.

(45)
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FIG. 5. (Color online.) Evolution of the energy levels of the 2S–2S states within the Fz = 0 hyperfine manifold
(subspace I) as a function of the interatomic separation (close-up of the “upper” levels in Fig. 4). The eigenstates
given in the legend are only asymptotic; for finite separation these states mix. No offsets are used here. Notice that
we witness one level crossing. The coefficients α± and β± are determined by second-order perturbation theory and
given by Eq. (83).

Subspace II is composed of the S–P and P–S combinations,

|Ψ(II)
1 〉 =|(0, 0, 0)A (1, 0, 0)B〉 , |Ψ(II)

2 〉 = |(0, 0, 0)A (1, 1, 0)B〉 , |Ψ(II)
3 〉 = |(0, 1,−1)A (1, 1, 1)B〉 ,

|Ψ(II)
4 〉 =|(0, 1, 0)A (1, 0, 0)B〉 , |Ψ(II)

5 〉 = |(0, 1, 0)A (1, 1, 0)B〉 , |Ψ(II)
6 〉 = |(0, 1, 1)A (1, 1,−1)B〉 ,

|Ψ(II)
7 〉 = |(1, 0, 0)A (0, 0, 0)B〉 , |Ψ(II)

8 〉 = |(1, 0, 0)A (0, 1, 0)B〉 , |Ψ(II)
9 〉 = |(1, 1,−1)A (0, 1, 1)B〉 ,

|Ψ(II)
10 〉 = |(1, 1, 0)A (0, 0, 0)B〉 , |Ψ(II)

11 〉 = |(1, 1, 0)A (0, 1, 0)B〉 , |Ψ(II)
12 〉 = |(1, 1, 1)A (0, 1,−1)B〉 , (46)

and the Hamiltonian matrix reads

H
(II)
Fz=0 =







































L − 3H 0 0 0 0 0 0 0 −V 0 −2V −V
0 L − 2H 0 0 0 0 0 0 V −2V 0 −V
0 0 L+H 0 0 0 −V V 2V −V V 0
0 0 0 L 0 0 0 −2V −V 0 0 V
0 0 0 0 L+H 0 −2V 0 V 0 0 V
0 0 0 0 0 L+H −V −V 0 V V 2V
0 0 −V 0 −2V −V L − 3H 0 0 0 0 0
0 0 V −2V 0 −V 0 L 0 0 0 0
−V V 2V −V V 0 0 0 L+H 0 0 0
0 −2V −V 0 0 V 0 0 0 L − 2H 0 0

−2V 0 V 0 0 V 0 0 0 0 L+H 0
−V −V 0 V V 2V 0 0 0 0 0 L+H







































. (47)

Again, we notice that within the subspace I, no two de-
generate levels are coupled to each other. On the other
hand, the following subspaces, within the subspace II,

can be identified as being degenerate with respect to the
unperturbed Hamiltonian, and having states coupled by
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nonvanishing off-diagonal elements.
The first degenerate subspace is given as follows,

|Ψ(A)
1 〉 = |Ψ(II)

2 〉 , |Ψ(A)
2 〉 = |Ψ(II)

10 〉 . (48)

The Hamiltonian matrix reads as

H
(A)
Fz=0 =

(

L − 2H −2V
−2V L − 2H

)

. (49)

The eigensystem is given by

E
(A)
± = L − 2H± 2V , |u(A)

± 〉 = 1√
2
(|Ψ(A)

1 〉 ∓Ψ
(A)
2 〉) .

(50)
The second degenerate subspace is

|Ψ(B)
1 〉 = |Ψ(II)

4 〉 , |Ψ(B)
2 〉 = |Ψ(II)

8 〉 , (51)

with the Hamiltonian matrix

H
(B)
Fz=0 =

(

L −2V
−2V L

)

(52)

and the eigensystem

E
(B)
± = L± 2V , |u(B)

± 〉 = 1√
2
(|Ψ(B)

1 〉 ∓Ψ
(B)
2 〉) .

(53)
The third degenerate subspace is more complicated, and
is spanned by the six state vectors

|Ψ(C)
1 〉 = |Ψ(II)

3 〉 , |Ψ(C)
2 〉 = |Ψ(II)

5 〉 , (54a)

|Ψ(C)
3 〉 = |Ψ(II)

6 〉 , |Ψ(C)
4 〉 = |Ψ(II)

9 〉 , (54b)

|Ψ(C)
5 〉 = |Ψ(II)

11 〉 , |Ψ(C)
6 〉 = |Ψ(II)

12 〉 . (54c)

The six-dimensional submatrix is

H
(C)
Fz=0 =















L+H 0 0 2V V 0
0 L+H 0 V 0 V
0 0 L+H 0 V 2V
2V V 0 L+H 0 0
V 0 V 0 L+H 0
0 V 2V 0 0 L+H















. (55)

The eigenvalues are

E
(C)
±,1 = H + L ± 2V , (56a)

E
(C)
±,2 = H + L ± (

√
3 + 1)V , (56b)

E
(C)
±,3 = H + L ± (

√
3− 1)V , (56c)

and the eigenvectors are

u
(C)
+,1 =

1

2

(

|Ψ(C)
1 〉 − |Ψ(C)

3 〉+ |Ψ(C)
4 〉 − |Ψ(C)

6 〉
)

, (57a)

u
(C)
−,1 =

1

2

(

|Ψ(C)
1 〉 − |Ψ(C)

3 〉 − |Ψ(C)
4 〉+ |Ψ(C)

6 〉
)

, (57b)

u
(C)
+,2 =

1

2
√

3−
√
3

(

|Ψ(C)
1 〉+ (

√
3− 1) |Ψ(C)

2 〉+ |Ψ(C)
3 〉+ |Ψ(C)

4 〉+ (
√
3− 1) |Ψ(C)

5 〉+ |Ψ(C)
6 〉

)

, (57c)

u
(C)
−,2 =

1

2
√

3−
√
3

(

|Ψ(C)
1 〉+ (

√
3− 1) |Ψ(C)

2 〉+ |Ψ(C)
3 〉 − |Ψ(C)

4 〉 − (
√
3− 1) |Ψ(C)

5 〉 − |Ψ(C)
6 〉

)

, (57d)

u
(C)
+,3 =

1

2
√

3 +
√
3

(

|Ψ(C)
1 〉 − (

√
3 + 1) |Ψ(C)

2 〉+ |Ψ(C)
3 〉 − |Ψ(C)

4 〉+ (
√
3 + 1) |Ψ(C)

5 〉 − |Ψ(C)
6 〉

)

, (57e)

u
(C)
−,3 =

1

2
√

3 +
√
3

(

|Ψ(C)
1 〉 − (

√
3 + 1) |Ψ(C)

2 〉+ |Ψ(C)
3 〉+ |Ψ(C)

4 〉 − (
√
3 + 1) |Ψ(C)

5 〉+ |Ψ(C)
6 〉

)

. (57f)

In Figs. 4—8, we plot the evolution of the eigenvalues
of matrices (45) and (47) with respect to interatomic
separation. Notice again that the twelve levels within
the subspace II noticeably leave their asymptotic values
(of order ∼ L) for far larger separations than the twelve

levels within the subspace I, as predicted above by
analyzing the order of the corresponding energy shifts.
A feature exhibited by the Fz = 0 manifold which
was not present in the Fz = +1 manifold is that of
level crossings between levels within the same irre-
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FIG. 6. (Color online.) Evolution of the energy levels of the 2P–2P states within the Fz = 0 hyperfine manifold
(subspace I) as a function of interatomic separation (close-up of the “lower” levels in Fig. 4). Asymptotic eigenstates
used in the legend mix for finite separation. No offsets are used here. Notice that we witness one level crossing.
The coefficients α± and β± are determined by second-order perturbation theory and given by Eq. (83).

ducible submanifold: for sufficiently small interatomic
separations (R < 1 000 a0), the eigenenergies of some
of the states from the submanifold I cross between
themselves, and so do some in manifold II. For better
visibility of these intra-manifold crossings, we present
them in Figs. 5 and 6, as well as in Fig. 8. For even
smaller interatomic separations (R < 500 a0) we ob-
tain, again, crossings between levels in manifolds I and II.

As shown in Fig. 4, some levels within the submanifold
I, namely, on the one hand, the levels

|Ψ(I)
3 〉 = |(0, 1,−1)A (0, 1, 1)B〉 , (58a)

|Ψ(I)
5 〉 = |(0, 1, 0)A (0, 1, 0)B〉 , (58b)

|Ψ(I)
6 〉 = |(0, 1, 1)A (0, 1,−1)B〉 , (58c)

that have asymptotic energy 2L+ 3
2H; and, on the other

hand,

|Ψ(I)
9 〉 = |(1, 1,−1)A (1, 1, 1)B〉 , (59a)

|Ψ(I)
11 〉 = |(1, 1, 0)A (1, 1, 0)B〉 , (59b)

|Ψ(I)
12 〉 = |(1, 1, 1)A (1, 1,−1)B〉 , (59c)

that have asymptotic energy + 1
2H; are energetically de-

generate on the level of the unperturbed Hamiltonian,
while experiencing no first-order van der Waals couplings

among themselves. They still split for close enough inter-
atomic distance because of higher-order couplings. This
fixes the coefficients α± and β±, according to the anal-
ysis carried out in the following Sec. IV [see Fig. 4 and
Eq. (83)].

IV. HYPERFINE SHIFT IN SPECIFIC

SPECTATOR STATES

Of particular importance for hyperfine structure ex-
periments are energy differences of 2S singlet and triplet
hyperfine sublevels, with the spectator atom in an arbi-
trary atomic state. This amounts to the van der Waals
energy shift of the hyperfine lines, i.e., the energy differ-
ences of the triplet level |(0, 1, 0)A (ℓB, FB , Fz,B)B〉 and
the singlet level |(0, 0, 0)A (ℓB, FB, Fz,B)B〉, for all pos-
sible states of atom B. We will see that the hyperfine
frequencies are modified differently when the spectator
atom is in a 2S or a 2P state.

Let us first examine the submanifold with Fz = +1.
The following states have the atom A in the singlet hy-
perfine 2S level,

|ψ(I)
1 〉 = |(0, 0, 0)A (0, 1, 1)B〉 , (60a)

|ψ(II)
1 〉 = |(0, 0, 0)A (1, 1, 1)B〉 , (60b)
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FIG. 7. (Color online.) Evolution of the S–P and P–S energy levels within the Fz = 0 hyperfine manifold
(submanifold II) as a function of interatomic separation. The eigenstates given in the legend are only asymptotic,
for finite separation these states mix. Some of the curves (namely, for the ninth and twelfth states in the legend,
counted from the top) have been slightly offset for better readability. Notice that, for sufficiently close separation
(R < 1 000 a0), we witness some level crossings between levels within the same submanifold II. The first six states
are given in Eq. (57).

while

|ψ(I)
2 〉 = |(0, 1, 0)A (0, 1, 1)B〉 , (61a)

|ψ(II)
2 〉 = |(0, 1, 0)A (1, 1, 1)B〉 , (61b)

have the atom A in the hyperfine triplet S state. The
state of the spectator atom is preserved in the transitions

|ψ(I)
1 〉 → |ψ(I)

2 〉 and |ψ(II)
1 〉 → |ψ(II)

2 〉.
For the states |ψ(II)

1 〉 and |ψ(II)
2 〉, the spectator atom

is in a P state. For both of these states, we can find
energetically degenerate levels which are coupled to the
reference state by the van der Waals interaction. Specif-

ically, |ψ(II)
1 〉 is energetically degenerate with respect to

|ψ(II)
7 〉 = |(1, 1, 1)A (0, 0, 0)B〉, with the off-diagonal ele-

ment

〈ψ(II)
1 |HvdW|ψ(II)

7 〉 = V . (62)

as can be seen in Eqs. (31) and (32). Furthermore, |ψ(II)
2 〉

is energetically degenerate with respect to |ψ(II)
8 〉 =

|(1, 1, 1)A (0, 1, 0)B〉, with the off-diagonal element

〈ψ(II)
2 |HvdW|ψ(II)

8 〉 = V (63)

as can be seen in Eqs. (39) and (41). This implies that a
hyperfine transition or energy difference, with the spec-
tator atom being in a P state, undergoes a first-order van
der Waals energy shift proportional to V [see Eq. (15c)].
A close inspection of the matrix (28) reveals that the

levels |ψ(I)
1 〉 and |ψ(I)

2 〉 are not coupled to any energeti-
cally degenerate levels by the van der Waals interaction;
hence, their leading-order shift is of second order in V .
From the previous analysis [2] of the (1S;nS) van der
Waals interaction, however, we know that this observa-

tion does not imply that |ψ(I)
1 〉 and |ψ(I)

2 〉 decouple from
any other levels in terms of the eigenstates of the total
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FIG. 8. (Color online.) Close-up of the evolution of the energy levels of the 2S–2P and 2P–2S states (submanifold II)
within the Fz = 0 hyperfine manifold as a function of interatomic separation. For the legend, we use the asymptotic
eigenstates for large separation. No offsets are used here. Notice that we witness five level crossings. The first six
states are given by Eq. (57).

HamiltonianH given in Eq. (1); there may still be admix-
tures due to second-order effects in HvdW which involve
energetically degenerate levels, even if these are not cou-
pled directly to the reference state. In the case of the
(1S;nS) van der Waals interaction, we had constructed
an “effective Hamiltonian”HvdW[1/(E0−H)]′HvdW, and
evaluated its matrix elements in the basis of degenerate
states. The same approach is taken here, but with the
Hamiltonian matrix restricted to the relevant Fz subman-
ifold of states.
Let us illustrate the procedure. We have the degener-

ate state

|ψ(I)
3 〉 = |(0, 1, 1)A (0, 0, 0)B〉 , (64)

which is obtained from |ψ(I)
1 〉 by permuting the atoms A

and B, and construct the restricted Hamiltonian matrix

h
(I)
1,3 = lim

ǫ→0

(

〈ψ(I)
1 |H(ǫ)

eff |ψ(I)
1 〉 〈ψ(I)

1 |H(ǫ)
eff |ψ(I)

3 〉
〈ψ(I)

3 |H(ǫ)
eff |ψ(I)

1 〉 〈ψ(I)
3 |H(ǫ)

eff |ψ(I)
3 〉

)

. (65)

One defines the effective Hamiltonian H
(ǫ)
eff as follows.

Let H1 be the off-diagonal part of H
(I)
Fz=+1, equivalently

given by the expression of H
(I)
Fz=+1 given in Eq. (28) with

H → 0 and L → 0. Also, let H0 be the diagonal part of

H
(I)
Fz=+1, equivalently given by the expression of H

(I)
Fz=+1

with V → 0. Then

H
(ǫ)
eff = H1 ·

(

1

E
0,ψ

(I)
1

−H0 + ǫ

)

·H1 , (66)

where the dot (“·”) denotes the matrix multiplication
and the Green function matrix [1/(E

0,ψ
(I)
1

− H0 + ǫ)] is

obtained as the inverse of the diagonal matrix 1E
0,ψ

(I)
1

−
H0 = 1E

0,ψ
(I)
3

− H0. Since 〈ψ(I)
1 |H1|ψ(I)

3 〉 = 0, it is not

necessary to use the reduced Green function (which ex-
cludes degenerate states); the limit ǫ → 0 is finite for

all elements in h
(I)
1,3. The matrix h

(I)
1,3 takes the following
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form,

h
(I)
1,3 =









5

2

V2

L −H +
V2

2L−H
2V2

L −H
2V2

L−H
5

2

V2

L −H +
V2

2L −H









,

(67)
with eigenvalues

ǫ
(I)±
1,3 =

5

2

V2

L −H +
V2

2L−H ± 2V2

L −H , (68)

akin to the formula C6 = D6±M6 encountered in Ref. [2],
with eigenvectors

|ψ(I)±
1,3 〉 = 1√

2

(

|ψ(I)
1 〉 ± |ψ(I)

3 〉
)

. (69)

Note that the eigenvalues ǫ±1,3 only refer to the interac-
tion energy; in order to obtain the eigenvalue of the total
Hamiltonian H given in Eq. (1), one has to add the un-
perturbed entry 2L− 3

2H.

For the reference state |ψ(I)
2 〉, we have the degenerate

state |ψ(I)
4 〉 = |(0, 1, 1)A (0, 1, 0)B〉 [see Eq. (27)]. The

matrix h
(I)
2,4 has the same structure as (but different el-

ements from) h
(I)
1,3 given in Eq. (67), and we find [see

Eq. (28)]

ǫ
(I)±
2,4 =

5

2

V2

L+H +
V2

2L+H ± 2V2

L+H . (70)

The expression for ǫ±2,4 is obtained from ǫ±1,3 by a sign
change in H. The eigenvectors are

|ψ(I)±
2,4 〉 = 1√

2

(

|ψ(I)
2 〉 ± |ψ(I)

4 〉
)

. (71)

The unperturbed energy for the states |ψ(I)
2 〉 and |ψ(I)

4 〉 is
2L+ 3

2H. Hence, in the transition |ψ(I)
1 〉 → |ψ(I)

2 〉, where
both atoms are in S states, one has only second-order
van der Waals shifts. We recall that the transition is
|(0, 0, 0)A (0, 1, 1)B〉 → |(0, 1, 0)A (0, 1, 1)B〉.
We also need to analyze the space with Fz = 0. The

following states have the atom A in the singlet hyperfine
2S level,

|Ψ(I)
1 〉 = |(0, 0, 0)A (0, 0, 0)B〉 , (72a)

|Ψ(I)
2 〉 = |(0, 0, 0)A (0, 1, 0)B〉 , (72b)

|Ψ(II)
1 〉 = |(0, 0, 0)A (1, 0, 0)B〉 , (72c)

|Ψ(II)
2 〉 = |(0, 0, 0)A (1, 1, 0)B〉 , (72d)

while the 2S hyperfine triplet state of atom A is present
in the states

|Ψ(I)
4 〉 = |(0, 1, 0)A (0, 0, 0)B〉 , (73a)

|Ψ(I)
5 〉 = |(0, 1, 0)A (0, 1, 0)B〉 , (73b)

|Ψ(II)
4 〉 = |(0, 1, 0)A (1, 0, 0)B〉 , (73c)

|Ψ(II)
5 〉 = |(0, 1, 0)A (1, 1, 0)B〉 . (73d)

The transitions in question are |Ψ(I)
1 〉 → |Ψ(I)

4 〉, |Ψ(I)
2 〉 →

|Ψ(I)
5 〉, |Ψ(II)

1 〉 → |Ψ(II)
4 〉, and |Ψ(II)

2 〉 → |Ψ(II)
5 〉. In view of

the results

〈Ψ(II)
4 |HvdW|Ψ(II)

8 〉 = 〈Ψ(II)
2 |HvdW|Ψ(II)

10 〉 = −2V (74)

and

〈Ψ(II)
5 |HvdW|Ψ(II)

9 〉 = 〈Ψ(II)
5 |HvdW|Ψ(II)

12 〉 = −2V , (75)

which we obtain from Eq. (47), both transitions |Ψ(II)
1 〉 →

|Ψ(II)
4 〉, and |Ψ(II)

2 〉 → |Ψ(II)
5 〉 undergo first-order van der

Waals shifts. The spectator atom in these cases is in a P
state.
By contrast, for the transitions within the submanifold

I, namely, |Ψ(I)
1 〉 → |Ψ(I)

4 〉 and |Ψ(I)
2 〉 → |Ψ(I)

5 〉, the van der
Waals shift only enters in second order. We first analyze

the transition |Ψ(I)
1 〉 → |Ψ(I)

4 〉 = |(0, 0, 0)A (0, 0, 0)B〉 →
|(0, 1, 0)A (0, 0, 0)B〉. There is no energetically degenerate
state available for |Ψ(I)

1 〉, and hence one obtains

∆E
Ψ

(I)
1

=
6V2

2L − 5H+

( V2

2L−H

)

(76)

from Eq. (45). The levels |Ψ(I)
2 〉 and |Ψ(I)

4 〉 are energeti-
cally degenerate with respect to their unperturbed energy
2L − 3

2H, but there is no direct van der Waals coupling

between them. The matrix HI
2,4 is easily calculated in

analogy to hI1,3 given in Eq. (67), the difference being
that the effective interaction Hamiltonian (66) needs to
be calculated with respect to HFz=0, not HFz=+1. We
find the eigenvalues

E
(I)±
2,4 =

V2

L −H +
4V2

2L−H ± V2

−L+H . (77)

with eigenvectors

|Ψ(I)±
2,4 〉 = 1√

2

(

|Ψ(I)
2 〉 ± |Ψ(I)

4 〉
)

. (78)

The last state whose van der Waals interaction energy

needs to be analyzed is |Ψ(I)
5 〉. This state forms a degen-

erate set together with the states |Ψ(I)
3 〉 and |Ψ(I)

6 〉,

|Ψ(I)
3 〉 = |(0, 1,−1)A (0, 1, 1)B〉 , (79a)

|Ψ(I)
5 〉 = |(0, 1, 0)A (0, 1, 0)B〉 , (79b)

|Ψ(I)
6 〉 = |(0, 1, 1)A (0, 1,−1)B〉 , (79c)

which are both composed of two hyperfine triplet S
states. Under the additional approximation H ≪ L, one
finds through Eq. (45) the Hamiltonian matrix

H
(I)
3,5,6 ≈

















4V2

L
2V2

L 0

2V2

L
3V2

L
2V2

L

0
2V2

L
4V2

L

















. (80)
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The energy eigenvalues are

E
(I)(1)
3,5,6 ≈ 7 +

√
33

2

V2

L , (81a)

E
(I)(2)
3,5,6 ≈ 4V2

L , (81b)

E
(I)(3)
3,5,6 ≈ 7−

√
33

2

V2

L , (81c)

with eigenvectors

Ψ
(I)(1)
3,5,6 ≈ α− |Ψ(I)

3 〉+ β− |Ψ(I)
5 〉+ α− |Ψ(I)

6 〉 , (82a)

Ψ
(I)(2)
3,5,6 ≈ − 1√

2
|Ψ(I)

3 〉+ 1√
2
|Ψ(I)

6 〉 , (82b)

Ψ
(I)(3)
3,5,6 ≈ α+ |Ψ(I)

3 〉+ β+ |Ψ(I)
5 〉+ α+ |Ψ(I)

6 〉 (82c)

where we introduced the notations

α± = 2

√

2

33±
√
33
, (83a)

β± = ∓
√
33± 1

√

2
(

33±
√
33
)

. (83b)

The transitions |Ψ(I)
1 〉 → |Ψ(I)

4 〉 and |Ψ(I)
2 〉 → |Ψ(I)

5 〉 thus
undergo only second-order van der Waals shifts of order
V2/L; these are the only hyperfine transitions with both
atoms in metastable states.
Finally, we briefly mention the Fz = −1 subspace. The

analysis carried out for the Fz = +1 subspace holds when
we perform the substitutions [see also App. A 1]

|ψ(I)
1 〉 → |ψ′(I)

1 〉 , |ψ(I)
2 〉 → |ψ′(I)

4 〉 , |ψ(I)
3 〉 → |ψ′(I)

2 〉 ,
|ψ(I)

4 〉 → |ψ′(I)
3 〉 , |ψ(I)

5 〉 → |ψ′(I)
5 〉 , |ψ(I)

6 〉 → |ψ′(I)
8 〉 ,

|ψ(I)
7 〉 → |ψ′(I)

6 〉 , |ψ(I)
8 〉 → |ψ′(I)

7 〉 .
(84)

In Tables I, II, III and IV, we provide some numerical
values for the modification of the 2S hyperfine splitting,
as a function of interatomic distance. The spectator atom
is in an S state for Tables I and III and in a P state for
Tables II and IV. Tables I and II treat of the relevant
transitions within the Fz = +1 manifold, while Tables III
and IV treat of (some of) the relevant transitions within
the Fz = 0 manifold. The relevant transitions within the
Fz = −1 manifold have the same transition energies as
those within the Fz = +1 for all separations, and the
corresponding results can thusly be read from Tables I
and II, with the substitutions

|(0, 0, 0)A (0, 1, 1)B〉 → |(0, 0, 0)A (0, 1,−1)B〉 , (85a)

|(0, 1, 0)A (0, 1, 1)B〉 → |(0, 1, 0)A (0, 1,−1)B〉 , (85b)

|(0, 0, 0)A (1, 1, 1)B〉 → |(0, 0, 0)A (1, 1,−1)B〉 , (85c)

|(0, 1, 0)A (1, 1, 1)B〉 → |(0, 1, 0)A (1, 1,−1)B〉 . (85d)

R ∆ǫ
(I)
+ ∆ǫ

(I)
−

∞ 0 0

750 a0 −1.1099 × 10−2 −2.1156 × 10−3

500 a0 5.5547 × 10−1 6.8788 × 10−2

250 a0 3.7979 × 101 2.5507 × 101

TABLE I. Energy shifts with the spectator atom in an S state
with F = 1: numerical values of the van der Waals shift to the
energy difference ∆ǫ

(I)
+ between the symmetric superpositions

(

1/
√
2
)

(|(0, 1, 0)A (0, 1, 1)B〉+ |(0, 1, 1)A (0, 1, 0)B〉) and
(

1/
√
2
)

(|(0, 0, 0)A (0, 1, 1)B〉+ |(0, 1, 1)A (0, 0, 0)B〉), and to

the energy difference ∆ǫ
(I)
− between the antisymmetric super-

positions
(

1/
√
2
)

(|(0, 1, 0)A (0, 1, 1)B〉 − |(0, 1, 1)A (0, 1, 0)B〉)
and

(

1/
√
2
)

(|(0, 0, 0)A (0, 1, 1)B〉 − |(0, 1, 1)A (0, 0, 0)B〉); as
a function of the interatomic separation R. We recall that
the asymptotic value of these energy differences is given by
3H; the unperturbed energies are 2L ± 3

2
H [see the text

surrounding Eqs. (69) and (71)]. All energies are given in
units of the hyperfine splitting constant H defined by (15a).

R ∆ǫ
(II)
+ ∆ǫ

(II)
−

∞ 0 0

750 a0 2.6396 2.6396

500 a0 1.3276 × 101 1.3276 × 101

250 a0 1.2510 × 102 1.2510 × 102

TABLE II. Energy shifts with the spectator atom in a P state
with F = 1: numerical values of the van der Waals shift to the
energy difference ∆ǫ

(II)
+ between the symmetric superpositions

(

1/
√
2
)

(|(0, 1, 0)A (1, 1, 1)B〉+ |(1, 1, 1)A (0, 1, 0)B〉) and
(

1/
√
2
)

(|(0, 0, 0)A (1, 1, 1)B〉+ |(1, 1, 1)A (0, 0, 0)B〉), and of

the energy difference ∆ǫ
(II)
− between the antisymmetric super-

positions
(

1/
√
2
)

(|(0, 1, 0)A (1, 1, 1)B〉 − |(1, 1, 1)A (0, 1, 0)B〉)
and

(

1/
√
2
)

(|(0, 0, 0)A (1, 1, 1)B〉 − |(1, 1, 1)A (0, 0, 0)B〉); as
a function of the interatomic separation R. All energies are
given in units of the hyperfine splitting constant H defined
by (15a).

V. CONCLUSIONS

We analyze the (2S; 2S) interaction at the dipole-
dipole level with respect to degenerate subspaces of the
hyperfine-resolved unperturbed Hamiltonian. Full ac-
count is taken of the manifolds with n = 2 and J = 1/2
(2S and 2P1/2 states), while the fine-structure splitting
is supposed to be large against the van der Waals energy
shifts (2P3/2 state not included in the treatment).

We find that the total Hamiltonian given in Eq. (1)
commutes with the magnetic projection Fz of the total
angular momentum of the two atoms. Hence, we can
separate the manifolds with n = 2 and J = 1/2 into sub-
manifolds with Fz = +2, 1, 0,−1,−2. In each of these
manifolds, we can identify two irreducible submanifolds,
uncoupled to one another because of the usual selection
rules of atomic physics. In each of these submanifolds
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R ∆E
(I)
+ ∆E

(I)
−

∞ 0 0

750 a0 −4.7272 × 10−2 1.9331 × 10−2

500 a0 −2.9284 −1.8165

250 a0 2.4319 × 101 −2.9082

TABLE III. Energy shifts with the spectator atom in an S
state with F = 0: numerical values of the van der Waals shift
to the energy difference ∆E

(I)
+ between the symmetric super-

position
(

1/
√
2
)

(|(0, 1, 0)A (0, 0, 0)B〉+ |(0, 0, 0)A (0, 1, 0)B〉)
and |(0, 0, 0)A (0, 0, 0)B〉, and of the energy differ-

ence ∆E
(I)
− between the antisymmetric superposition

(

1/
√
2
)

(|(0, 1, 0)A (0, 0, 0)B〉 − |(0, 0, 0)A (0, 1, 0)B〉) and
|(0, 0, 0)A (0, 0, 0)B〉; as a function of the interatomic sepa-
ration R. The energies are given in units of the hyperfine
splitting constant H defined by (15a).

R ∆E
(II)
+ ∆E

(II)
−

∞ 0 0

750 a0 −1.4673 2.1880

500 a0 −2.4855 1.2326 × 101

250 a0 8.2368 × 101 8.2379 × 101

TABLE IV. Energy shifts with the spectator atom in a P
state with F = 0: numerical values of the van der Waals shift
to the energy difference ∆E

(II)
+ between the symmetric super-

positions
(

1/
√
2
)

(|(0, 1, 0)A (1, 0, 0)B〉+ |(1, 0, 0)A (0, 1, 0)B〉)
and

(

1/
√
2
)

(|(0, 0, 0)A (1, 0, 0)B〉+ |(1, 0, 0)A (0, 0, 0)B〉),
and of the energy difference ∆E

(II)
− be-

tween the antisymmetric superpositions
(

1/
√
2
)

(|(0, 1, 0)A (1, 0, 0)B〉 − |(1, 0, 0)A (0, 1, 0)B〉) and
(

1/
√
2
)

(|(0, 0, 0)A (1, 0, 0)B〉 − |(1, 0, 0)A (0, 0, 0)B〉); as a
function of the interatomic separation R. All energies are
given in units of the hyperfine splitting constant H defined
by (15a).

the Hamiltonian matrix can readily be evaluated [see
Eqs. (19), (21), (28), (30), (45), (47), (A2), (A4), (A8)
and (A11)]. Several degenerate subspaces with first-order
van der Waals shifts [in the parameter V defined by (15c),
and hence, of order 1/R3] can be identified. The corre-
sponding shifts are of course the relevant ones for large
interatomic separations.

However, it should be noted that those hyperfine
transitions where both atoms are in S states, actu-
ally undergo only second-order van der Waals shifts,
where the energy shifts are given by expressions pro-
portional to V2/L, with V being defined in Eq. (15c).
The relevant states and energy shifts are given in
Eqs. (60a), (61a), (68) and (70) (for the Fz = 1 man-
ifold). For the Fz = 0 manifold, we have the states given
in Eqs. (72a), (73a), as well as (72b) and (73b), and
the energy eigenvalues are provided in Eqs. (76), (77),

and (81). The transitions are labelled |Ψ(I)
1 〉 → |Ψ(I)

4 〉

and |Ψ(I)
2 〉 → |Ψ(I)

5 〉 in Sec. IV. Experimentally, the states
with both atoms in an S level are most interesting, be-
cause they are the only ones that survive for an appre-
ciable time in an atomic beam; P states (and thus, states
with P admixtures) decay with typical lifetimes on the
order of 10−8 s (see Ref. [15]).

The dipole-dipole interaction results in level crossings
(see Figs. 4—10), which is a feature of the hyperfine-
resolved treatment of the problem. We are able to con-
firm that, in the coarse-structure limit L → 0, F → 0, no
such level crossings are present (as found in Ref. [3]). We
note that, in the hyperfine resolved problem, there are
no level crossings for the Fz = ±2 manifolds (see Figs. 1
and 11); for the Fz = ±1 manifolds, only crossings be-
tween levels belonging to different irreducible submani-
folds take place (in other words, the energies of states
which are asymptotically of the 2S–2P type on the one
side, and of states of the 2S–2S and 2P–2P type on the
other, cross for R < 500 a0, see Figs. 2, 3, 9 and 10);
while, for the Fz = 0 manifold, both intra-submanifold
(for R < 1 000 a0) and inter-submanifold (for R < 500 a0)
level crossings take place (see Figs. 4, 5, 6, 7 and 8).

Of particular phenomenological interest are the 2S
hyperfine singlet to hyperfine triplet transitions with
|(0, 0, 0)A〉 → |(0, 1, 0)A〉 with the spectator atom B in a
specific state. We find that all transitions with the spec-
tator atom in a P state undergo first-order van der Waals
shifts (of order 1/R3), while the shift is of order 1/R6 if
the spectator atom is in an S state, that is, of second or-
der in V . This is due to the fact that 2S–2S states are not
coupled to energetically degenerate states (they are only
coupled to 2P–2P states), while 2S–2P states are cou-
pled to 2P–2S states with which they are energetically
degenerate. In other words, these different behaviors are
ultimately due to the selection rules. The spectator atom
in a P state, however, decays very fast to the ground state
by one-photon emission, with a lifetime of approximately
1.60×10−9 s [15], so that, depending on the exact experi-
mental setup, the large van der Waals interaction energy
shifts of the 2S(F = 0) → 2S(F = 1) hyperfine transi-
tion (with the spectator atom being in a 2P state) do not
play a role in the analysis of atomic beam experiments.
Otherwise, we observe that a spectator atom in a P state
induces larger frequency shifts, comparing, e.g., the shifts
in Tables I and II for R = 750 a0 and R = 500 a0.

As shown in Sec. IV, the precise numerical coefficients
of the van der Waals shifts of the hyperfine singlet to
hyperfine triplet transitions |(0, 0, 0)A〉 → |(0, 1, 0)A〉 de-
pend on the symmetry of the wave function superposition
of atoms A and B, and cannot be uniquely expressed in
terms of a specific state of the spectator atom B alone;
a symmetrization term is required [see the term prefixed
with ± in Eqs. (68), (70) and (77), the same is true in the
Fz = −1 subspace]. For spectroscopy, one essential piece
of information to be derived from the results given in
Eqs. (68), (70), (77) and (81) is that the van der Waals in-
teraction energy shift for 2S(F = 0) → 2S(F = 1) hyper-
fine transitions (with the spectator atom in a metastable
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FIG. 9. (Color online.) Evolution of the energy levels of the submanifold I within the Fz = −1 hyperfine manifold as
a function of interatomic separation. The eigenstates given in the legend are only asymptotic, for finite separation
these states mix.

2S state) is of order V2/L, where the parameters are de-
fined in Eq. (15) [see also the remark in the text following
Eq. (83)]. It is straightforward to see from Eq. (15c) that,
for interatomic separation R ∼ 5×105 a0 ≃ 2.6×10−5m,
the van der Waals shift reaches the experimental accu-
racy of the 2S hyperfine frequency measurements [1].
Expressed more conveniently, still in SI mksA units,

the shift is of order

E2S;2S(R) ∼
V2

L ∼ Eh

(a0
R

)6 Eh
L (86)

where Eh is the Hartree energy, a0 is the Bohr radius,
and L ∼ α3 Eh is the Lamb shift energy [see Eq. (3)].
A quick word is in order about how the present re-

sults can be transposed to hydrogen-like systems such as
positronium and muonium. For positronium, the hierar-
chy between the fine structure, Lamb shift and hyperfine
structure is not the same as that for hydrogen, so that
the treatment used here; based on that hierarchy, does
not apply. For muonium, on the other hand, our analysis
remains relevant. Given that the reduced mass for the
muonium system is very close to that of the hydrogen
atom, the fine structure and Lamb shift-type splittings
are almost identical to those of hydrogen. The hyperfine
splitting is gs/gN mp/mµ ∼ 3.2 times larger than that

of atomic hydrogen. Finally, given the close proximity
of the reduced masses, muonium has a Bohr radius very
close to that of hydrogen, so that the intensity of the
dipole-dipole interactions will be essentially identical, for
equal separations, between two hydrogen atoms and be-
tween two muonium atoms.
In this work as well as in the previous paper [2] of this

series, we have treated dipole-dipole interactions between
atoms sitting in S states (though, in the present case, we
had to treat the 2P1/2 state on the same footing as 2S,
given their quasi-degeneracy). Finally, we should com-
ment on the distance range for which our calculations
remain applicable. We have used the nonretardation ap-
proximation in Eq. (2c). For the 2S–2S interaction via
adjacent 2P1/2 states, retardation sets in when the phase
of the atomic oscillation during a virtual (Lamb shift)
transition changes appreciably on the time scale it takes
light to travel the interatomic separation distance R, i.e.,
when

R

c
∼ ~

L . (87)

We have R ∼ ~c/L when R is on the order of the Lamb
shift wavelength of about 30 cm. The nonretardation ap-
proximation thus is valid over all distance ranges of phys-
ical interest, for the (2S;2S)-system.
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FIG. 10. (Color online.) Evolution of the energy levels of the submanifold II within the Fz = −1 hyperfine manifold
as a function of interatomic separation. The eigenstates given in the legend are only asymptotic, for finite separation
these states mix. The curve for the seventh state in the legend (counted from the top) has been slightly offset for
better readability, in actuality it is virtually indistinguishable from that for the sixth state.
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Appendix A: Further Manifolds

1. Manifold Fz = −1

We can identify two irreducible subspaces within the
Fz = −1 manifold: the subspace I composed of the states

|ψ′(I)
1 〉 = |(0, 0, 0)A (0, 1,−1)B〉 , |ψ′(I)

2 〉 = |(0, 1,−1)A (0, 0, 0)B〉 , |ψ′(I)
3 〉 = |(0, 1,−1)A (0, 1, 0)B〉 ,

|ψ′(I)
4 〉 = |(0, 1, 0)A (0, 1,−1)B〉 , |ψ′(I)

5 〉 = |(1, 0, 0)A (1, 1,−1)B〉 , |ψ′(I)
6 〉 = |(1, 1,−1)A (1, 0, 0)B〉 ,

|ψ′(I)
7 〉 = |(1, 1,−1)A (1, 1, 0)B〉 , |ψ′(I)

8 〉 = |(1, 1, 0)A (1, 1,−1)B〉 (A1)



20

FIG. 11. (Color online.) Evolution of the energy levels within the Fz = −2 hyperfine manifold as a function of
interatomic separation. The eigenstates given in the legend are only asymptotic, for finite separation these states
mix.

where the Hamiltonian matrix reads

H
′(I)
Fz=−1 =































2L− 3
2H 0 0 0 0 V V 2V

0 2L− 3
2H 0 0 V 0 2V V

0 0 2L+ 3
2H 0 V 2V 0 V

0 0 0 2L+ 3
2H 2V V V 0

0 V V 2V − 1
2H 0 0 0

V 0 2V V 0 − 1
2H 0 0

V 2V 0 V 0 0 1
2H 0

2V V V 0 0 0 0 1
2H































, (A2)

and the subspace II composed of the states

|ψ′(II)
1 〉 = |(0, 0, 0)A (1, 1,−1)B〉 , |ψ′(II)

2 〉 = |(0, 1,−1)A (1, 0, 0)B〉 , |ψ′(II)
3 〉 = |(0, 1,−1)A (1, 1, 0)B〉 ,

|ψ′(II)
4 〉 = |(0, 1, 0)A (1, 1,−1)B〉 , |ψ′(II)

5 〉 = |(1, 0, 0)A (0, 1,−1)B〉 , |ψ′(II)
6 〉 = |(1, 1,−1)A (0, 0, 0)B〉 ,

|ψ′(II)
7 〉 = |(1, 1,−1)A (0, 1, 0)B〉 , |ψ′(II)

8 〉 = |(1, 1, 0)A (0, 1,−1)B〉 , (A3)

where the Hamiltonian matrix reads

H
(II)
Fz=−1 =































L− 2H 0 0 0 0 V V 2V
0 L 0 0 V 0 2V V
0 0 L+H 0 V 2V 0 V
0 0 0 L+H 2V V V 0

0 V V 2V L 0 0 0

V 0 2V V 0 L− 2H 0 0

V 2V 0 V 0 0 L+H 0

2V V V 0 0 0 0 L+H































. (A4)
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Surprisingly, the Hamiltonian matrix is a little differ-
ent from the case with Fz = +1, even if one reorders
the basis vectors accordingly. The energy eigenvalues of
course are the same.

Again within the I subspace there are no degenerate
subspaces with nonzero coupling, while, in the II sub-
space we can identify degenerate states coupled to each
other. The analysis carried out in Sec. III B applies here
if we make the following substitutions:

|ψ(II)
1 〉 → |ψ′(II)

1 〉 , |ψ(II)
2 〉 → |ψ′(II)

3 〉 , |ψ(II)
3 〉 → |ψ′(II)

4 〉 ,
|ψ(II)

4 〉 → |ψ′(II)
2 〉 , |ψ(II)

5 〉 → |ψ′(II)
5 〉 , |ψ(II)

6 〉 → |ψ′(II)
7 〉 ,

|ψ(II)
7 〉 → |ψ′(II)

8 〉 , |ψ(II)
8 〉 → |ψ′(II)

6 〉 ,
(A5)

so that we need not go over the analysis of degenerate
subspaces again. (Even when making this reordering,

many off-diagonal terms have different signs in H
(II)
Fz=+1

and H
(II)
Fz=−1. But only the couplings between non-

degenerate states have different signs, while coupling be-
tween degenerate states remain identical. This latter
point means that the analysis of Sec. III B also applies

to H
(II)
Fz=−1.) However, for the sake of completeness and

clarity, in Figs. 9 and 10, we plot the evolution of the
eigenvalues with respect to interatomic separation. No-
tice that the evolution of the energy eigenstates is iden-
tical to the eigenstates in the Fz = +1 manifold.

2. Manifold Fz = −2

We can identify two irreducible subspaces within the
Fz = +2 manifold: the subspace I composed of the states

|φ′(I)1 〉 = |(0, 1,−1)A (0, 1,−1)B〉 , (A6)

|φ′(I)2 〉 = |(1, 1,−1)A (1, 1,−1)B〉 , (A7)

where the Hamiltonian matrix reads

H
(I)
Fz=−2 =

(

2L+ 3
2H −2V

−2V 1
2H

)

, (A8)

and the subspace II is composed of the states

|φ′(II)1 〉 = |(0, 1,−1)A (1, 1,−1)B〉 , (A9)

|φ′(II)2 〉 = |(1, 1,−1)A (0, 1,−1)B〉 , (A10)

where the Hamiltonian matrix reads

H
(II)
Fz=−2 =

(

L+H −2V
−2V L+H

)

. (A11)

We do not repeat the analysis of the eigensystem and
refer the reader to Sec. III A. The results given there
are immediately transposed to the present case, by the
simple substitution |φi〉 → |φ′i〉. However, for the sake
of completeness and clarity, in Fig. 11, we still plot the
evolution of the eigenvalues with respect to interatomic
separation. Notice that the evolution of the energy eigen-
states is identical to the eigenstates in the Fz = +2 man-
ifold.
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