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Hamiltonian identifiability assisted by single-probe measurement

Akira Sone and Paola Cappellaro∗
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Massachusetts Institute of Technology, Cambridge, MA 02139

We study the Hamiltonian identifiability of a many-body spin-1/2 system assisted by the measure-
ment on a single quantum probe based on the eigensystem realization algorithm (ERA) approach
employed in [Phys. Rev. Lett. 113, 080401 (2014)]. We demonstrate a potential application of
Gröbner basis to the identifiability test of the Hamiltonian, and provide the necessary experimental
resources, such as the lower bound in the number of the required sampling points, the upper bound
in total required evolution time, and thus the total measurement time. Focusing on the examples
of the identifiability in the spin chain model with nearest-neighbor interaction, we classify the spin-
chain Hamiltonian based on its identifiability, and provide the control protocols to engineer the
non-identifiable Hamiltonian to be an identifiable Hamiltonian.

I. INTRODUCTION

Quantum system identification is a prerequisite for
any technology in quantum engineering, in order to
build reliable devices for quantum computation, quan-
tum cryptography or quantum metrology. The dynamics
of a closed quantum system is dictated by its Hamilto-
nian; therefore, Hamiltonian identification is a central
problem. In particular, characterizing many-body qubit
Hamiltonians is essential in the quest of building a scal-
able quantum information processor. The development
of system identification techniques is expected to have
impact in diverse fields, such as structural determination
of a complex molecule [1–3], biosensing [4, 5] and study-
ing magnetism at the nanoscale [6, 7].

Various methodologies have been developed for this
task, including quantum process tomography [8–11],
Bayesian analysis [12–14], compressive sensing [15–17],
and eigensystem realization algorithm [18–20]. Not only
many of these techniques are quite complex, but they
also often assume complete access to the system to be
identified: full control and observability via the coupling
of the target quantum system with a classical apparatus.
As this is difficult in practice, we consider performing
quantum system identification using the coupling of the
target system with a quantum probe [8–10, 18, 19].

Recent progress in quantum metrology assisted by
single quantum probe has demonstrated the ability to
achieve precise estimation of a few unknown parame-
ters [21, 22]. These advances now open experimental
opportunities for multiple parameter estimation, while
offering the advantage of nanoscale probing and coherent
coupling of complex quantum systems.

Classical linear system identification has been a widely
studied subject for the past decades [23]. A popu-
lar system identification method for the linear time-
invariant (LTI) systems is the eigensystem realization al-
gorithm (ERA) [24]. ERA has been applied in several
fields to study classical systems, from structural engi-
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neering [25] to aerospace engineering [26]. The first ap-
plications of ERA to quantum system identification both
for close and open systems were given by Zhang and Sar-
voar [18, 19], and a robust estimation was experimentally
demonstrated for a closed quantum system [20]. In this
paper, we employ ERA to analyze the required exper-
imental resources to achieve Hamiltonian identification.
To achieve this, we propose a systematic algorithm to
test Hamiltonian identifiability by employing the idea of
Gröbner basis, which is an essential concept in the com-
mutative algebra and algebraic geometry [27–30]. In par-
ticular, we use these techniques to explore what Hamilto-
nian models can be identified when restricting our access
to a single quantum probe. Further, we provide a lower
bound in the number of sampling points required to fully
identify the Hamiltonian, which sets an upper bound for
the total evolution time and thus the total measurement
time.
The paper is structured as follows. In Sec. II, we give
a brief review of ERA and the Gröbner basis, with fur-
ther details in the appendices. In Sec. III, we define the
identifiability of many-body spin-1/2 Hamiltonians. We
also propose a systematic algorithm to test the identi-
fiability of the Hamiltonian by employing Gröbner ba-
sis. These results lead us to derive, in Sec. IV, bounds
on the resources required for Hamiltonian identification.
In Sec. V, we show some examples of the Hamiltonian
identifiability test in the spin chain system by focusing
on four spin models. For the identifiable Hamiltonians,
we also clarify the relation between the dimension of the
spin chain and the experimental resources. In Sec. VI, we
discuss the application of the external control to achieve
the identifiability transfer based on Average Hamiltonian
Theory. Finally, in Sec. VII we assess the estimation per-
formance of ERA for Hamiltonian identification in the
presence of noise, before presenting our conclusions in
Sec. VIII.
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II. PRELIMINARY

A. Eigensystem Realization Algorithm

The Eigensystem Realization Algorithm allows one to
obtain a new realization of a system from the experi-
mental data, from which a transfer function is derived.
The parameters can then be extracted by solving a sys-
tem of polynomial equations derived from equalizing the
new realization transfer function with the transfer func-
tion obtained from the state-space representation of the
system. Let us review ERA approach introduced in [18]
in the context of Hamiltonian identification assisted by
single-probe measurement. The Hamiltonian H can be
generally parameterized as:

H =

M∑
m=1

θmSm, (1)

where θm ∈ R \ {0} are the unknown non-zero param-
eters to be determined, and Sm are Hermitian opera-
tors. For an interacting N spin-1/2 system, iSm’s are
the independent elements of SU(2N ). Let us define a set
G0 = {Oi}, which we call observable set, of operators
that we can directly measure and such that [Oi, H] 6= 0.
In our scenario, we will typically consider only observ-
ables O1 on the first spin, which is our quantum probe.
Let Γ be the set of operators constructing the Hamil-
tonian, i.e. Γ = {Sm|iSm ∈ SU(2N ),m = 1, 2, · · · ,M}.
Then, an iterative procedure Gj ≡ Gj−1∪ [Gj−1,Γ], with

[Gj−1,Γ] ≡ {Oi|tr(O†i [η, γ]) 6= 0,∀η ∈ Gj−1, γ ∈ Γ}, gen-
erates a set G of dimension n ≤ 4N − 1,

G = {Ok|iOk ∈ SU(2N ), k = 1, 2, · · · , n},

called the accessible set. G describes all the operators
that become indirectly observable when measuring the
single quantum probe, thanks to the dynamics of the
system. In particular, G typically includes spin corre-
lations. Let ρ0 be the initial state of the system, so
that the expectation value of Ok is given by xk(t) ≡
〈Ok(t)〉 = tr[ρ0Ok(t))]. Then, the expectation values
of the accessible set elements form the coherent vector
x(t) = (x1(t), · · · , xn(t))T ∈ Rn with time evolution

ẋ(t) = Ãx(t),

where Ã ∈ Rn×n is a skew-symmetric matrix, which
contains the parameters θm as its off-diagonal elements.
Generally, Ã does not necessarily depend on all the pa-
rameters. Only when the dynamics correlates all the
spins to the quantum probe, Ã contains all the param-
eters, which is a necessary condition for system identifi-
cation. Let y(t) ∈ R be the output data obtained by the
output matrix C ∈ Rn. In our model, the shape of C is
restricted because we only consider the measurement on
the quantum probe. Then, we can obtain the following

state-space representation:

ẋ(t) = Ãx(t)

y(t) = Cx(t).
(2)

It is useful to define the corresponding discrete-time rep-
resentation because the output data will be only acquired
at the discrete-time steps:

x(j + 1) = Ax(j)

y(j) = Cx(j),

where we set x(j) ≡ x(j∆t), y(j) ≡ y(j∆t) and A ≡
eÃ∆t. Note that since any matrix exponential is nonsin-
gular, we have:

rank(A) = n, (3)

where n is called model order [23]. From Eq. (2), we can

obtain the transfer function T (s) = C(sIn − Ã)−1x(0),

and [Ã,C,x(0)] is called the realization of T (s). The co-
efficients of the Laplace variable s in both numerator and
denominator of T (s) are polynomials of the parameters
θm.

In order to perform ERA, we construct a Hankel ma-
trix and shifted Hankel matrix with the output data as
their elements:

Hrs(0) =


y(0) y(1) · · · y(s− 1)
y(1) y(2) · · · y(s)

...
...

. . .
...

y(r − 1) y(r) · · · y(r + s− 2)

 (4)

Hrs(1) =


y(1) y(2) · · · y(s)
y(2) y(3) · · · y(s+ 1)

...
...

. . .
...

y(r) y(r + 1) · · · y(r + s− 1)

 , (5)

where r and s must satisfy r, s ≥ n, which is the neces-
sary condition for ERA (See Appendix. A 2 for details).
From the singular value decomposition (SVD) of Hrs(0)
and the expression of Hrs(1), we can obtain a new real-

ization [Ãest,Cest,xest(0)] and thus a new corresponding

transfer function Test(s) = Cest(sIn−Ãest)
−1xest(0) (see

Appendix A 2 for details). Since T (s) and Test(s) describe
the same system, we must have:

T (s) = Test(s). (6)

Therefore, the parameters can be found by solving the
system of polynomial equations derived from Eq. (6). We
thus reduce the problem of Hamiltonian identifiability
to the question of solvability of a system of polynomial
equations.
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B. Gröbner basis

The Gröbner basis, firstly introduced by B. Buchberger
in [31], is a systematic method to solve a system of mul-
tivariate polynomial equations and determining its solv-
ability over the complex field C. Following [27–30], let us
denote C[θ1, · · · , θM ] the polynomial ring. Suppose that
from Eq. (6), we have obtained the following system of
polynomial equations:

f1(θ1, · · · , θM ) = · · · = fp(θ1, · · · , θM ) = 0. (7)

f1, · · · , fp generates a polynomial ideal I = 〈f1, · · · , fp〉
with radical

√
I (see Appendix B for details). When

I =
√
I, the ideal is called a radical ideal.

Fixing a monomial ordering for polynomials f ∈
C[θ1, · · · , θM ], such as the lexicographic ordering, we de-
note LM(f) and LT(f) the leading monomials and lead-
ing terms of the polynomial f , respectively. From the
Hilbert Basis Theorem, there exists a finite set G(I) =
{g1, · · · , gt}, such that I = 〈G(I)〉 = 〈g1, · · · , gt〉, where
for every polynomial f ∈ I \ {0}, LT(f) is divisible by
LT(gj) for some j. Here, G is called a Gröbner basis for
the polynomial ideal I, which can be constructed by a
well-known algorithm called Buchburger’s algorithm [27–
30]. The Gröbner basis is not unique, but we can obtain
an unique minimal Gröbner basis –the reduced Gröbner
basis– by adding the following restrictions: for each
j = 1, 2, · · · , t, every polynomial gj is monic and its lead-
ing monomial LM(gj) is not divisible by LM(gi) for any
i 6= j. Let us denote the reduced Gröbner basis for I by
G (I). In the following, when we simply write Gröbner
basis, we will always refer to a reduced Gröbner basis.
The Gröbner basis is useful since the corresponding sys-
tem of polynomial equations:

g1(θ1, · · · , θM ) = · · · = gt(θ1, · · · , θM ) = 0

has the same zeros as the original system of polynomial
equations in Eq. (7), and usually has a simpler form.

The solvability of the system of polynomial equations
over C depends on the shape of the Gröbner basis as
follows:

1. No solution [27]: When Eq. (7) is not solvable,
Hilbert’s weak Nullstellensatz forces G (I) = {1}.

2. Finite set of solutions [28, 29]: When Eq. (7)
has finite solvability (a finite number of solutions),
I is called zero-dimensional ideal. With lexico-
graphic order, G (I) has the shape:

G (I) = {g1(θ1),

g2,1(θ1, θ2), · · · , g2,v2(θ1, θ2),

...

gM,1(θ1, · · · , θM ), · · · , gM,vM (θ1, · · · , θM )}.

This allows all the values of the parameters to be
similarly obtained recursively. In particular, when

I is a radical zero-dimensional ideal, the Gröbner
basis has a particular shape (Shape lemma):

G (I) = {θα1 + q1(θ1), θ2 + q2(θ1), · · · , θM + qM (θ1)},

where qj(θ1) is an univariate polynomial in θ1 with
the condition that α > deg(qj) for α ∈ N. From
Sturm theorem [28], we can obtain the number of
distinct real zeros of θα1 + q1(θ1) = 0 and hence the
number of real solutions of the original system of
polynomial equations.

3. Only one solution [29]: When Eq. (7) has only
one solution, the radical of the zero-dimensional
ideal is the maximal ideal, which has the form of
〈θ1 − c1, · · · , θM − cM 〉. Therefore, the Gröbner

basis for
√
I has the form

G (
√
I) = {θ1 − c1, · · · , θM − cM}.

Buchberger’s algorithm for computing the reduced
Gröbner basis has already been implemented in many
commercial softwares.

III. IDENTIFIABILITY TEST

We can now use the Gröbner basis formalism to intro-
duce a working definition of Hamiltonian identifiability
via the ERA technique. The concept of identifiability
has been studied in several different contexts [32–34].
Guţǎ and Yamamoto [34] employed a transfer function
approach to systematically study system identifiability
of the linear quantum systems with continuous variables.
Their result applies to continuous-variable quantum sys-
tems in infinite-dimensional Hilbert space, such as a
quantum optomechanical system [35, 36] or atomic en-
sembles confined in an optical cavity [37]. However, here
we are interested in interacting many-body spin-1/2 sys-
tems that can be described by discrete, finite-dimensional
Hilbert spaces. Since the algebraic structure of the spin
operators is different, we have to reformulate the condi-
tions for identifiability of many-body spin-1/2 Hamilto-
nians.

In particular, we focus on Hamiltonian identifiability
for many-body spin-1/2 systems, to provide a procedure
to test identifiability. In addition, we restrict ourselves
to identifying only the parameter magnitude, |θj | .

Let us first introduce our definition of Hamiltonian
identifiability:

Definition 1. An Hamiltonian is identifiable when the
system of polynomial equations derived from the transfer
function equation T (s) = Test(s) provided by ERA has
a finite set of solutions such that all θ2

j take only one
positive real value.

Let F be a polynomial set F = {f1, · · · , fp} ⊆
C[θ1, · · · , θM ]. Based on this definition, the algorithm
to test identifiability is as follows:
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Step 1: We define new variables zj such that {zj} =
{θ2
r , θl|1 ≤ r, l ≤ M)}, where θr’s only appear in F as

even powers (and θl’s are all the remaining variables in
F ). Then, the polynomial ideal generated by F becomes
I = 〈f1, · · · , fp〉 ⊆ C[z1, · · · , zM ].

Step 2: From the Buchberger’s algorithm and the def-
inition of reduced Gröbner basis, we obtain G (I) =
{g1, · · · , gt}. If t < M , the Hamiltonian is non-
identifiable.

Step 3: By elimination of variables, we can obtain M
univariate polynomials hj(zj), i.e. hj ∈ I ∩ C[zj ].

Then, we can construct the radical ideal
√
I = I +

〈ϕ1, · · · , ϕM 〉, where ϕj = hj/gcd(hj , ∂zjhj) [27, 28],
and we can construct a new polynomial set F ′ =
{g1, · · · , gt, ϕ1, · · · , ϕM} ⊆ C[z1, · · · , zM ].

Step 4: Since
√
I is a radical zero-dimensional ideal, the

Shape Lemma can be applied. From Buchberger’s algo-
rithm and the definition of reduced Gröbner basis, we
obtain:

G (
√
I) = {zα1 + q1(z1), z2 + q2(z1), · · · , zM + qM (z1)},

where α > deg(qj).

Step 5: Finally, we employ Sturm theorem to calculate
the distinct number of real zeros of the polynomial zα1 +
q1(z1), so that we can obtain the number of real zeros

of each polynomial in G (
√
I). If there is only one set

of solutions such that all the values of θj ’s are real, the
Hamiltonian is identifiable. Otherwise, the Hamiltonian
is non-identifiable.

IV. LOWER BOUND IN NUMBER OF
SAMPLING POINTS

In addition to providing an operational definition
of Hamiltonian identifiability, ERA together with the
Gröbner basis technique provides a lower bound for the
number of sampling points required to identify all param-
eters. The bound is found from the minimum realization
of the system [24]. In order to obtain the new realization

[Ãest,Cest,xest(0)], the system is required to be both ob-
servable and controllable (see Appendix A 2). We thus
have

rank(Or) = rank(Cs) = rank(A) = n,

where Or and Cs are the observability and controllability
matrix [24]. Since the Hankel matrix Hrs(0) has the
form Hrs(0) = OrCs, from Sylvester inequality [38], we
find that

rank(Hrs(0)) = rank(A) = n.

Therefore, the minimum dimension of the Hankel matrix
is n×n. Taking into account the need of constructing the

shifted Hankel matrix Hrs(1) to obtain Aest, the lower
bound in number of sampling points is:

λmin = 2 rank(A) = 2n.

Since the number of different polynomial equations ob-
tained from Eq. (6) is ≤ rank(A)−1, we can also obtain
the relation between the lower bound in the number of
sampling points and the Gröbner basis. Let N [G (

√
I)]

be the number of elements of the Gröbner basis G (
√
I):

we can usually write N [G (
√
I)] ≤ rank(A) − 1. Since

λmin = 2 rank(A), we have:

λmin

2
≥ N [G (

√
I)] + 1.

From the measurement number, we can further obtain
the time required for Hamiltonian identification. The op-
timal choice of the time interval ∆t is given by the Sam-
pling theorem [39]. Let Ωmax/(2π) be the maximum fre-
quency that would appear in the measured signal. Then,
∆t has to satisfy ∆t ≤ π/Ωmax. Therefore, the required
maximum evolution time with the minimum number of
sampling points satisfies:

ttot ≤
(2n− 1)π

Ωmax
.

In reality, the maximum frequency of the signal de-
pends on the values of the parameters θm, which are un-
known. Thus, for a time-optimal estimation procedure
we would need prior information about the range of val-
ues that the parameters can take. For example, we could
then assume that all the parameters take the largest value
and obtain the smallest time steps ∆t that still satisfies
the sampling theorem.

V. EXAMPLES: HAMILTONIAN
IDENTIFIABILITY TEST

We now presents some exemplary systems and ana-
lyze their identifiability, as well as the minimum number
of sampling points and time for Hamiltonian identifica-
tion. To provide analytical results, we focus our atten-
tion on nearest-neighbor coupling spin chains, which is
a useful model for quantum information transport be-
tween distant qubits [40–42]. We consider two different
Hamiltonians, the Ising and exchange models, and ana-
lyze their Hamiltonian identifiability by assuming that
the spin chain is coupled to a single quantum probe.
More precisely, we make the following assumptions (see
also Fig. 1):

1. The quantum probe can be initialized, controlled,
and read out. The quantum probe is coupled to the
chain by one of its end spin with a coupling that
follow the chain Hamiltonian model
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2. The chain spins cannot be initialized nor measured.
For simplicity, we thus assume that they are ini-
tially in the maximally mixed state 1

2 11. We only
allow collective control on the chain spins.

3. The coupling model and the size of the spin chain
are known.

These assumptions are realistic in many practical sce-
narios for spin chain system applications to quantum
engineering tasks at room temperature. In addition,
they could also approximate some scenarios in quantum
metrology, such as recently proposed schemes for protein
structure reconstructions via the interaction of their nu-
clear spins with a quantum probe [2].

For concreteness, we consider a spin-1/2 chain compris-
ing N spins (including the quantum probe) with nearest-
neighbor interactions and possibly an interaction to an
external field. The parameters θm in Eq. (1) are thus
given by the coupling strengths between the k-th and
(k + 1)-th spins, denoted by Jk/2, and the Zeeman en-
ergy ωk/2 of the k-th spin due to external fields.

FIG. 1. Hamiltonian identification model. A quantum
probe is coupled to one end of the spin chain. A part from the
quantum sensor (red spin), the rest of the spins (blue spins)
are initially in the maximally mixed state. We further assume
that we only have selective control on the quantum probe and
global control on the spin chain.

A. Ising model without transverse field

As a preliminary example of the methods, we consider
the Ising model without transverse field:

H =

N−1∑
k=1

Jk
2
Sαk S

α
k+1. (8)

For concreteness, we can select Sα = X and G0 = {Z1}
without loss of generality. The accessible set is easily
obtained from the commutators and it saturates very
quickly:

G = {Z1, Y1X2}.

Then, only the spin directly interacting with the quan-
tum probe becomes correlated with it during the evo-
lution and its parameter can be identified. As a conse-
quence, rank(A) = 2 and full Hamiltonian identification

is only possible for N = 2. Physically, this can be under-
stood by a lack of information propagation in the Ising
spin chain, which prevents the quantum probe at its end
to gain information about the rest of the system. In-
deed, the group velocity for information propagation in
the Ising chain is 0.

Let the initial coherent vector be x(0) = (1, 0)T and
the output matrix C =

(
1 0

)
. Then, the transfer func-

tion is:

T (s) =
s

s2 + J2
1

,

where we can identify z1 = J2
1 . Through ERA, we can ob-

tain a new transfer function from the experimental data,
which can be written in the most generality as:

Test(s) =
s+ b0

s2 + b21s+ a2
1

.

Here we fixed the transfer function order to 2, as expected
from the Ising model evolution. However, the form of
Test(s) might differ from the ideal T (s): in particular we
might have additional terms, with coefficients bj arising
from experimental errors or numerical approximations.
Since a2

1 reflects the contribution of J2
1 , we still expect

b2j � a2
1, and bj ’s are negligible. Therefore, the Gröbner

basis is simply given by: G = {z1 − a2
1} = {J2

1 − a2
1} and

the N = 2 Ising chain can be identified with λmin = 4
sampling points.

We note that an alternative way of estimating J1 is to
measure the quantum probe (in particular Z1) at known
times. However, due to the periodicity of the signal, J1

cannot be identified uniquely, even if measuring more
than one time point.

We can thus generally state the following result:

Result 1. The Ising model without the transversefield is
only identifiable via the measurement of a sinlge probe
spin for N = 2, and the lower bound in the number of
sampling points is given by: λmin = 2 rank(A) = 4.

B. Ising model with transverse field

Adding a transverse field to the Ising model drasti-
cally changes the system dynamics and consequently its
identifiability.

The Hamiltonian is now

H =

N∑
k=1

ωk
2
Sγk +

N−1∑
k=1

Jk
2
Sαk S

α
k+1,

where for concreteness we will set Sα = X and Sγ = Z.
There are several possible observable sets G0 to choose

from, as none of the operators Sξ1 (ξ = {α, β, γ}) com-
mute with the Hamiltonian. For the case considered,
setting either G0 = {X1} or {Y1} is the best choice,
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as G0 = {Z1} would result in a larger-size Ã. Either
G0 = {X1} or {Y1} yields the accessible set:

G = {X1, Y1,Z1X2, Z1Y2, · · · ,
Z1 · · ·ZN−1XN , Z1 · · ·ZN−1YN},

so that dim(G) = 2N . All the chain spins are thus cor-
related with the quantum probe and we can hope to
identify all the parameters. The system matrix Ã is
a 2N × 2N skew-symmetric matrix with the only non-
zero elements Ã2k,2k−1 = ωk and Ã2k+1,2k = Jk. Since
dim(G) = rank(A), we have: rank(A) = 2N . Choosing
the initial state of the quantum probe to be the eigenstate
of X1, we have:

x(0) = (1, 0 · · · , 0)T ∈ R2N

If we measure X1, the output matrix is C =(
1 0 · · · 0

)
∈ R2N . From ERA and Eq. (6), we arrive

at the following shape of the Gröbner basis:

G = {ω2
1 − a2

1 · · · , ω2
N − a2

N , J
2
1 − b21, · · · , J2

N−1 − b2N−1}

because in this case I generated from Eq. (6) is a max-
imal ideal of the form 〈z1 − a2

1, · · · , zN − a2
N , zN+1 −

b21, · · · , z2N−1 − b2N−1〉 (al, bk ∈ R), where zl = ω2
l (l =

1, · · · , N) and zN+k = J2
k (k = 1, · · · , N−1). Since there

is only one positive real solution for the magnitudes of
all the parameters, the Hamiltonian is fully identifiable.

If we measure Y1 with the initial state of the quantum
probe being the eigenstate of X1, the Gröbner basis is
instead:

G = {ω1 − a1, ω
2
2 − a2

2, · · · , ω2
N − a2

N ,

J2
1 − b21, · · · , J2

N−1 − b2N−1},

showing that we can find the sign of ω1, in addition to
identifying the magnitude of all other parameters.

Physically, this result shows that identifiability is con-
nected to information propagation along the whole chain.
Indeed, since we assumed that we can extract informa-
tion from the system only through the probe spin at one
end of the chain, propagation of information through the
whole chain is necessary to reveal the system’s proper-
ties. Adding a transverse field to the Ising model enables
this information propagation.

We can thus generally state the following result:

Result 2. The Hamiltonian of the nearest-neighbor Ising
model with transverse field is identifiable via measure-
ment of a single quantum probe. The minimum number
of sampling points for N spins is λmin = 2rank(A) = 4N .

C. Exchange model without transverse field

The exchange (XY) model is another example where
information propagation allows Hamiltonian identifica-
tion via single-probe measurement.

The Hamiltonian can be written as:

H =

N−1∑
k=1

Jk
2

(Sαk S
α
k+1 + SβkS

β
k+1), (9)

where for concreteness we will set Sα = X and Sβ =
Y . For this case, G0 = {X1} or {Y1} is the best choice
because the corresponding accessible set has the smallest
size. Choosing, e.g., G0 = {X1}, we obtain the following
accessible set

G = {X1,Z1Y2, Z1Z2X3, Z1Z2Z3Y4, · · · ,
Z1 · · ·Z2m−2X2m−1, Z1 · · ·Z2m−1Y2m},

for an even-number of spins in the chain, N = 2m (∀m ∈
N), and

G = {X1,Z1Y2, Z1Z2X3, Z1Z2Z3Y4, · · · ,
Z1 · · ·Z2m−3Y2m−2, Z1 · · ·Z2m−2X2m−1},

for an odd number, N = 2m− 1 (∀m ∈ N).
The accessible set has the smallest possible dimension,

dim(G) = N . (If we had chosen G0 = {Z1}, the ac-
cessible set dimension would have been dim(G) = N2.
Therefore, in the following discussion, we consider G0 =
{X1}.) As all the spins are correlated with the quan-
tum probe, we can expect the Hamiltonian to be fully
identifiable. The system matrix Ã becomes an N × N
skew-symmetric matrix with the only non-zero elements
(Ã)k,k+1 = (−1)kJk, which has the same form as the sys-
tem matrix of the Ising model with the transverse field.
Since dim(G) = rank(A), we have rank(A) = N . Choos-
ing the initial state of the quantum probe to be the eigen-
state of X1, we have:

x(0) = (1, 0, · · · , 0)T ∈ RN .

Since we can only measure the quantum probe, the out-
put matrix is C =

(
1 0 · · · 0

)
∈ RN . From ERA and

Eq. (6), we arrive at the following shape of the Gröbner
basis:

G = {J2
1 − a2

1, · · · , J2
N−1 − a2

N−1},

where ak ∈ R. Therefore, the Hamiltonian is fully iden-
tifiable since we have only one positive real solution for
the magnitudes of all the parameters.

We can thus generally state the following result:

Result 3. The Hamiltonian of the nearest-neighbor ex-
change model without transverse field is identifiable via
measurement of a single quantum probe. The mini-
mum number of sampling points for N spins is λmin =
2rank(A) = 2N .

D. Exchange model with transverse field

Adding a transverse field to the exchange Hamiltonian
complicates the situation, as there might be more than
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one solution to the identification problem. However, this
can be resolved by performing the measurements on two
different observables.

The Hamiltonian is now given by:

H =

N∑
k=1

ωk
2
Sγk +

N−1∑
k=1

Jk
2

(Sαk S
α
k+1 + SβkS

β
k+1),

where for concreteness we choose Sα = X, Sβ = Y , and
Sγ = Z. Again, the best choice is either G0 = {X1} or
G0 = {Y1} that both yield the following accessible set:

G = {X1, Y1, Z1X2,Z1Y2, Z1Z2X3, Z1Z2Y3, · · · ,
Z1 · · ·ZN−1XN , Z1 · · ·ZN−1YN},

with dim(G) = 2N . The system matrix is a 2N × 2N
skew-symmetric matrix with the only non-zero elements
(Ã)2k−1,2k = ωk and (Ã)2k+2,2k−1 = (Ã)2k,2k+1 = Jk.
Choosing the initial state of the quantum probe to be an
eigenstate of X1, we have:

x(0) = (1, 0 · · · , 0)T ∈ R2N .

If we measure X1, then we have C =
(
1 0 · · · 0

)
∈

R2N . From ERA and Eq. (6), we can construct a zero-

dimensional ideal radical
√
I. From the Shape lemma,

we obtain the following Gröbner basis

G (
√
I) = {zα1 + q1(z1),

z2 + q2(z1),

...

z2N−1 + q2N−1(z1)},

where zl = ω2
l (l = 1, · · · , N) and zN+k = J2

k (k =
1, · · · , N − 1). Note that α > deg(qj) and α ≥ 2. Here,
qj(z1) is the univariate polynomial in z1. In general z1

could have multiple values, so that we could have mul-
tiple sets of real solutions of the system of polynomial
equations. Therefore, in general, this model is not iden-
tifiable. If we measure Y1 with the initial state of the
quantum probe being the eigenstate of X1, we also have
the same situations. Therefore, the exchange model with
transverse field is generally not identifiable if we only
measure one observable.

This issue can be resolved by measuring two different
basis operators. Suppose that we measure X1 and Y1

with initial coherent vector x(0) = (1, 0, · · · , 0)T ∈ R2N .
In this case, we collect the measurement data for two
observables, so that the sampling matrix C becomes:
C =

(
1 1 · · · 0

)
∈ R2N . Then the transfer function

can be written as the sum of the one for X1 and the one
for Y1:

T (s) = T (X1)(s) + T (Y1)(s),

where T (X1)(s) and T (Y1)(s) have order 2N . Therefore,
the order of the transfer function T (s) is still 2N . In or-
der to obtain the new realization, we perform the singular

value decomposition of two Hankel matrices, correspond-
ing to X1 and Y1, respectively. Thus, we can obtain the
following new transfer function:

Test(s) = T
(X1)
est (s) + T

(Y1)
est (s).

From the identity T (s) = Test(s), the polynomial ideal
turns out to be a maximal ideal, which has the form of:

I = 〈z1 − a1, · · · , zN − aN ,
zN+1 − b21, · · · , z2N−1 − b2N−1〉,

where zk = ωk and zN+k = J2
k and ak, bk ∈ R. Therefore,

the Gröbner basis becomes:

G (I) = {ω1 − a1, · · · , ωN − aN ,
J2

1 − b21, · · · , J2
N−1 − b2N−1}.

The Hamiltonian is now fully identifiable since we have
only one positive real solution for the magnitudes of all
the parameters, and in addition we can find the sign of
ωk.

Note that in this case, since we need two measure-
ments, we need 2 × 2rank(A) = 8N sampling points in
total. This result can be understood as follows. The
information provided by the time evolution of only one
observable is not sometimes enough to extract the exact
values of the parameters, but we can obtain a set of possi-
ble solutions. However, additional information provided
by different observables can allow us to exclude some so-
lutions. For the exchange model with transverse field, we
can restrict the set of solutions to only one solution by
adding the information provided by Y1 to the informa-
tion provided by X1. Hence, we can generally state the
following result:

Result 4. The Hamiltonian of the nearest-neighbor ex-
change model with transverse field is generally non-
identifiable via the measurement on a single quantum
probe if we only measure one observable. If we observe
two observables, the Hamiltonian can be fully identified
and furthermore we can determine the sign of the Zeeman
splitting. In this case, the minimum number of sampling
points for of N spins is λmin = 4rank(A) = 8N .

E. Time required for identification of spin chains

By analyzing ERA procedure, we obtained bounds on
the minimum number of sampling points required for
Hamiltonian identification. In turns, this also leads to
requirements on the minimum evolution time as well as
the total time required for Hamiltonian identification.

Indeed, if some a priori information about the system
is known, we can choose the maximum time step required
by the sampling theorem, ∆t = π/Ωmax, where Ωmax is
the maximum eigenvalue of the Hamiltonian. With the
minimum number of sampling points, the longest evolu-
tion time is at lest ttot = (λmin−1)∆t: This time should
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be compared to the system coherence time. In addition,
the overall Hamiltonian identification requires a time

tid =
(λmin − 1

2
∆t+ tdead

)
λmin, (10)

where tdead is the dead time associated with system ini-
tialization and readout.

We can further check that this time requirements are
consistent with our intuitive physical picture that con-
nects Hamiltonian identification to the propagation of in-
formation through the whole spin chain. Consider for ex-
ample the exchange Hamiltonian, Eq. (9), with all equal
couplings. We can assume that the spins are equally
spaced, with a the lattice constant, and L = (N − 1)a
the length of the chain. The eigenvalues of the Hamilto-
nian in the first excitation manifold are then

Ωn = 2J cos
( nπ

N + 1

)
= 2J cos(kna), kn = nπ

N − 1

L(N + 1)
,

with n = 1, 2, . . . , N . Then, the maximum angular fre-
quency is

Ωmax = 2J cos
( π

N + 1

)
.

Since we need at least 2N sampling points, the longest
evolution time is ttot = (2N − 1)π/Ωmax. For large N �
1, we can simplify this to

ttot ' π
N

J
.

In order for the quantum probe to extract information
on the whole spin chain, information needs to propagate
to the other end and back. We can compute the group
velocity for the propagation of the initial excitation on
the first (probe) spin from the Hamiltonian eigenvalues
Ω(k) [43],

vg =
∣∣∣dΩ(k)

dk

∣∣∣
max

= 2Ja =
2JL

N − 1
.

Then, the time required for the information to come back
to the probe spin is approximately given by

τ ' 2L

vg
=
N − 1

J

Thus, for largeN � 1, we have τ ' N
J , in agreement with

the result obtained from the mathematical requirements
for system identification.

VI. IDENTIFIABILITY WITH EXTERNAL
CONTROL

Until now we have analyzed identifiability under the
assumption that we can initialize, measure and control
only the probe qubit. We found that some Hamiltonians
cannot be identified, since they do not generate enough

correlations among the target spins, or equivalently they
do not transport information about the probe spin ex-
citation through the whole chain. If we relax these as-
sumptions and allow for a minimum level of control on
the target spins, the picture changes. For example, if the
target spins can be controlled via collective rotations, it
is possible to turn a non-identifiable Hamiltonian into an
identifiable one.

Consider for example the Ising Hamiltonian, Eq. (8),
which we showed in Sec. V A to be non-identifiable. Us-
ing a simple control sequence (see Fig. 2), we can generate
an effective Hamiltonian [44] that can now be identified,
since in the limit of small inter-pulse delays it has the
same form as the exchange Hamiltonian, Eq. (9). Simi-
larly, we could use a simple spin-echo procedure to refo-
cus the transverse field and identify the coupling Hamil-
tonian in Sec. V D, without the need to measure two ob-
servables.

More precisely, periodic pulse-sequences such as in
Fig. 2 make the system evolve as if under an effective
time-independent Hamiltonian averaged over the cycle
time. The effective Hamiltonian can be approximated
by a first order Magnus expansion [45] (average Hamil-
tonian [44]). In this limit, to analyze the identifiability
it is sufficient to consider the average Hamiltonian. The
exact effective Hamiltonian will be identifiable as long as
we can identify its approximation, however its expression
might be too complex and analytical results only avail-
able in the limit of small enough time interval δt � 1
between the pulses where the approximation holds.

( )
�
2  γ

�
2  -γ

SkSk+1
α    α

δt
2

δt
2δt

SkSk+1
β    β SkSk+1

α    α

t

n

FIG. 2. Identifiability with external control: By apply-
ing a periodic control pulse sequence n times in the limit of a
very small Jkδt� 1, we can transfer His =

∑N−1
k=1

Jk
2
Sαk S

α
k+1

to Hex =
∑N−1
k=1

Jk
2

(Sαk S
α
k+1 +SβkS

β
k+1) so that we can use 2N

sampling points to identify the parameters Jk.

VII. ROBUSTNESS OF ERA HAMILTONIAN
IDENTIFICATION

While previous works have already analyzed the ro-
bustness of the ERA procedure to experimental er-
rors [20], here we want to evaluate the accuracy of the
identification algorithm when it is implemented using
only the minimum number of measurement points found
above.

To compare with previous results, we consider the
Ising model (with transverse field) for a chain of N = 3
spins and the exchange model (without field) for a chain
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FIG. 3. Estimation error with fixed time step ∆t. Me-
dian of the estimation error {〈ε(Ji)〉} over 500 random Hamil-
tonian realizations as a function of the total number of mea-
surements. For each Hamiltonian, we repeated the ERA esti-
mation 100 times, to evaluate the average error 〈ε(Ji)〉. Solid
lines with circles: 4×4 Hankel matrix; Dashed lines with solid
square: 8×8 and dotted lines with squares: 40×40. The error
bars are the absolute median deviation. We plot results for
the three J couplings, J1 (black), J2 (blue, gray), and J − 3
(orange, light gray).

of N = 6 spins. We consider the average error in
500 random Hamiltonian realizations and implement the
ERA method, with the minimum number of measure-
ment points (λmin = 4N = 12 for the Ising model and
λmin = 2N = 12 points for the exchange Hamiltonian).
We find that the relative error averaged over all the real-
ization is still small (10−10 − 10−2 [%]) and comparable
to previous results, where many more points were mea-
sured.

Since the addition of experimental noise could change
this result, we study the algorithm robustness in the pres-
ence of noise, as a function of the resources employed
during the overall measurement process. To that end, we
statistically compare the estimation robustness achieved
by using Hankel matrices with different size but keeping
fixed the experimental resources.

We assume that each sampling point is measured M
times, yielding a random outcome with a Gaussian dis-
tribution N (y(k), σ/

√
M), that is, we assume that the

mean is centered around the “true outcome” value y(k)
at each time k∆t and for simplicity consider a gaussian
noise (with σ = 1). By acquiring 2j sampling points
(with 2jM total measurements) we can construct the

(noisy) j × j Hankel matrices H̃j(0) and H̃j(1). Us-
ing the ERA algorithm we can extract a set of parame-
ters {θm+ δθm}Mm=1 that differ from the true parameters
{θm}Mm=1. Since we are interested in the magnitude of

the parameters, the estimation error can be written as:

ε(θm) =
∣∣∣ |θm + δθm| − |θm|

|θm|

∣∣∣× 100 [%].

In the simulations we repeat r times this procedure in
order to obtain the mean estimation error, 〈ε(θm)〉 and
we further take the median over many realizations of the
input model parameters.

In our simulation, we compare the estimation errors for
Hankel matrices of different sizes j, keeping however fixed
the total number of measurements, 2jM. The smallest
matrix has dimension n×n, where n is the model order.
Larger matrices, of dimension Ln×Ln, will thus have an
increased error rate by a factor

√
L. Since the presence of

the noise forces H̃Ln(0) to be full-rank, we employ low-
rank approximation via singular value decomposition [46]
to generate an approximated Ln×Ln Hankel matrix with
rank n.

We further consider two scenarios: either the time
step ∆t is fixed (thus larger matrices require longer total
times) or the total evolution time T is fixed (reflecting,
e.g., constraints imposed by decoherence or experimental
drifts). In the first case, ∆t is chosen by assuming all the
parameters take the possible maximal values so that the
sampling theorem still holds. In the second case, we fix
the total time evolution time to T = (2n − 1)∆t as re-
quired for the smallest Hankel matrix, and we use smaller
time steps in the other cases

As an example, we focus on the N = 4 exchange model
without transverse field, which is shown in Eq. (9). The
model order is given by n = 4. Since we assume that
the maximal possible value taken by coupling strengths
is 100, we have dt = π

25
√

5
.

In Fig. 3 we plot the estimation errors {〈ε(Ji)〉} as a
function of the total number of measurement for different
Hankel matrix dimensions.

We note that the smallest Hankel matrix leads to
larger errors, but already slightly larger matrices, pos-
sibly thanks to the low-rank approximation, give more
accurate estimation. Indeed, thanks to the low-rank ap-
proximation, we generate a 4-rank approximation of H̃4L

by neglecting the smallest singular values, which corre-
sponds to an effective strategy for noise reduction. A sec-
ond reason for the larger error is related to the shorter
total time for the smallest Hankel matrix realization, that
might in some cases not allow to fully capture the small-
est frequencies in the signal. While this is not typically
an issue in the ideal case, in the presence of experimental
noise this leads to higher estimation errors.

The role of the total time T is highlighted when we
consider the second scenario where T is fixed: We fix
the total time evolution time T used for constructing
H̃4, and compare the estimation performance between
H̃4 and H̃8. Then, the time step for H̃8 is chosen to be
dt′ = 7

15dt. The result in Fig. 4 show that in this case
the larger Hankel matrix leads to larger errors although
the time step dt′ satisfies the sampling theorem. In the
presence of noise, the additional sampling points acquired
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FIG. 4. Estimation error with fixed total time T : Me-
dian of the estimation error {〈ε(Ji)〉} over 500 random realiza-
tions of the Hamiltonian as a function of the total number of
measurements. For each Hamiltonian, we repeated the ERA
estimation 100 times, to evaluate the averaged error. Solid
lines with circles: 4 × 4 Hankel matrix; Dashed lines with
solid square: 8 × 8. The error bars are the absolute median
deviation.

mostly contribute to increase the noise, but do not convey
much more information. In addition, a very small time
step might lead to larger errors, since it appears in the
denominator of estimation equations (see e.g. Eq. A21).

VIII. DISCUSSION AND CONCLUSIONS

Hamiltonian identification is a central task in the quest
of constructing ever more complex quantum devices as
well as characterizing and imaging quantum systems in
biology and materials science. To access these systems
at their nano-scale, we proposed to use a quantum probe
that coherently couples to their dynamics. In this sce-
nario, we re-analyzed Hamiltonian identification via the
eigensystem realization algorithm (ERA) approach and
provided a systematic algorithm to test identifiability by
employing the Gröbner basis. Even more importantly
from a practical point of view, we showed that analyzing
these techniques yields bounds on the experimental re-
sources required to estimate the Hamiltonian parameters,
both in terms of the minimum coherence time required
for Hamiltonian identification and for the overall total ex-
perimental time for the multi-parameter estimate. These
bounds can guide experimentalists in implementing the
most efficient Hamiltonian identification protocol. We
further numerically studied the estimation performance
of ERA in the presence of noise. We found that the
low-rank approximation for larger numbers of sampling
points leads to more accurate estimation, even when the
total number of measurements is kept fixed. This effects
is however already at play for small number of points

above the minimum one, thus allowing to keep the total
evolution time short enough. When instead we fix the
total evolution time as required to construct the smallest
size Hankel matrix, there is no longer an advantage in
using a larger number of sampling points, as the smaller
time step leads to larger estimation errors. These anal-
yses quantitatively provide helpful insights for a practi-
cal experimental approach to Hamiltonian identification
based on ERA.

In order to obtain exemplary analytical results for our
Hamiltonian identification protocol, we considered sim-
ple models of spin chains coupled by one end to the
quantum probe. While these models are less complex
than what would be found in practical experimental sce-
narios, they allowed us to clarify an interesting rela-
tion between Hamiltonian identifiability by a quantum
probe and quantum information propagation in a chain.
Indeed, as Hamiltonian identification relies on building
a complete accessible set, the transport of information
along the spin chain, in the form of spin-spin correla-
tion, is a necessary condition. This result further imposes
conditions on the time required for Hamiltonian identifi-
cation: while in the cases we considered here these time
bounds were consistent with the bounds directly imposed
by ERA, it will be interesting to analyze in the future
whether this result changes in the presence of disorder,
when localization (either single particle or many-body)
appear.

We finally showed that by relaxing some of the assump-
tions on control constraints, by allowing for example col-
lective control of the target system, can turn a previously
non-identifiable system into an identifiable one. These re-
sults can contribute to make Hamiltonian identification
more experimentally practical in many real-system sce-
narios.
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Appendix A: Eigensystem Realization Algorithm

We review the eigensystem realization algorithm and
how it can be applied [18] for Hamiltonian identification
assisted by single-probe measurement.
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1. Construction of the state-space representation

For an interacting N spin-1/2 system, the Hamiltonian
can be written as

H =

M∑
m=1

θmSm, (A1)

where θm ∈ R\{0} are the unknown parameters we want
to determine, and iSm ∈ SU(2N ). Let Γ be the set of
these Hermitian operators:

Γ = {Sm|iSm ∈ SU(2N )},m = 1, 2, · · · ,M}, (A2)

with usually M � 4N − 1 due to the limitation in the
number of spin couplings in the system. Let G0 be the
set of observables that we can measure. The choice of G0

is discussed in Sec. II A. We define the following iterative
procedure:

Gj ≡ Gj−1 ∪ [Gj−1,Γ], (A3)

where

[Gj−1,Γ] ≡ {Oi|tr(O†i [η, γ]) 6= 0,∀η ∈ Gj−1, γ ∈ Γ}.
(A4)

Then, the finiteness in the dimension of SU(2N ) forces
the iterative procedure to saturate, so that we can gen-
erate an accessible set G of dimension n ≤ 4N − 1:

G = {Ok|iOk ∈ SU(2N ), k = 1, 2, · · · , n}. (A5)

The physical meaning of G was discussed in Sec. II A.
The time evolution for each observable Ok obeys

Heisenberg’s equation:

dOk
dt

= i[H,Ok] =

n∑
l=1

( M∑
m=1

θmVmkl

)
Ol, (A6)

where

Vmkl = Tr(i[Sm, Ok]Ol) ∈ R. (A7)

Let ρ0 be the initial state of the system, and let us define
xk = Tr(ρ0Ok). Eq. (A6) can be written as:

dxk
dt

=

n∑
l=1

( M∑
m=1

θmVmkl

)
xl (A8)

Defining a coherent vector x = (x1, · · · , xn)T ∈ Rn, we
can rewrite Eq. (A6) into a compact form:

dx(t)

dt
= Ãx(t), (A9)

where the system matrix Ã ∈ Rn×n is a skew-symmetric
matrix, i.e. Ã = −ÃT . Let y ∈ R be the output data,
which can be written in terms of the output matrix C ∈
Rn as

y(t) = Cx(t). (A10)

From Eq. (A8) and Eq. (A10), a state-space representa-
tion can be constructed as the following:

dx(t)

dt
= Ãx(t)

y(t) = Cx(t).
(A11)

In discrete-time form, we have:

x(j + 1) = Ax(j)

y(j) = Cx(j),
(A12)

where x(j) ≡ x(j∆t), y(j) ≡ y(j∆t) and

A = eÃ∆t. (A13)

Since any matrix exponential is a nonsingular matrix, we
have:

rank(A) = n. (A14)

From Eq. (A8) we can obtain the transfer function T (s) =

C(sIn − Ã)−1x(0), and [Ã,C,x(0)] is called the realiza-
tion of T (s).

2. Realization Theory and Hankel matrix

The Hamiltonian identification algorithm [18] relies on
realization theory [24]. From the measurement data, we
can construct the following Hankel matrix:

Hrs(0) =


y(0) y(1) · · · y(s− 1)
y(1) y(2) · · · y(s)

...
...

. . .
...

y(r − 1) y(r) · · · y(r + s− 2)

 , (A15)

where we take r, s ≥ n. In order to obtain the transfer
function with the true model order n, we need r, s ≥ n
because the rank of the Hankel matrix is equal to the
order of the transfer function. Suppose that r, s < n,
meaning that one takes fewer observations. In general,
the rank of a r × s matrix cannot be greater than either
r or s; therefore, we have:

rank(Hrs(0)) ≤ min(r, s) < n.

This means that a transfer function constructed from this
smaller Hankel matrix would not have the true model
order n. Therefore, r and s must satisfy r, s ≥ n, and
this is a necessary condition for ERA.

The Hankel matrix can be decomposed into

Hrs(0) = OrCs, (A16)

where Or ∈ Rrn×n and Cs ∈ Rn×sn are called observabil-
ity and controllability matrix, respectively, with:

Or =


C

CA
...

CAr−1


Cs =

(
x(0) Ax(0) · · · As−1x(0)

)
.

(A17)
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The singular value decomposition of Hrs(0) yields:

Hrs(0) = U

(
Σ O
O O

)
VT =

(
U1 U2

)(Σ O
O O

)(
VT

1

VT
2

)
(A18)

where U and V are unitary matrices of dimensions rn×
rn and sn × sn, respectively. Let l ≤ n be the number
of non-zero singular values of Hrs(0). Σ is the l × l
diagonal matrix containing the non-zero singular values.
Therefore, the observability and controllability matrices
become:

Or = U1Σ
1/2

Cs = Σ1/2VT
1 .

(A19)

By introducing the shifted-Hankel matrix:

Hrs(1) =


y(1) y(2) · · · y(s)
y(2) y(3) · · · y(s+ 1)

...
...

. . .
...

y(r) y(r + 1) · · · y(r + s− 1)

 = OrACs,

(A20)
from Eq. (A20) and Eq. (A19), we can obtain the
following new realization of the transfer function:
[Ãest,Cest,xest(0)] such that:

xest(0) = (Or)first column

Cest = (Cs)first row

Ãest =
1

∆t
ln[O−1

r Hrs(1)C−1
s ].

(A21)

We write the corresponding transfer fuction as

Test(s) = Cest(sIn − Ãest)
−1xest(0), (A22)

and, in principle, T (s) = Test(s). In order to obtain the
new realization, the system is required to be both observ-
able and controllable. Therefore, the controllability and
observability matrix must satisfy:

rank(Cs) = n = rank(A)

rank(Or) = n = rank(A).
(A23)

In turns, their ranks are determined by the Hankel ma-
trix’s rank, as required by the Sylvester inequality: for
P ∈ Rm×k, Q ∈ Rk×n,

p+ q − k ≤ rank(PQ) ≤ min{p, q},

where p = rank(P) and q = rank(Q). From Eq. (A20)
and Eq. (A23), the rank of the Hankel matrix must be:

rank(Hrs(0)) = n = rank(A), (A24)

which indicates that the minimum dimension of the Han-
kel matrix and the shifted Hankel matrix is n×n. There-
fore, all the output data {y(0), . . . , y(2n− 1)} need to be
recorded, which means that we require at least 2n sam-
pling points in order to obtain the new realization of the
system and thus extract the unknown parameters. From
Eq. (A14), the lower bound in the number of sampling
points λmin is given by:

λmin = 2rank(A). (A25)

Appendix B: Basic theory of Gröbner basis

In this section, we review the basic theory of the
Gröbner basis introduced in [27–30].

1. Monomial, polynomial, and monomial ordering

Let Z≥0 be the set of all nonnegative integers. A
monomial in z1, · · · , zn is the product zα1

1 · · · zαn
n , where

α1, · · · , αn ∈ Z≥0. For simplicity, let us introduce the
vectors z = (z1, · · · , zn) ∈ kn and α = (α1, · · · , αn) ∈
Zn≥0. Then, we write monomials as zα ≡ zα1

1 · · · zαn
n and

the monomial degree is

|α| =
n∑
k=1

αk. (B1)

A polynomial f ∈ k[z1, · · · , zn] is a finite linear combi-
nation of the monomials with coefficients in a field k:

f =
∑
α

cαz
α, cα ∈ k. (B2)

Monomial ordering is an important ingredient in all
algorithms developed in commutative algebra. Let us
introduce the so-called Lexicographic order (lex) that
we adapt to the Hamiltonian identification problem.
Suppose we have α = (α1, · · · , αn) ∈ Zn≥0 and β =

(β1, · · · , βn) ∈ Zn≥0. If the leftmost nonzero entry of

α− β ∈ Zn is positive, we write α �lex β or zα �lex zβ .
For each variable z1, · · · , zn, the variables are ordered in
the following way according to the lex ordering: z1 �lex
z2 �lex · · · �lex zn. By fixing the monomial ordering �,
we can define the following terms:

1. The multidegree of a polynomial f is :
multideg(f) = max(α ∈ Zn≥0|cα 6=0) with respect
to �.

2. The leading coefficient of a polynomial f is:
LC(f) = cmultideg(f) ∈ k.

3. The leading monomial of f is LM(f) =
xmultideg(f).

4. The leading term is LT(f) = LC(f) · LM(f).

2. Ideals and affine variety

Let k be a commutative ring. A subset I ⊆ k is called
an ideal if it satisfies the following conditions:

1. 0 ∈ I.

2. If f, g ∈ I, then f + g ∈ I.

3. If f ∈ I and h ∈ k, then hf ∈ I.
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We are in particular interested in polynomial ideals. We
denote the set of all polynomials in z1, · · · , zn with co-
efficients on a field k by k[z1, · · · , zn]. Then, a subset
I = 〈f1, · · · , fp〉 ⊆ k[z1, . . . , zn] such that:

I = 〈f1, · · · , fp〉 =
{ p∑
k=1

hkfk

∣∣∣h1, · · · , hp ∈ k[z1, · · · , zn]
}

(B3)
is an ideal of k[z1, · · · , zn]. We call I a polynomial ideal
generated by f1, · · · , fp, and f1, · · · , fp are called the
bases of the polynomial ideal I.

The radical of I is defined by:

√
I = {f ∈ k[z1, · · · , zn]|fk ∈ I for some integer k ≥ 1},

(B4)

and we always have I ⊆
√
I. Particularly, when I =

√
I,

I is called a radical ideal.
Let V(f1, · · · , fp) be the set of solutions of a system

of polynomial equations, i.e.

V(f1, ..., fp)={(a1, ..., an)∈kn | fl(a1, ..., an)=0}, (B5)

for l = 1, 2, · · · , p. V(f1, · · · , fp) is called the affine
variety defined by f1, · · · , fp. If {f1, · · · , fp} and
{g1, · · · , gs} are the bases of the same polynomial ideal
I, then V(f1, · · · , fp) = V(g1, · · · , gs). Any polynomial
ideal I always satisfies:

V(
√
I) = V(I), (B6)

and, particularly, if k is an algebraically closed field C,
the affine variety and the radical ideal are in one-to-one
correspondence.

3. Gröbner basis

For a polynomial ideal I ∈ k[z1, · · · , zn] \ {0}, fixing
a monomial order �, we define the leading term of the
ideal, LT(I) = {LT(f)|∃f ∈ I \ {0}}, and we write the
monomial ideal generated by the elements of LT(I) as
〈LT(I)〉. If I = 〈f1, · · · , fp〉, we always have LT(fk) ∈
LT(I) ⊆ 〈LT(I)〉.

From the Hilbert Basis Theorem [28], every poly-
nomial ideal I \ {0} has a finite generating set
G(I) = {g1, · · · , gt}, which satisfies 〈LT(I)〉 =
〈LT(g1), · · · ,LT(gt)〉. G(I) is called a Gröbner basis for
the polynomial ideal I. Therefore, the Hilbert Basis The-
orem suggests that every polynomial ideal has a corre-
sponding Gröbner basis. By adding the following restric-
tions:

1. every polynomial gj is monic. i.e. LC(gj) = 1;

2. for every set of two distict polynomial gj and gi,
LM(gj) is not divisible by LM(gi) for any i 6= j,

we can obtain a unique minimal basis. The Gröbner basis
with these restrictions is called reduced Gröbner basis,
which is denoted by G (I).

4. Buchberger’s algorithm for constructing the
Gröbner basis

The Gröbner basis can be constructed by the Buch-
berger’s algorithm [31]. Let S(fi, fj) be the S-polynomial
of the pair (fi, fj), which is defined as:

Si,j =
LCM[LM(fi),LM(fj)]

LM(fi)
fi−

LCM[LM(fi),LM(fj)]

LM(fj)
fj ,

(B7)
where LCM[LM(fi),LM(fj)] denotes the least common
multiple of LM(fi) and LM(fj). Let rem(Si,j , G) be the
remainder of dividing Si,j by all elements in G. Let
us consider the ideal I ⊂ C[z1, · · · , zn] generated by
f1, · · · , fp. The Buchberger’s algorithm [27] is given
by:

INPUT: F = {f1, · · · , fp}
OUTPUT: The Gröbner basis G (I) = {g1, · · · , gt}
for the ideal I.
G := F
repeat
G′ := G
for all {fi, fj}, i 6= j in G′ do
R := rem(Si,j , G

′)
if R 6= 0 then
G := G ∪ {rem(Si,j , G

′)}
end if
end for
until G = G′

RETURN G

5. Construction of radicals of zero-dimensional
ideal

Let us consider the following system of polynomial
equations:

f1(z1, · · · , zn) = 0

f2(z1, · · · , zn) = 0

...

fp(z1, · · · , zn) = 0

(B8)

and f1, · · · , fp ∈ C[z1, · · · , zn]. Suppose that Eq. (B8)
has a finite set of solutions. Then, the polynomial ideal I
generated by f1, · · · , fn is called zero-dimensional ideal.
Here, let us introduce the procedure to construct the rad-
ical
√
I. By Buchberger’s algorithm and the definition of

the reduced Gröbner basis, we can obtain the following
reduced Gröbner basis:

G (I) = {g1(z1),

g2,1(z1, z2), · · · , g2,v2(z1, z2),

...

gM,1(z1, · · · , zM ), · · · , gM,vM (z1, · · · , zM )}.
(B9)
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and G (I) generates the same ideal. Let hj be an unique
monic generator of the elimination ideal I ∩C[zj ]. Then,
we can choose hj such that hj ∈ G (I)∩C[zj ] by the Elim-
ination Theorem. Let ϕj(zj) be ϕj = hj/gcd(hj , ∂zjhj),
the radical of the zero-dimensional ideal I is given by:

√
I = I + 〈ϕ1, · · · , ϕn〉. (B10)

(See e.g., [30] for the proof). In particular, by Seiden-
berg’s Lemma [30], when ϕj = 1, I is a radical zero-
dimensional ideal, and the Gröbner basis for the radical
zero-dimensional ideal has a special shape, as described
by the Shape lemma [28], such that:

G = {zα1 + q1(z1), · · · , zn−1 + qn−1(z1), zn + qn(z1)},
(B11)

where α ∈ N and qj(z1) are the univariate polynomials
in z1 with degree deg(qj) < α.

6. Elimination theory

Let I ⊆ k[z1, · · · , zn] be a polynomial ideal. Let us
define Il by:

Il = I ∩ k[zl+1, . . . , zn], (B12)

and we call Il the l−th elimination ideal. Fixing the lex
order z1 �lex z2 �lex · · · �lex zn, for every l, the Gröbner
basis for the l-th elimination ideal is written by:

Gl = G ∩ k[zl+1, · · · , zn], (B13)

where G is the Gröbner basis for I (Elimination Theo-
rem) [27].

By employing the Elimination Theorem, we can derive
the shape of the reduced Gröbner basis in Sec. V B and
Sec. V C. Let us take x(0) = (1, 0, · · · , 0)T ∈ Rn+1, and

C =
(
1 0 · · · 0

)
∈ Rn+1. The system matrix Ã is an

(n+1)×(n+1) skew-symmetric matrix with the only non-

zero elements θk = (Ã)k+1,k = −(Ã)k,k+1, where k =
1, 2, · · · , n. Then, from Eq. (6), we obtain the following
system of polynomial equations:

f1(z1, · · · , zn) = · · · = fn(z1, · · · , zn) = 0, (B14)

where zk = θ2
l (k, l = 1, 2, · · · , n). We can construct a

polynomial ideal

I = 〈f1, · · · , fn〉 ∈ C[z1, · · · , zn]. (B15)

Note that for convenience we consider the polynomial
ideal over the polynomial ring C[z1, · · · , zn]. In this case,
we have found that there exists a proper choice for the
pair (k, l) such that the corresponding elimination ideal
Il−1 has the basis zk − c2k for ∃ck ∈ R, meaning that:

zk − c2k ∈ Gl−1. (B16)

From the Elimination Theorem, we have:

Gl−1 = G ∩ C[zl, · · · , zn]

= G ∩ (C[zl] ∪ C[zl+1, · · · , zn])

= (G ∩ C[zl]) ∪ (G ∩ C[zl+1, · · · , zn])

= (G ∩ C[zl]) ∪ Gl,

(B17)

which yields:

Gl ⊂ Gl−1. (B18)

Therefore, we can inductively obtain:

Gn−1 ⊂ Gn−2 ⊂ · · · ⊂ G2 ⊂ G1 ⊂ G. (B19)

By the definition of the reduced Gröbner basis, G (I)
has the shape:

G (I) = 〈z1 − a1, · · · , zn − an〉, (B20)

where ak = c2l . This tells us the fact that I is the maxi-
mal ideal of C[z1, · · · , zn].

7. Comments on efficiency of Gröbner basis

The computation of Gröbner basis takes tremendously
large complexity [27]. Let F be a set of polynomi-
als {f1, · · · , ft} in z1, · · · , zn ∈ C, and let d be the
maximal multiple degree of the input polynomials, i.e.
d = max(multideg(f1), · · · ,multideg(ft)). Suppose that
F generates a zero-dimensional ideal. Then, the complex-
ity for computing the reduced Gröbner basis can be given
by dO(n) [47]. Therefore, for a larger system, the Gröbner
basis takes a tremendously long time due to its complex-
ity. Efficiency improvement of computing Gröbner basis
is a timely problem. For example, recently, Gritzmann
and Sturmfels proposed the idea of dynamic alternation
of the the monomial ordering while the algorithm pro-
gresses [48, 49]. Therefore, we expect that the current
research efforts on the development efficient computation
method of Gröbner basis can definitely contribute to the
reduction of the computation complexity in the Hamil-
tonian identification. We want to emphasize that the
Gröbner basis approach is a fundamental and systematic
way to solve the system of polynomial equations. More
importantly, it is useful due to a peculiar properties of
its shape which can determine the solvability of the sys-
tem of polynomial equations and hence the identifiability
of the Hamiltonian. Therefore, learning the Hamiltonian
identifiability by applying Gröbner basis is fundamen-
tally essential and necessary.

Appendix C: Examples of polynomials for
identifiable Hamiltonians

In this section, we show the explicit polynomials for
particular identifiable models.
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1. N = 3 Ising model with transverse field

For the Ising model with transverse field with N = 3
spins, the Hamiltonian can be written as:

H =

3∑
k=1

ωk
2
Zk +

2∑
k=1

Jk
2
XkXk+1.

Let us choose G0 = {X1} and let the initial state of the
probe be the eigenstate of X1 and the rest of spins in the
chain be the maximally mixed state. The system matrix
Ã is:

Ã =


0 −ω1 0 0 0 0
ω1 0 −J1 0 0 0
0 J1 0 −ω2 0 0
0 0 ω2 0 −J2 0
0 0 0 J2 0 −ω3

0 0 0 0 ω3 0



and output matrix C is given as:

C =
(
1 0 0 0 0 0

)
,

and the initial coherent vector is:

x(0) = (1, 0, 0, 0, 0, 0)T .

Let us define (z1, z2, z3, z4, z5) = (ω2
1 , ω

2
2 , ω

2
3 , J

2
1 , J

2
2 ).

Then, from Eq. (6), we can obtain the following form
of system of polynomial equations:

z1z2z3 = v1

z1z2 + z1z3 + z2z3 + z3z4 + z1z5 + z4z5 = v2

z1 + z2 + z3 + z4 + z5 = v3

z2z3 + z3z4 + z4z5 = v4

z2 + z3 + z4 + z5 = v5,

where vk > 0 (k = 1, · · · , 5). Then, the Gröbner basis
takes the following form: G = {z1 − a2

1, z2 − a2
2, z3 −

a2
3, z4−a2

4, z5−a2
5}, where {a2

1, a
2
2, a

2
3, a

2
4, a

2
5} are given in

Eq. (C1):

a2
1 = v3 − v5

a2
2 =

v2 − v4

v3 − v5
+

v1 + v4(v5 − v3)

v4 − v2 + v5(v3 − v5)

a2
3 =

v1(v4 − v2 + v5(v5 − v3))

(v2 − v4)2 + v2
3v4 − v3v5(v2 + v4) + v2v2

5 + v1(v5 − v3)

a2
4 =

v4 − v2

v3 − v5

a2
5 = −v1

v2
+

v1 − v4(v3 − v5)

v2 − v4 − v5(v3 − v5)
+

v1(v1(v5 − v3) + v4(−v2 + v4 + v3(v3 − v5)))

v2((v2 − v4)2 − v1v3 + v2
3v4 + v5(v1 − v3(v2 + v4)) + v2v2

5)
,

(C1)

2. N = 4 Exchange model without transverse field

Next, let us consider the exchange model without
transverse field with N = 4 spins. The Hamiltonian can
be written as:

H =

3∑
k=1

J1

2
(XkXk+1 + YkYk+1).

Let us take same observable set and initial state of spin
chain in Sec. C 1. The system matrix Ã is:

Ã =

 0 −J1 0 0
J1 0 J2 0
0 −J2 0 −J3

0 0 J3 0



and output matrix C is given as:

C =
(
1 0 0 0

)
,

and the initial coherent vector is:

x(0) = (1, 0, 0, 0)T .

Let us define (z1, z2, z3) = (J2
1 , J

2
2 , J

2
3 ). Then, from

Eq. (6), we can obtain the following form of system of
polynomial equations:

z2 + z3 = v1

z1z3 = v2

z1 + z2 + z3 = v3

where vk > 0 (k = 1, · · · , 5). Then, the Gröbner basis
takes the following form: G = {z1 − a2

1, z2 − a2
2, z3 − a2

3},
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where {a2
1, a

2
2, a

2
3} are given in Eq. (C2):

a2
1 = v3 − v1

a2
2 =

v1v3 − v2 − v2
1

v3 − v1

a3
3 =

v2

v3 − v1

(C2)

where v3 > v1, v1(v3 − v1) > v2 > 0.

3. N = 2 Exchange model with transverse field

Finally, let us consider the exchange model with N =
2 spins with transverse field. The Hamiltonian can be
written as:

H =
ω1

2
Z1 +

ω2

2
Z2 +

J1

2
(X1X2 + Y1Y2).

In Sec. V D, we have discussed that the Hamiltonian be-
comes fully identifiable if we measure X1 and Y1 sepa-
rately. Let us always prepare the initial state of the spin
probe to be the eigenstate of {X1} and rest of all spins
to be the maximally mixed state. The system matrix is:

Ã =

 0 ω1 0 −J1

−ω1 0 −J1 0
0 J1 0 ω2

J1 0 −ω2 0


Here, the output matrix becomes

C =
(
1 1 0 0

)
and the initial coherent vector is

x(0) = (1, 0, 0, 0)T .

Let us define (z1, z2, z3) = (ω1, ω2, J
2
1 ). Then, from

Eq. (6), we can obtain the following form of system of
polynomial equations:

− z1z
2
2 − z2z3 = v1

z2
2 + z3 = v2

z1 = v3

(z1z2 + z3)2 = v4

z2
1 + z2

2 + 2z3 = v5.

Then, the Gröbner takes the following form: G =
{z1 − a1, z2 − a3, z3 − a2

3}, where {a1, a2, a
2
3} are given

in Eq. (C3):

a1 = v3

a2 =
v1 + 2v2v3 + v3

3 − v3v5

v2 + v2
3 − v5

=
v2

2 − v2v
2
3 − v4

3 + v4 − v2v5 + v2
3v5

v1 − v3
3 + v3v5

=
2v1(v2 − v5) + v3(−v2

2 + 2v2v
2
3 + 2v4

3 − 3v4 − 3v2
3v5 + v2

5)

2(v4
3 + v4 − v2

3v5)

a2
3 = v5 − v2 − v2

3 ,

(C3)
where v2+v2

3−v5 6= 0, v1−v2
3+v3v5 6= 0, v4

3+v4−v2
3v5 6= 0

and v5 − v2 − v2
3 > 0. Here a1 and a2 are the nonzero

real numbers. Also note that {v1, v2, v3, v4, v5} satisfy
the following simultaneous identity:

v4
2 − 4v3

2v5 − 2v2
2(v4 + (v2

3 − 3v5)v5) + (v4 − v2
5)2 + v4

3(−4v4 + v2
5) + v2

3(6v4v5 − 2v3
5) + 4v2(v5(v4 − v2

5) + v2
3(−2v4 + v2

5)) = 0

− v2
2 + 2v1v3 + v4 + 2v2v5 + (v2

3 − v5)v5 = 0

2v1(−v4 + (v2 − v5)2)− v3(4(2v2 + v2
3)v4 + (v2

2 − 5v4)v5 − (2v2 + v2
3)v2

5 + v3
5) = 0

v2
1 − v4(2v2 + v2

3 − v5) = 0.
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