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Repulsive Casimir-Lifshitz forces are known to exist between two dissimilar materials if a third
material, whose dielectric response is intermediate, separates them. However, the force between
two identical materials is almost always attractive. Here we show that the force between two
identical, semi-infinite birefringent slabs can be repulsive for particular orientations and compare the
conditions for repulsion in this system to those of isotropic materials. We examine the dependence
of the Casimir-Lifshitz force on retardation and relative orientation in this system and discuss
situations in which the force can be changed from attractive to repulsive as a function of both
distance and rotation angle.

I. INTRODUCTION

Since its original derivation in 1948 [1], the Casimir
effect has been the subject of many experimental and
theoretical investigations. The original paper predicted
an attractive force between perfect conductors separated
by vacuum, but the result has been generalized to in-
clude more complicated materials and geometries [2–5].
In particular, Barash calculated the force and torque ex-
perienced by two semi-infinite anisotropic materials sep-
arated by a dielectric medium [4]. There have been many
experiments that confirm predictions from Lifshitz’s the-
ory [6–11], and several experiments have been proposed
to measure the torque between anisotropic materials [12–
16].

Because attractive Casimir-Lifshitz forces can cause
stiction in MEMS or NEMS devices [17], there has
been significant effort to engineer systems that exhibit
Casimir-Lifshitz repulsion. So far, repulsion has only
been measured between two dissimilar materials sepa-
rated by a third material which has a dielectric response
intermediate to the other materials [7, 18]. Some the-
oretical works have proposed other systems that could
exhibit Casimir repulsion. The most common approach
among these includes metamaterials with strong mag-
netic responses at optical frequencies, such as in [19–21].
Rosa et al. considered uniaxial out-of-plane metamate-
rials (among other anisotropic materials), but focused
on planar systems separated by vacuum [22]. These sys-
tems all require at least one of the plates to have a strong
magnetic response. There have also been numerical and
analytical studies of geometries that could produce repul-
sion between metals separated by vacuum, but these sys-
tems are unstable to lateral perturbations and therefore
difficult to realize experimentally [23, 24]. Deng et al.
predicted an attractive-repulsive transition of the force
between an aligned, uniaxial, in-plane material and a
conducting surface separated by vacuum as a function
of distance [25]. This system also relies on the magnetic
response of the plates to produce repulsion.

However, there is another less commonly discussed sys-
tem that exhibits Casimir repulsion: nonmagnetic di-
electrics with uniaxial in-plane birefringence separated
by a dielectric medium, as first noted in [5]. For this
case, two identical materials can exhibit Casimir-Lifshitz
repulsion under specific orientations. Although two pla-
nar dielectric bodies with reflective symmetry are always
attracted [26], a rotational displacement between the two
anisotropic materials breaks the reflective symmetry of
the system. The force is always attractive when the axes
of symmetry are aligned, but can become repulsive when
the symmetry is broken. Here we expand on [5] to outline
the conditions for which Casimir-Lifshitz repulsion may
occur for two identical, anisotropic materials.

II. NONRETARDED HAMAKER
COEFFICIENTS FOR ANISOTROPIC SYSTEMS

We consider two identical, semi-infinite slabs of uni-
axial birefringent materials with optical axes in the x-y
plane, but rotated with respect to each other (Fig. 1b).
Their permittivity tensors are:

ε1 =

ε‖ 0 0
0 ε⊥ 0
0 0 ε⊥

 , (1a)

ε2 =

ε‖ cos2 θ + ε⊥ sin2 θ (ε⊥ − ε‖) sin θ cos θ 0
(ε⊥ − ε‖) sin θ cos θ ε‖ sin2 θ + ε⊥ cos2 θ 0

0 0 ε⊥

 ,

(1b)

where θ is the relative angle between the optical axes of
the materials. When their axes are aligned, θ = 0 and
ε1 = ε2. The Helmholtz free energy per unit area of this
system at finite temperature was derived by Barash [4]:

Ω(d, θ) =
kBT

4π2

∞∑
n=0

′
∫ ∞
0

rdr

∫ 2π

0

dϕ lnDn(d, θ, r, ϕ),

(2)



2

different isotropic materials identical rotated materials
d

(a) (b)

d

"1 "3 "2 "1 "3 "2

x̂

ŷ
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FIG. 1. Schematic of the systems under investigation. Two
infinite dielectric slabs interact across a third dielectric of
width d. We compare the Casimir-Lifshitz interaction in (a)
the case of two isotropic slabs with dielectric functions ε1
and ε2 to (b) the case with two identical birefrigent materials
with dielectric function ε‖ along the principal axis and ε⊥ in
the other directions. In (b) the optical axis for material one
is along the x-axis while that of material two is rotated by
θ = π/2.

where the summand is evaluated at the imaginary Mat-
subara frequencies iξn = in2πkBT/~, the prime indicates
that the n = 0 term is to be halved, and variables r and ϕ
are radial and azimuthal components of the wave-vector.
The full form of Dn is derived in [4] and reproduced in
[14, 27]. In the nonretarded limit (corresponding to the
van der Waals regime), the Casimir-Lifshitz free energy
is expressed in terms of a Hamaker coefficient, which is
independent of d:

Ω(d, θ) = −AHam

12πd2
(3)

resulting in a force given by

F (d, θ) = −∂Ω(d, θ)

∂d
= −AHam

6πd3
. (4)

The sign of the Hamaker coefficient gives the sign of the
force, with AHam > 0 indicating attraction and AHam < 0
indicating repulsion.

The dispersion condition can be written as a function
of the Fresnel reflection matrices of the two interfaces, as
in [22, 28]:

Dn = det
(
I− r1r2e

2ρmd
)

(5a)

ri =

(
rssi rspi
rpsi rppi

)
. (5b)

In the nonretarded approximation, rssi = rspi = rpsi = 0,
and only rppi (corresponding to TM modes) remains, so
that:

Dn = 1− rpp1 rpp2 e−2ρ3d, (6a)

rppi =
ε3 − ε⊥

√
1 +

(
ε‖/ε⊥ − 1

)
cos2 (θi + ϕ)

ε3 + ε⊥
√

1 +
(
ε‖/ε⊥ − 1

)
cos2 (θi + ϕ)

, (6b)

where θ1 = 0, θ2 = θ, and ϕ is an integration variable. In
this approximation, the integral over r can be carried out
analytically, and the nonretarded Casimir-Lifshitz inter-
action energy per unit area is proportional to 1/d2.

The three dielectric constants in rppi can be expressed
in terms of two variables, such as ε‖/ε3 and ε⊥/ε3. Us-
ing Eqs. 5 and 6a, the integral over r in Eq. 2 can be
performed analytically, and we can write the Hamaker
coefficient as a sum of contributions from each Matsub-
ara frequency:

AHam =

∞∑
n=0

′
AHam,n, (7a)

AHam,n =
3kBT

4π

∫ 2π

0

dϕ Li3 (rpp1 rpp2 ) , (7b)

where Li3 is the third order polylogarithm function. The
integration over ϕ is carried out numerically as a function
of the ratios ε‖/ε3 and ε⊥/ε3 in Fig. 2.

The total Hamaker coefficient can be found by sum-
ming the values of the dielectric functions at each of the
Matsubara frequencies. For comparison, we also consider
the interaction between isotropic materials with ε1 = ε‖
and ε2 = ε⊥. The nonretarded free energy is given by Eq.
7, with rppi,iso = εi−ε3

εi+ε3
. This expression yields Dzyaloshin-

skii’s condition for repulsion between isotropic materials:
ε1 < ε3 < ε2 or ε2 < ε3 < ε1. These conditions corre-
spond to the blue region in Fig. 2(a).

By analogy, one might suspect that the repulsion con-
dition for birefringent materials is ε⊥ < ε3 < ε‖ or, for
materials with negative birefringence, ε‖ < ε3 < ε⊥.
However, the repulsive condition depends on ϕ (the az-
imuthal direction of the mode’s k-vector), and these in-
equalities are a necessary (but not sufficient) condition
for repulsion. In the nonretarded case, the repulsion con-
dition rpp1 rpp2 < 0, which yields a negative integrand in
Eq. 7, simplifies to(

ε⊥

√
1 +

(
ε‖
ε⊥
− 1

)
cos2 ϕ− ε3

)
×(

ε⊥

√
1 +

(
ε‖
ε⊥
− 1

)
cos2 (θ + ϕ)− ε3

)
< 0.

(8)

Systems that exhibit Casimir-Lifshitz repulsion (and, as
a result, an attractive-repulsive transition with θ) will
have materials that satisfy Eq. 8 for a range of ϕ at
many Matsubara frequencies. In the anti-aligned case
where θ = π/2, this is achieved for combinations of di-
electric functions that fall in the blue regions of Fig. 2(b).
As an example of such a system, we consider a fictional
material with high birefringence that has ε‖ modeled
by the dielectric response of gold and ε‖ = 1. We use
the dispersion models from [14] and [29] for ethanol and
gold, respectively. The points in Fig. 2b correspond to
the AHam,n that contribute to the repulsive nonretarded
Casimir-Lifshitz force for this system. For comparison,
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FIG. 2. The contribution of a single Matsubara term to the
total Hamaker coefficient is plotted as a function of the dielec-
tric coefficients. The red regions represent a positive energy
(attractive force) and the blue regions represent a negative
energy (repulsive force). (a) shows the contributions when
the interacting materials are isotropic and not necessarily
identical. (b) shows the contributions for two anti-aligned
identical birefringent materials. The blue regions correspond
to a negative contribution to the free energy (repulsion) for
both (a) and (b). For anti-aligned birefringent materials, the
greatest negative contribution possible from a single Mat-
subara term is approximately −0.45 zJ. The points indicate
the contributions from the first 1000 Matsubara terms for
the gold/ethanol/vacuum system (or gold gratings interacting
across ethanol in (b)) at room temperature (Matsubara terms
n = 10, 100, 1000 are indicated by +,2,#, respectively).

the points in Fig. 2a correspond to the nonretarded
Casimir-Lifshitz interaction in a gold/ethanol/vacuum
system.
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FIG. 3. The ratio of the zero-temperature, long-range Casimir
force for two systems scaled to the Casimir force between
two perfect conductors, (FCasimir = −~cπ2240/d4), with ε‖,0
and ε1,0 taken to infinity (as for a perfect conductor). In
this case, DC the dielectric constants of the other materials
determine the sign of the force. For the isotropic case (a),
the condition for repulsion is the usual ε2,0 < ε3,0. For the
case with identical, anti-aligned birefringent materials (b), the
repulsive condition is numerically found to be ε⊥,0 . 0.27ε3,0.

III. LONG-RANGE REPULSIVE CASIMIR
FORCE BETWEEN ANISOTROPIC MATERIALS

At separations greater than a few nanometers, retarda-
tion effects become significant. The Hamaker coefficient
usually decreases monotonically with distance, although
it may be slightly increased in special cases [30]. The
Casimir-Lifshitz force is a result of quantum fluctuations
as well as thermal fluctuations, and the quantum fluctu-
ations alone can cause repulsion between anti-aligned,
birefringent materials. To illustrate this, we consider
the long-range, zero-temperature Casimir effect. In this
regime, the force between metals approaches the orig-
inal expression derived by Casimir [1]: FCasimir(d) =

−~c π2

240
1
d4 . Lifshitz derived the force between dielectrics

in the long-range case [2]. Physically, the DC dielectric
constant εi,0 is used to describe the dielectric function
over all frequencies because the high frequency terms
are damped by retardation. With this approximation,
we calculate the long-range Casimir force of anti-aligned
gratings when the material is an ideal conductor (ε→∞)
along its ordinary axes or extraordinary axis, which cor-
respond to 2D and 1D conductors, respectively. When
the material is a 1D conductor (Fig. 3), there is Casimir
repulsion for anti-aligned materials when ε⊥,0 . 0.27ε3,0.
We note that long-range interactions at finite tempera-
tures are dominated by the nonretarded n = 0 Matsub-
ara term, which is strictly attractive for 1D conductors
(ε‖ → ∞). However, birefringent materials with finite
dielectric functions at zero frequency may still exhibit
long-range Casimir repulsion if the materials satisfy the
conditions in Fig. 2(b) for the n = 0 term.



4

� �� �� �� �� �� ��
-��

-�

�

�

��

��

��

��

θ (���)

� �
��

(�
�)

aligned

anti-aligned

FIG. 4. The room temperature, nonretarded Hamaker con-
stant between infinite half-spaces of 1D conductors (ε⊥ = 1,
ε‖ = εAu) separated by ethanol. The slabs experience an at-
tractive force when the conduction axes are aligned, and a
repulsive force when the axes are anti-aligned.

IV. EXAMPLE WITH GOLD, ETHANOL, AND
VACUUM

To illustrate some of the consequences of an
orientation-dependent sign change in the Casimir force,
we further consider the interaction between 1D gold con-
ductors across ethanol with retardation effects: ε‖ = εAu,
ε⊥ = 1, ε3 = εethanol at room temperature. The
anisotropic materials can be thought of as idealized ar-
rays of gold nanowires. As noted in [31], the dielectric
models used in calculation can have a nontrivial effect on
the calculated results, so these calculations do not pre-
cisely represent the physical system. Instead, we present
them to demonstrate the sign change in the Casimir force
as a function of separation and relative orientation, and
emphasize that this effect can occur for other combina-
tions of materials.

At short ranges, this system exhibits attraction for
aligned materials and repulsion for anti-aligned mate-
rials. The Hamaker coefficient is plotted as a function
of relative orientation in Fig. 4. The extreme values
of AHam correspond to ≈ 6 kBT at room temperature,
which is a typical value for dielectrics interacting across
a medium [32]. We also show the energy of the aligned
and anti-aligned materials as a function of distance in
Fig. 5, noting that the energy has the approximate form
of Ω(d, θ) ∼ sin2 θ at a fixed distance. The anti-aligned
plates exhibit Casimir repulsion up to a separation of 70
nm. At greater distances the Casimir force is attractive.
This sign change is a result of the dispersion of the ma-
terials, as in [33].
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FIG. 5. The distance dependence of the Casimir-Lifshitz force
between two idealized 1D conductors separated by ethanol.
When the conductance directions are perpendicular, the two
plates are repelled at short distances (d . 70 nm) and at-
tracted at long distances.

V. CASIMIR-LIFSHITZ REPULSION
BETWEEN REAL MATERIALS

We have calculated the repulsive force between the hy-
pothetical gold/vacuum gratings in ethanol to demon-
strate a strong version of this effect. However, the grat-
ings would surely have different dielectric properties than
the simple ε⊥ = 1, ε‖ = εAu system we have described
here. In reality, one might consider the effect between two
identical, uniaxial crystals with high optical anisotropy.
The calculation of Casimir-Lifshitz forces requires the
knowledge of ε(iξ) for a very large range of frequencies.
These dielectric functions can be constructed from opti-
cal data with the Kramers-Kronig relations but usually
carry a large degree of uncertainty [32, 34–36]. The repul-
sive force discussed here requires an intervening dielectric
of intermediate strength at a large number of Matsubara
terms so given the limited availability of experimentally
determined optical properties, it is difficult to confidently
predict a combination of materials that could achieve re-
pulsion.

However, we can suggest properties of materials that
could achieve a repulsive force. With an eye towards sat-
isfying Eq. 8, we suggest that the uniaxial crystals should
have high birefringence. If the intervening material is a
liquid, then uniaxial crystals with low indices may make
the repulsion condition easier to satisfy (as many liquids
have 1 < ε(iξ) < 2 for the relevant Matsubara frequen-
cies [36]). A system that satisfies Eq. 8 for the n = 0
Matsubara term, for which static dielectric constants are
often well-known, would likely achieve repulsion at large
separations where the n = 0 term dominates.

In Fig. 6, we plot dielectric models of ε(iξ) for four
birefringent materials along with ε(iξ) models for liq-
uids that satisfy Eq. 8 for some Matsubara terms. We
construct Ninham-Parsegian models for ε(iξ) of BaB2O4
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ε(
iξ)
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⟂ 2.40 8.36 4.85 0.29
‖ 1.91 8.93 3.62 0.29
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⟂ 1.68 10.9 5.30 0.18
‖ 1.18 14.0 6.30 0.18
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Matsubara number n

isotropic 5CB:
ε3 = (2ε⟂+ε‖) / 3

FIG. 6. The black lines represent the birefringent crystals
with solid and dashed lines corresponding to the ordinary (⊥)
and extraordinary (‖) axes, respectively. The gray band rep-
resents values of ε3(iξ) that satisfy Eq. 8. The blue lines
represent a liquid chosen to maximize the number of Matsub-
ara terms that satisfy Eq. 8. Inset are the values used in the
Ninham-Parsegian oscillator model, with values for ωUV and
ωIR in eV.

and LiIO3 using the method of [34], the static dielec-
tric constants from [37], and the optical data from [38]
and [39]. The model for CaCO3 is from [35], and the
models for iodobenzene and diiodomethane are from [36].
With these dielectric models, the systems with BaB2O4,
LiIO3, and CaCO3 and chosen liquids would not experi-
ence Casimir-Lifshitz repulsion for any relative orienta-
tion of the crystals. However, given our limited knowl-
edge of the ε(iξ) functions, it is possible that the pro-
posed systems or others like them could exhibit the re-
pulsive effect described here for slightly modified optical
properties.

A system that often satisfies Eq. 8 is the interven-
ing ‘melt’ between two birefringent solids considered by
Parsegian [5], which has ε3 = (2ε⊥ + ε‖)/3. This is a
common model for liquid crystals in the isotropic state
[41]. The lower right figure in Fig. 6 shows the inter-
action between anti-aligned 5CB nematic liquid crystal
when separated by isotropic 5CB. This uses the disper-
sion model for 5CB developed in [40]. However, measur-
ing a repulsive force between two liquid layers (separated
by a third liquid at a different temperature) presents ob-
vious experimental difficulties.

VI. CONCLUSION

We have detailed the conditions for a repulsive
Casimir-Lifshitz force to exist between identical birefrin-
gent materials in the retarded and nonretarded regimes.

The constraint on the dielectric functions (Eq. 8) is more
restrictive than the ε1 < ε3 < ε2 condition for isotropic
dielectrics. However, repulsion between identical bire-
fringent materials is achievable. Furthermore, because
the force can be changed from attractive to repulsive
by rotating one of the materials, it could be used as a
switchable force in MEMS or NEMS devices. Because
repulsion between identical birefringent dielectrics exists
for certain materials over a large range of separations,
this effect could be important in many physical systems.

Appendix: Compact notation for dispersion relation

The explicit form of the dispersion relation (Dn = 0)
for two uniaxial, anisotropic, parallel plates with optical
axes in-plane is written [4, 14, 27]. The full form is cum-
bersome and opaque [30], but can be written much more
compactly in terms of the Fresnel reflection matrix for
each plate:

Dn = det
(
1− r1r2e

−2ρ3d) . (A.1)

For each plate, the Fresnel reflection coefficients can be
written in terms of a common denominator:

r =

(
rss,N rsp,N
rps,N rpp,N

)
/rD. (A.2)

rsp,N = rps,N = k
√
ε3ε⊥ρiρ3 (ρi − ρ̃i) sin (2θi) (A.3a)

rss,N = sin2 (θi) α̃−γ+ + cos2 (θi)α− ν+ (A.3b)

rpp,N = − sin2 (θi) α̃+γ−+ cos2 (θi)α+ ν− (A.3c)

rD = sin2 (θi) α̃+γ+ + cos2 (θi)α+ ν+ (A.3d)

Where we have introducted the following notation, which
is modeled after [42, 43]:

α±= ρ3 ± ρi (A.4a)

α̃± = ρ3 ± ρ̃i (A.4b)

ν± = ε3ρ
3
i ± ε⊥ρiρ̃iρ3 (A.4c)

γ± = ε⊥k
2 (ε⊥ρ3 ± ε3ρi) . (A.4d)

This uses the original notation of Barash:

ρi =
√
r2 + ε⊥k2 (A.5a)

ρ3 =
√
r2 + ε3k2 (A.5b)

ρ̃i =
√
r2 +

(
ε‖/ε⊥ − 1

)
r2 cos2 θi + ε‖k2 (A.5c)

with k = ξ/c (where ξ is an imaginary frequency) and
θi representing the azimuthal angle between the wave-
vector and extraordinary axis of the material. If we
choose coordinates such that the extraordinary axis of
the first birefringent plate is along the x-axis, then θ1 = ϕ
and θ2 = ϕ + θ, where ϕ is an integration variable and
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θ is the relative angle between the two crystals’ extraor-
dinary axes. With these substitutions, this formulation

reproduces the analytic formula of [4]. We hope that this
notation can help to elucidate these complicated interac-
tions.
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