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National Institute of Standards of Technology, 325 Broadway St., Boulder, CO 80305.

Trapped charged particles have been at the forefront of quantum information processing (QIP) for
a few decades now, with deterministic two-qubit logic gates reaching record fidelities of 99.9% and
single qubit operations of much higher fidelity. In a hybrid system involving trapped charges, quan-
tum degrees of freedom of macroscopic objects such as bulk acoustic resonators, superconducting
circuits or nano-mechanical membranes, couple to the trapped charges and ideally inherit the co-
herent properties of the charges. The hybrid system therefore implements a “quantum transducer”,
where the quantum reality (i.e. superpositions and entanglement) of small objects is extended to
include the larger object. Although a hybrid quantum system with trapped charges could be valu-
able both for fundamental research and for QIP application, no such system exists today. Here we
study theoretically the possibilities of coupling the quantum mechanical motion of a trapped charged
particle (e.g. ion or electron) to the quantum degrees of freedom of superconducting devices, nano-
mechanical resonators, and quartz bulk acoustic wave resonators. For each case, we estimate the
coupling rate between the charged particle and its macroscopic counterpart and compare it to the
decoherence rate, i.e. the rate at which quantum superposition decays. A hybrid system can only be
considered quantum if the coupling rate significantly exceeds all decoherence rates. Our approach is
to examine specific examples, using parameters that are experimentally attainable in the foreseeable
future. We conclude that hybrid quantum systems involving a single atomic ion are unfavorable,
compared to using a single electron, because the coupling rates between the ion and its counterpart
are slower than the expected decoherence rates. A system based on trapped electrons, on the other
hand, might have coupling rates that significantly exceed decoherence rates. Moreover it might have
appealing properties such as fast entangling gates, long coherence and flexible topology that is fully
electronic in nature. Realizing such a system, however, is technologically challenging, because it
requires accommodating both a trapping technology and superconducting circuitry in a compatible
manner. We review some of the challenges involved, such as the required trap parameters, electron
sources, electrical circuitry and cooling schemes in order to promote further investigations towards
the realization of such a hybrid system.
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I. INTRODUCTION

Trapping of charged particles [1, 2] has enabled long in-
terrogation times of their external and internal states, en-
abling precision metrology, such as atomic clocks. Apply-
ing these tools to atomic ions, paired with laser-enabled
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FIG. 1. Examples of different platform candidates for a hybrid architecture considered in this paper. Clockwise from the
top-middle: 198Hg+ ion trap, quartz bulk acoustic wave resonator, gallium nitride nano-beams, superconducting LC circuit,
nano-mechanical silicon nitride (SiN) membrane. The ion (green shading) is coupled via piezoelectricity (red shading), induced
image currents (purple shading) or electrostatics (blue shading). Ion trap photo courtsey of J. Bergquist, NIST, Boulder, CO
80305, USA. Gallium nitride nano-beams photos courtesy of K. Bertness, NIST, Boulder, CO 80305, USA. Quartz resonator
device courtesy of S. Galliou, FEMTO-ST institute, 25000 Besançon, France. SiN membrane photo courtesy of K. Cicak, NIST,
Boulder, CO 80305, USA.

state manipulation, can also turn ions into a quantum
information processing (QIP) platform [3–7]. Ions have
demonstrated record fidelities for initialization, readout,
individual spin manipulation [8] and entanglement [9, 10].

Other quantum-coherent systems might therefore ben-
efit, by coupling to trapped ions, potentially inheriting
aspects of their high controllability and coherence. For
example, as described below, we might be able to use a
single 9Be+ ion coupled to a ∼ 10 mg quartz resonator to
cool the latter close to its ground state. By placing the
ion in a superposition state of motion and transferring it
to a macroscopic resonator, we could explore bounds on
quantum mechanics for massive objects. The ion there-
fore could provide a “quantum transducer” that enables
the manipulation of a much larger object in a coherent
way at the single phonon level. For the purpose of QIP,
ions might be used as excellent memory units, e.g. for
superconducting devices, as long as quantum information
can be exchanged between the two systems on time scales
that are sufficiently short compared to the decoherence
time of the superconducting circuit. The internal degrees
of freedom of an ion can remain coherent for tens to hun-
dreds of seconds [8, 11–13], significantly exceeding the
lifetime of coherent excitation in current superconducting
devices, typically limited to below 100 µs (e.g. see [14]),
setting the timescale for useful quantum exchange.

The resonant interaction of ions with radio frequency
electrical resonators was studied in [15]. Complementary
parametric interaction schemes for the non-resonant case
were studied in [16–20]. Other suggestions include in-
terfacing nano-mechanical resonators [21–25], electrical
wires [26] and superconducting qubits [25]. These re-
ports analyzed the basic physics involved in each of the
different coupling mechanisms as well as the prospects of
using such hybrid systems.

Here, we focus on a few specific examples of hybrid
systems rather than presenting a general treatment. For
these examples we take into account available materi-
als, achievable quality factors and practical limitations.
Nevertheless, our analysis is based on a unified framework
(Sec. II), that allows for direct comparison of relevant fig-
ures of merit associated with the different systems. We
hope these examples are representative of the different
opportunities available and can illuminate some of the
issues of hybrid QIP with charged particles.

A charged particle moving in a harmonic trap gives
rise to an oscillating electric dipole. This dipole in turn
can couple to nearby charged objects [21, 27, 28], gener-
ate image currents in a nearby conductor [15], polarize
a dielectric material, or induce motion in a piezo-electric
crystal. If the coupled system also has a harmonic mode
resonant with the ion motion, energy exchange will oc-
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cur between the ion harmonic motion and the coupled
system.

The analysis that follows below is guided by the re-
alization that coupling two quantum systems is a dou-
ble edged sword. Ideally, we would like to benefit from
the useful properties of both systems. In reality, the
hybrid system often inherits the disadvantages of both
constituents. Therefore, to retain any useful quantum
characteristics, we require that the coupling rate between
the two systems exceeds the fastest relevant decoherence
rate in both systems. Additionally, we focus on specific
architectures where the two technologies involved could
be compatible and not preclude either of the coupled sys-
tems from being close to a pure quantum state.

Although we cannot completely rule out all mecha-
nisms considered here that involve an atomic ion, the
analysis emphasizes how challenging it would be to incor-
porate ions into a hybrid system at the quantum level.
The coupling rates we calculate, based on experimentally
attainable parameters, are either well below the decoher-
ence rates or marginally close to them. This conclusion
changes when considering coupling a charged particle to
a superconducting resonator, assuming an electron rather
than an ion (e.g. see [15, 18, 29, 30] as well as Sec. VI
for a more extensive reference list). This follows from
the fact that for a particle of mass m the coupling rate is
proportional to m−1/2 (see Sec. IV), rendering coupling
rates for an electron on the order of ∼ 0.1 to 1 MHz,
where we expect to exceed decoherence rates.

The shift from using an atomic ion to using an elec-
tron has significant practical implications as detailed
in Sec. VI. Laser-enabled state manipulation, specifically
laser cooling, play an important role in trapped atomic
ion QIP experiments. Without these tools, electrical-
circuit based alternatives need to be considered along
with their implications on the system as a whole. We
therefore embark on a feasibility study that takes these
implications into account, considering among other fac-
tors, trap stability, trap depth, maintaining supercon-
ductivity, the requirements from a low-energy electron
source, electrical wiring and the superconducting res-
onator involved. A previous report (Ref. [18]) has already
suggested a specific electron trap that would support a
parametric coupling scheme. The different aspects con-
sidered in the feasibility study bear significance on the
trap design, suggesting that a larger trap be used for an
electron-based hybrid system.

Although technically challenging, these issues do not
seem to preclude a hybrid system based on a trapped
electron. As detailed in Sec. VI, such a platform might
offer appealing qualities such as fast entangling gates (∼
10 ns) and long coherence times (seconds), rendering a
coherence time to gate time ratio of ≥ 108, far exceeding
any current QIP system. Moreover, the platform could
offer a flexible coupling topology enabled by interfacing
engineered electrical circuits, potentially enabling high-
fidelity electron spin readout. This, in turn could open
new avenues of basic research, interesting in their own

right.

II. ELECTRICAL EQUIVALENT OF
MECHANICAL MOTION

There are various systems that could, in principle, cou-
ple to a trapped charged particle. Those systems differ
from the charged particle and from one another in fre-
quency, mass, length scale, and coupling mechanism as
highlighted in Fig. 1. With the exception of the electrical
LC resonator, all other systems considered here are me-
chanical resonators actuated by an electromagnetic field.
In order to place all of them on an equal footing we
associate an electrical equivalent for each of these me-
chanical systems. This reduces the analysis of any of
the hybrid systems into an all-electrical circuit problem.
Our discussion extends the treatment in [31] where the
electrical equivalent circuit of a trapped ion was derived.
This could also be derived using the general framework
developed by Butterworth and Van Dyke [32–34] that
associates a circuit equivalent for electrically actuated
mechanical systems. We refer to the resulting electrical
network as the BVD equivalent circuit.

Suppose a mechanical system of mass m is placed near
an electrode that is biased with a voltage V , resulting in
a force F = βV acting on it. For simplicity, we assume
the geometry in Fig. 2(a), where two electrodes form the
two plates of a parallel plate capacitor, separated by a
distance d. An important example (analyzed in [31, 35])
is that of a single charged particle with charge q result-
ing in F = qV/d, i.e. β = q/d. In general, electrical
actuation could also result from dipolar interaction, elec-
trostriction, piezoelectricity, etc. Since microscopically
these mechanisms originate from having non-zero local
charge densities within the mechanical system, we lump
the overall effect of the voltage with a single effective
parameter, β.

When the mass m moves at a velocity v (see Fig. 2(b)),
it will induce a current I = βv at the electrode. This is
an immediate generalization of the single charged particle
case: if it is at a distance x from an electrode it induces
an image charge of qimage = qx/d. Therefore, within
the electrostatic approximation, a velocity v = ẋ would
translate into a current I = qv/d. The induced charges
will back-act on the mass m with an additional force ∆F .
This force, however, will be independent of V and will not
contribute to the induced current I. The effect of ∆F can
therefore be lumped into a (usually but not necessarily)
small change of the system’s mechanical properties, e.g.
its spring constant in the case of a harmonic oscillator
(for a rigorous derivation see [31, 35]).

Now assume that the mechanical system is harmonic,
i.e. that it has a resonant frequency ω0 and a friction
coefficient γ. If the voltage is time varying V (t), the
equation of motion for the harmonic oscillator position x
is



4

mF

V

d C0 m

I

vx

V

C0

R

L

C

C0

(a) (b)

(c)

FIG. 2. Simplified geometry for an electrically actuated me-
chanical system. (a) A mechanical system of mass m is placed
inside a capacitor C0 that is biased at a voltage V . The force
acting on m is assumed to be proportional to the capacitor
bias voltage F = βV . (b) If the mechanical system velocity
is v 6= 0 an image current I = βv is induced. (c) BVD equiv-
alent circuit. The mechanical system electrical response is
identical to that of a series RLC circuit connected in parallel
with the capacitor C0.

mẍ+ γẋ+mω2
0x = βV (t). (1)

Using the relation I(t) = βẋ this can be rewritten as

m

β2

dI

dt
+

γ

β2
I +

mω2
0

β2

∫ t

dt′I(t′) = V (t). (2)

Therefore, from the perspective of the electrical circuit,
the mechanical system is equivalent to a series combina-
tion of resistance, inductance and capacitance, namely

L
dI

dt
+RI +

1

C

∫ t

dt′I(t′) = V (t), (3)

where

L↔ m

β2
, R↔ γ

β2
, C ↔ β2

mω2
0

, (4)

and their series combination is added in parallel to the
capacitance of the drive electrode C0 [see Fig. 2(c)].

Throughout this paper, we will refer to the mechanical
system and its electrical equivalent interchangeably, in
order to simplify the coupling analysis.

III. COUPLING IN THE STRONG QUANTUM
REGIME

Our general problem is concerned with two resonantly
coupled harmonic oscillators (mechanical or electrical).

We assume that the coupling rate g is much smaller than
the frequencies of the harmonic oscillators so that the
coupling Hamiltonian can be treated perturbatively. The
Hamiltonian coupling term for two mechanical harmonic
oscillators of masses m1,m2 and bare frequencies ω′1, ω

′
2

by a spring of constant k (Fig. 3a) is

Hc = kx1x2, (5)

where x1,2 are the displacements of the oscillators from
equilibrium. The resonant frequency for each of the har-
monic oscillators in the presence of the coupling spring
is ωi =

√
ω′2i + k/mi. If ω1 = ω2 = ω0 the coupling

Hamiltonian can be rewritten in terms of a coupling rate
g, by expressing xi in terms of their respective harmonic
oscillator ladder operators xi =

√
~/(2miωi)(âi + âi

†) so
that

Hc = ~g(â1 + â1
†)(â2 + â2

†), (6)

where

g =
k

2ω0
√
m1m2

, (7)

and ~ is the Planck constant divided by 2π.
It will be useful later to express g in terms of an analog

electrical system (Fig. 3b) of two LC resonators coupled
by a shunt capacitor C. In this case, the coupling Hamil-
tonian is

Hc =
1

C
q1q2, (8)

where q1,2 are the charges on the capacitors C1,2 respec-
tively. The resonant frequency for each of the LC res-
onators is ωi = 1/

√
LiC ′i where C ′i = CiC/(Ci+C) is the

series capacitance of Ci and C. Assuming ω1 = ω2 = ω0,
we can rewrite Eq. (8) in terms of the ladder opera-

tors, qi =
√
~ω0C ′i/2(a+ a†), so that Hc takes the form

of Eq. (6) with

g =
ω0

2

√
C1C2

(C1 + C)(C2 + C)
. (9)

We stress that both Eq. (7) and Eq. (9) are valid only if
the coupling rate g is smaller than the harmonic oscilla-
tors frequency, i.e. g � ω0.

We will be particularly interested in the strong-
coupling quantum regime, i.e. when a large number of
complete energy swaps occur between the two oscilla-
tors before they significantly lose coherence: Nswap ≈
τcoh/τswap � 1. Here τswap = π/g is the time required
for a complete energy swap (back and forth) between
the two oscillators. For a system of two harmonic os-
cillators τcoh is the average exchange period of a single
energy quantum with any of the thermal baths of the os-
cillators. We assume that coherence is limited by energy
relaxation. In reality, there are additional decoherence
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FIG. 3. (a) Coupled mechanical harmonic oscillators. (b)
Coupled electrical harmonic oscillators.

mechanisms that could decrease Nswap further and the
values calculated here should be considered as an upper
bound. An important case is motional dephasing of a
trapped charged particle [21, 36]. Although the motional
heating rate for trapped ions could be as low as a few
quanta per second (see B), trap frequency drifts, for ex-
ample, could cause motional dephasing at a higher rate.
Another well known source of motional decoherence is
the non-linear coupling between trap axes due to trap
imperfections [21]. Although these mechanisms could be
reduced by technical means, it would be highly favorable
from a practical standpoint that the coupling strength
g ≥ 2π × 1 kHz, posing an additional constraint in what
follows.

When expressing the above condition in terms of the
lower of the two quality factors Q associated with the
two oscillators and the temperature T of their environ-
ment, we observe two regimes. At “high” temperatures
(kBT ≥ ~ω0), the thermal equilibration time constant
τthermal = Q/ω0 of the oscillators can be thought of as
the 1/e time required to heat the mechanical oscillator
from 0 K to the surrounding temperature T , i.e. the time
it takes to acquire an average of (1−1/e)nthermal phonons

where nthermal = (e
~ω0
kBT −1)−1 ≈ kBT

~ω0
energy quanta and

kB is the Boltzmann constant. Any quantum coherent
phenomena will therefore be restricted to times shorter
than τcoh = τthermal/nthermal ≈ ~Q/kBT , roughly the
time required to absorb one phonon at the rate of ther-
mal equilibration. At “low” temperatures (kBT ≤ ~ω0)
the equilibrated oscillator contains one phonon or less on
average and therefore τcoh = Q/ω0. The strong quantum
regime condition therefore translates to

Nswap ≈
gQ

π(nthermal + 1)ω0
� 1. (10)

At typical liquid helium temperatures of ∼ 4 K, kBT/~ =

2π×83 GHz, so for frequencies below 83 GHz we require

Nswap ≈
gQ

2π × 262 GHz
� 1. (11)

For dilution-refrigerator temperatures of ≤ 50 mK for
example, kBT/~ = 2π × 1 GHz, so for frequencies below
1 GHz we require

Nswap ≈
gQ

2π × 3.3 GHz
� 1. (12)

The inequalities in (10)-(12) introduce stringent con-
straints both on the coupling strength g and the Q-factors
involved. The need for high Q-factors accounts for the
reason why superconducting circuits, which often have
high Q-factors, naturally arise in the context of hybrid
systems, as will be seen in the next section.

If the two oscillators have different eigen-frequencies
(ω1 6= ω2) their weak off-resonant coupling could be
brought into a strong effective resonant coupling by mod-
ulating one or more of the system parameters by a frac-
tion 0 < η < 1, at the difference frequency, ω1 − ω2,
usually at the expense of a lower coupling rate. For ex-
ample, if the two mechanical oscillators in Fig. 3(a) have
different resonant frequencies, they can still be coupled
by modulating the spring constant k at the difference fre-
quency. The expression for the coupling rate in Eq. (6)
generalizes to g = ηk/(4

√
ω1ω2m1m2). Therefore, the

coupling strength is reduced by η/2, where η is typically
at the 0.05 to 0.2 range to avoid non-linear behavior of
the coupling spring. We note that parametric schemes
can have certain advantages. For example, by coupling a
low frequency resonator to a high frequency resonator, a
low number of phonon/photon occupation for the low fre-
quency resonator can be achieved which could be useful
for experiment initialization for example. This, however,
does not improve the coherence time of either system un-
less they are coupled to different thermal baths with dif-
ferent temperatures (e.g. see [37]). Since large coupling
rates compared to decoherence rates are critical, we con-
centrated on resonant oscillators in the above discussion
and in what follows. For details of parametric coupling
schemes in the context of hybrid systems involving ions
see [17–20].

IV. TRAPPED CHARGED PARTICLE
COUPLED TO AN ELECTRICAL RESONATOR

The first hybrid system we consider is that of a trapped
charged particle coupled to an electrical resonator, fol-
lowing [15] (see also [25]). Schematically, a point particle
of mass m and charge q is elastically bound by a trap,
here modeled by a spring (see Fig. 4), with a resonant
radial frequency ω0. If the particle is placed between
the two plates of a capacitor, any voltage difference V
between the plates would result in a force F = αqV/d
acting on it, where d is the distance between the plates
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FIG. 4. (a) A simplified picture of a trapped particle coupled
to an LC resonator. (b) The corresponding electrical BVD
equivalent circuit. The trap capacitance Ctrap in (b) is formed
by the two equivalent parallel plates, which are a distance d
from one another in (a).

and α is a unit-less geometric factor (α = 1 for a parallel
plate capacitor with infinite plate areas). The equivalent
electrical circuit (Eq. (4)) is composed of an effective in-
ductance Lp and capacitance Cp, where

Lp =
md2

α2q2
, Cp =

1

Lpω2
0

. (13)

Therefore, the hybrid system composed of a harmonically
confined charged particle and resonator is equivalent to a
lumped element LC circuit (Lp, Cp) shunted by the trap
capacitance Ctrap, and coupled to the electrical resonator,
as shown in Fig. 4(b). From Eq. (9) and assuming C �
Ctrap for maximal coupling, we get

g =
ω0

2

√
Cp

Ctrap
=
αq

2d

1√
mCtrap

. (14)

Notice that this is an upper bound on the coupling rate g.
In any realistic implementation, the two trap electrodes
need to be dc biased independently and therefore a finite
value of C should be taken into account.

This coupling can be increased by trapping more than
one charged particle. If Np particles are trapped and
form a Wigner crystal, their common mode motion can
be treated as that of a single particle with a charge of
Npq and a mass of Npm. From Eq. (14) it follows that

g ∝
√
Np. For very small traps however, Np will be

limited by the Coulomb repulsion between the charges.
Based on Eq. (10), table I summarizes the constraints

on the Q-factor of the electrical resonator required to
be in the strong-coupling quantum regime for various
charged particles. These should be compared to exper-
imentally attainable values for lumped-element super-
conducting resonators that are typically in the range of
Q ∼ 104 − 105 and in some cases up to 106, mostly lim-
ited by dielectric losses [14, 38]. Since the required Q is
greater than these values, achieving strong coupling of
an ion to a superconducting resonator at 4 K does not
seem feasible. In fact, the only two candidates from ta-
ble I that stand out in terms of reasonable Q-factors are

9Be+ (Q� 7×105 at 50 mK) and electrons (Q� 4×105

at 4 K and Q� 7×103 at 50 mK). For 9Be+ it would re-
quire incorporating atomic ion trapping technology into
a dilution refrigerator, the discussion of which is beyond
the scope of this paper and can be found elsewhere [20].
We discuss the prospects of electron coupling in the last
part of the paper. Our estimates are compatible with
previous results [18, 26].

m, q
d

x

V

Cp

Lp

Ctrap C L

(a)

(b)

FIG. 5. (a) A simplified picture of a trapped ion coupled to
a transmission line resonator. The ion is trapped close to the
voltage anti-node of a short circuited quarter wave resonator.
(b) The corresponding electrical equivalent circuit. The ion
is replaced with its equivalent series capacitance Cp and in-
ductance Lp while the resonator is replaced with its equiva-
lent lumped element representation formed by a parallel LC
resonator. Additional capacitance due to trap electrodes is
represented by Ctrap.

In the above discussion we considered only lumped-
element electrical resonators. A different approach would
be to use low frequency transmission line resonators.
Those can be simpler to fabricate and could potentially
have higher quality factors. As an example, Fig. 5(a)
shows a simple geometry where an ion is trapped close to
the voltage anti-node of a quarter-wave resonator. Near
resonance, the transmission line resonator is equivalent
to a parallel LC circuit (see Fig. 5(b)) with effective ca-
pacitance C = π/(4ω0Z0) and inductance L = 1/(ω2

0C)
where ω0 is the resonance frequency and Z0 the char-
acteristic impedance of the transmission line [39]. The
coupling strength is calculated, as before, using the elec-
trical equivalent circuit

g =
ω0

2

√
Cp

C + Ctrap
. (15)

The main concern is that the effective capacitance C
of these resonator modes is very large. For a typical



7

Particle Mass, m Trap frequency, ω0 Coupling strength, g Qmin(4K) Qmin(50 mK)

electron me 1.3 GHz 1.2 MHz 4× 105 7× 103

9Be+ 9×mp 10 MHz 9 kHz 56× 106 7× 105

24Mg+ 24×mp 6 MHz 6 kHz 92× 106 1.1× 106

40Ca+ 40×mp 4.7 MHz 4 kHz 119× 106 1.5× 106

88Sr+ 88×mp 3.2 MHz 3 kHz 176× 106 2× 106

TABLE I. Coupling strengths of different trapped charged particles coupled to an electrical resonator. The mass of the proton
and the electron are mp and me respectively. We assume the geometry in Fig. 4, with d = 50 µm, Ctrap = 50 fF and α = 1, and
use Eq. (14) to calculate g. The table states a lower bound for the required Q-factors, namely Q corresponding to Nswap = 1.
Actual Q-factors should be at least an order of a magnitude greater to comfortably satisfy inequality Eq. (10). These estimates
are consistent with [26] where 600 Hz coupling strength was estimated for 40Ca+ in a 1 MHz trap with 2.5 pF trap capacitance,
d = 50 µm and α = 1. Our trap capacitance estimate of Ctrap = 50 fF can only be achieved in small trap geometries through
careful design (see for example Sec. VI A). Moreover, additional capacitors required for the trap circuit operation may add
to the total capacitance resulting in a lower coupling strength (see Sec. VI E). The values for g here, therefore, should be
considered as an upper bound estimate.

Z0 = 50 ohms transmission line and ω0 = 2π × 10 MHz,
C ∼ 250 pF. The coupling strength g will therefore de-
grade by a factor of ∼ 70 as compared to the numbers in
table I, requiring, for example, a quality factor satisfying
Q � 4 × 109 for 9Be+ at 4 K. This number exceeds the
best quality factors for such resonators, having Q ∼ 107

at 10 MHz [40]. Moreover, our estimate for g is an up-
per bound since in a real geometry, the field lines at the
voltage anti-node of the resonator will differ from those
of an ideal parallel plate capacitor. For those reasons,
our analysis has focused on coupling the charged parti-
cle to a lumped-element electrical oscillator, where the
same resonant frequency can usually be achieved with
significantly less overall capacitance.

V. COUPLING TO MACROSCOPIC
MECHANICAL RESONATORS

To circumvent the limitations of attainable Q-factors of
superconducting devices, it has been suggested to try and
couple an ion directly to a high-Q macroscopic mechani-
cal object using electro-static coupling [15, 21, 23–25] or
piezoelectricity [15, 41].

A. Electrostatic coupling to a nano-mechanical
membrane

Commercial nano-mechanical membrane resonators
can have high quality factors, over 107 at 300 mK [42].
Recent advances in membrane fabrication [43–47] have
resulted in quality factors as high as 108, even at room
temperature. If such a membrane is metalized on one
side, and biased with a voltage U , it could electro-
statically couple to an ion trapped near its surface. To
estimate this coupling, we assume the simple geometries
shown in Fig. 6. In both cases, the coupling Hamiltonian

is

H = αqU
zizm
d20

, (16)

where zi, zm are the displacements of the ion z-motion
and the membrane, respectively, d0 is the distance be-
tween the membrane and the bottom electrode of the ion
trap and α is a geometric factor as in Sec. IV. For the
geometries considered here 0.5 ≤ α ≤ 1 and we assume
α = 1 to get an upper bound for g. As in Eq. (6), we can
derive the coupling strength

g =
αqU

2d20ω0

√
mionM

, (17)

where M is the membrane mode mass and ω0 its resonant
frequency. These masses are significantly larger than the
ion mass, thereby lowering the coupling strength, with a
mass ratio on the order of M/mion ∼ 1014 for 9Be+ . We
assume that d0 = 100 µm and the ion is trapped midway
between the membrane and the trap. For a SiN mem-
brane [43] with dimensions 500 µm× 500 µm, coupled to
a 9Be+ ion, we get a mode mass of M ∼ 2 × 10−11 Kg,
a resonant frequency ω ∼ 2π × 1 MHz, and a coupling
strength of g/2π ∼ 0.24 Hz at U = 1 V bias. Com-
bined with an assumed quality factor of 2 × 108 such a
device does not satisfy the strong quantum criteria at
T = 50 mK since gQ/2π ∼ 0.048 GHz (see Eq. (12)).
For a suspended trampoline membrane [45, 46] with di-
mensions 100 µm × 100 µm, coupled to a 9Be+ ion, we
get a mode mass of M ∼ 10−12 Kg, a resonant fre-
quency of ω ∼ 2π × 140 kHz, and a coupling strength of
g/2π ∼ 12 Hz at U = 1 V leading to gQ/2π ∼ 1.2 GHz.
The latter nearly enters the strong quantum regime for
T = 50 mK. However, taking into account ion heat-
ing rates still makes this scheme unfavorable, because
ion motional heating rate and motional dephasing would
typically exceed g.

The coupling can be made stronger by increasing the
bias voltage U at the expense of changing the trapping
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potential, the ion position, and possibly the trapping sta-
bility. Even with the U = 1 V assumed above, the equi-
librium position of, say a 9Be+ ion in a 10 MHz har-
monic trap, would move by ∼ 7 µm. This might be
mitigated by adding additional electrodes that compen-
sate for the static voltage bias effect of the membrane
(e.g. see [25]). Those electrodes, however, might shield
some of the trapping field and need to be taken into ac-
count when estimating the ion trapping potential. In
addition, a more careful estimation of g would take the
membrane mode shape and finite size into account. Fi-
nally, adding an electrode to a membrane might decrease
its Q-factor. Previous experiments [48] with lower qual-
ity factors (Q ∼ 106) showed that metalization of the
membrane was not the limiting factor. Whether or not
this is also true for the case of Q ∼ 108 would need to be
tested experimentally.

q,mion

U

d0 q,mion

U

(a) (b)

FIG. 6. Electrostatic coupling of a trapped ion (charge q and
mass mion) to a nearby rectangular nano-mechanical mem-
brane biased by a voltage U . The ion is assumed to be trapped
at a height d0/2 above a surface trap, that is dc grounded with
respect to the membrane, suspended above the ion (for sim-
plicity the trap rf electrodes are omitted). (a) A membrane
(blue) is clamped at its rim, allowing for a sinusoidal funda-
mental mode as in [43]. (b) A membrane (blue) is attached
by thin wires (red), allowing for a center of mass fundamental
mode as in [45, 46].

B. Piezoelectric coupling to an acoustic resonator

A piezoelectric resonator is an acoustic resonator made
from piezo-electric materials and can therefore be excited
using external electric fields [49]. Quartz resonators have
been optimized for stable frequency operation and are
therefore natural candidates for ion coupling, despite be-
ing relatively massive. A different plausible candidate is
GaN-nanobeams that have low masses.

To estimate the coupling strength, we start by consid-
ering the geometry shown in Fig. 7. An ion is trapped
at a distance h above a GaN nano-beam. Such an ar-
rangement can be achieved, for example, by bringing
a surface ion trap [50, 51] or a stylus ion trap [52, 53]
close to the beam. The main challenge would seem to
be to compensate for electric fields from stray charges on
the dielectric beam due to its close proximity. We as-
sume throughout that those are compensated for. When

such a beam undergoes small oscillations, the position
of each point in the beam can be written as ~r + ~u(~r, t)
where ~r = (r1, r2, r3) is the equilibrium position and
~u = (u1, u2, u3) is the time-dependent displacement from
equilibrium. In a flexure acoustic mode ~u is along the r̂3
direction and its spatial dependence is restricted to the
first component of ~r (see Fig. 7). Moreover, the depen-
dence on time and spatial coordinates can be separated,
i.e. ~u(r1, t) = a(t)~s(r1), where ~s(r1) = (0, 0, s3(r1)) is the
mode shape (unit-less) and a(t) is its amplitude. The
acoustic oscillation can therefore be reduced to a one-
dimensional harmonic oscillator a(t) with frequency ω0,
effective mode-mass M and effective spring constant K
as

Mä = −Ka, (18a)

M = ρ

∫
V

d3r |s|2 , (18b)

K = E

∫
V

d3r

∣∣∣∣ dsdr1
∣∣∣∣2 , (18c)

where ρ is the material density, V is the volume of the
beam, and E is its Young’s modulus.

r̂1

r̂3

l

q,m

h

r1,opt

~u(r1, t) displacement

FIG. 7. Piezo coupling between an ion of mass m and charge
q to a nano-beam. The ion is held at a height h above a
beam of length l by a Paul trap (not shown). The geometry
shown is not to scale since h � l (see Sec. V C). Harmonic
motion about the trap center generates an alternating electric
field which drives the mechanical flexure mode of the beam
(light blue) via the piezoelectric effect. The ion position r1,opt
maximizes the coupling and is close to but smaller than the
beam length l, due to edge effects.

The harmonic motion of the ion can couple to the beam
acoustic mode via piezoelectricity. A simplified model of
the beam piezoelectric material is that of an ionic lattice.
When the beam is at rest, the electric fields generated by
the positive and negative charges inside it ideally cancel
each other. If, however the ions are displaced from equi-
librium non-uniformly[54] the beam will exhibit a bulk
polarization P that can interact with the electric field of
the ion. Such a polarization therefore, depends linearly
on the strain tensor composed of all the partial deriva-
tives of the displacement components ∂iuj ≡ ∂uj/∂ri
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for i, j ∈ {1, 2, 3}. Since the strain tensor is symmet-

ric, this linear relation can be written as ~P = eu′ where
e is the 3 × 6 matrix of piezo coefficients (in units of
Cm−2) and u′ represents strain in Voigt notation u′ =
(∂1u1, ∂2u2, ∂3u3, ∂2u3 + ∂3u2, ∂3u1 + ∂1u3, ∂1u2 + ∂2u1).
This bulk polarization will in turn be influenced by the

ion electric field ~Eion. The coupling constant between
the ion motion along the i-th axis and the piezo-electric
beam is

gi =

∫
V
d3r∂i ~Eiones

′

2ω0

√
Mmion

, i = 1, 2, 3. (19)

Here we used the assumption that ~u = a(t)~s(r1) and s′

is defined in the same manner as u′.
The expression in Eq. (19) is general and not particu-

lar to any specific beam geometry. While the denomina-
tor is the standard term we encountered for two coupled
mechanical oscillators (see Eq. (6)), the numerator is a
rather involved overlap integral. In order to appreciate
its complexity, we write its integrand in explicit matrix
form, as

∂i (Eion,1,Eion,2,Eion,3 )
( e1,1 ... e1,6

...
e3,1 ... e3,6

)
∂1s1
∂2s2
∂3s3

∂2s3+∂3s2
∂3s1+∂1s3
∂1s2+∂2s1

 . (20)

This integrand can be understood as a dipole-dipole en-
ergy density. To see this, notice that since the field of the

ion is that of a monopole, its spatial derivative ∂i ~Eion is
equivalent to a dipole field aligned along the i-th axis,
î. We may therefore rewrite Eq. (19)-(20) in terms of an
integral over an effective dipole-dipole interaction, as

gi =
1

4π~ε̄

∫
V

d3r
3(~pion · r̂)(~P · r̂)− ~pion · ~P

r3
, (21)

where

~pion = q
√

~
2mionω0

î, (22a)

~P = es′
√

~
2Mω0

, (22b)

and we use ε̄ = (ε0 + εdielectric)/2 since the field of the ion
inside the piezoelectric material can be approximated as
that of an ion in vacuum, with the dielectric constant of
vacuum ε0 replaced by ε̄, the average of the vacuum and
dielectric constants [55].

A priori, the overlap integral in the numerator of
Eq. (19) should not be expected to be large. The piezo-
electric coefficient matrix e is a material property, while
the mode shape ~s is a result of both geometry and ma-
terial constraints. Those impose a polarization den-

sity ~P which need not necessarily align with ~pion. We
next perform a calculation for two specific piezo-electric
resonators in order to demonstrate this difficulty. We
use Eq. (19) and Eq. (21) interchangeably.

C. Ion coupled to a GaN nanobeam

Figure 8 shows an image of Gallium Nitride (GaN)
nano-beams. A single beam, clamped at one end, can res-
onate in a flexure mode [56] with a resonance frequency

of ω0 =
√
βa2E/ρl4. Here, a is the cross-section radius,

l is the beam length, E is its Young’s modulus, ρ is its
density, and β is a numerical factor (3.09 for a circular
cross section, 2.57 for a hexagonal cross-section[57]).

100 nm

1 µm

FIG. 8. SEM microscopy of GaN nanobeams with hexagonal
cross section. Gallium nitride nano-beams photos courtesy of
K. Bertness at NIST, Boulder, CO 80305, USA.

We can estimate an upper limit on the coupling rate
based on Eq. (19) and using the simplified geometry
in Fig. 7:

g =
qẽA

4πε̄h3ω0

√
Mmion

f(h/l), (23)

where f is a unitless geometric factor depending on the
h/l aspect ratio, A is the cross section area, ẽ is the
largest element of the 3× 6 GaN piezo-coefficient matrix
and ε̄ is the average of its dielectric constant and that of
vacuum. The ion position along the beam r1,opt is chosen
so as to maximize the coupling. It turns out r1,opt ∼ 0.6 l
due to edge effects.

Figure (9) shows the coupling coefficient as a function
of ion height h. At an experimentally attainable height of
h = 50 µm, beam length l = 15 µm and frequency ω0 =
2π × 868 kHz, the coupling strength is g = 2π × 235 Hz.
Even for a relatively high quality factor beam of Q = 6×
104 [58], the product gQ/2π = 1.4× 107 Hz whereas the
strong quantum regime requires gQ/2π � 2.6× 1011 Hz
at 4 K and gQ/2π � 3.3× 109 Hz at 50 mK (Eq. (10)).

Based on Eq. (23), the coupling to materials other
than GaN can be estimated. Another notable mate-
rial is Lithium Niobate where the strongest of the piezo-
electric coefficients is an order of a magnitude larger than
for GaN, with the other parameters reasonably close to
GaN [59]. That, however, would still have a gQ factor
which is below our criteria (Nswap ∼ 10−4 at 4 K), and
even that estimate assumes a high-Q Lithium Niobate
resonator, which has yet to be demonstrated. Another
approach would be to use beams with higher quality fac-
tors that are close to 106, for example silicon nitride [60]
doubly clamped beams or other resonators (see tables
1 and 2 in [61]). However, since these resonators are
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FIG. 9. Ion to GaN nanobeam piezoelectric coupling strength
g vs. ion height h above the beam. The beam cross section is
as in Fig. 8. The geometry is as in Fig. 7 with l = 15 µm, E =
3× 1011 kg m−1s−2, ρ = 6.15× 104 kg m−3, ẽ = 0.375 Cm−2

(the strongest piezo coefficient of GaN), ε̄ = 5ε0, ε0 being the
vacuum permittivity. The beam flexure mode frequency is
868 kHz.

not made from piezoelectric material, it would require
incorporating piezoelectric material into the beam while
maintaining the high quality factors.

D. Ion coupled to a quartz resonator

Recent work with quartz bulk acoustic resonators at
both 4 K and tens of millikelvin temperatures demon-
strated quality factors of up to 7.8×109 and might there-
fore be useful as part of a hybrid quantum system [62–66].
Conveniently, the resonance frequencies of these devices
are compatible with those of trapped ions, i.e. in the 5
to 15 MHz range.

A BVA resonator (Bôıtier á Vieillissement Amélioré,
Enclosure with Improved Aging), is a quartz resonator
designed for high-Q clock oscillators [67]. The resonator
described here is formed from a disk of L = 6.5 mm
radius and t = 1 mm thickness mechanically clamped at
its rim (see Fig. 10). The mechanical motion of the disk
is actuated by placing the disk between the two plates
of a capacitor. The origin of the high Q-factors becomes
apparent when considering the mechanical displacement
profiles of one family of its acoustic modes [68]:

~s(x, y, z) = e−(x
2+z2)/2σ2

sin(kny)ŝ. (24)

Here an acoustic standing wave is formed along the unit
vector ŝ = (0.226, 0.968, 0.111) which is approximately
along the ŷ axis (see Fig. 11). The mode k-vector sat-
isfies knt = nπ, n = 3, 5, . . . and has a radial Gaussian
profile, with σ ∼ 1 mm < L. This is very similar to
the standing wave formed in a Fabry-Pérot optical cav-
ity. The acoustic mode is therefore well protected from
dissipation through contacts at the rim, where the disk
is clamped. Other acoustic mode families are not con-
sidered here since they exhibit lower quality factors [64].

t

L

x

y

(a)

(b)

FIG. 10. High-Q quartz bulk acoustic resonator. (a) Photo
of a resonator. Device courtesy of Serge Galliou, FEMTO-ST
institute, 25000 Besançon, France. (b) Schematic cross sec-
tion. Quartz resonator of thickness t is shown by the light
blue fill. Quartz holders (dark blue fill) clamp the resonator
at its rim. The resonator is sandwiched between two metal-
lic electrodes forming the actuating capacitor (yellow fill).
Thickness of the electrodes as well as the gap between the
quartz resonator and the quartz holders are exaggerated for
clarity. The modes with highest Q-factor can be described by
standing waves approximately along the y axis, with resonant
frequencies of fn ≈ n vs

2t
= n×3.38 MHz where vs = 6757 m/s

is the speed of sound and n is the mode number.

This is also the reason why we do not consider the fun-
damental n = 1 mode of Eq. (24).

An ion can be coupled to the quartz resonator by trap-
ping it a distance h = 50 µm from the surface, as shown
in Fig. 11. Calculating the coupling strength can be
accomplished using Eq. (19) and considering the acous-
tic mode shape (see Eq. (24)). An upper bound, which
does not take into account the relative angle between the
derivative of the field of the ion and the polarization of
the bulk, yields g ∼ 2π×1 kHz. This is calculated by ap-
plying the Cauchy-Schwartz inequality to the integrand
in Eq. (20) of the overlap integral in Eq. (19). Combined
with the high quality factors involved (Q ∼ 109) this
yields gQ/2π ∼ 1012 Hz.

This bound, however, cannot be saturated when us-
ing the actual integrand in Eq. (20). To see this, re-
call Eq. (21) where g is expressed as an integral over the
dipole-dipole interaction between the dipole defined by
the ion motion, ~pion, and the piezo-electrically induced
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FIG. 11. Basic geometry for ion-to-quartz resonator coupling.
An ion of mass mion and charge q is hovering at a distance
h = 50 µm (exaggerated) above a disk of radius L = 6.5 mm
and thickness t = 1 mm. The Gaussian radial profile of the
acoustic mode is shown in gray. The ion motion generates an
oscillating electric field that actuates the acoustic modes via
piezoelectricity

polarization density ~P . Figure (12) illustrates the struc-

ture of ~P . Naturally its magnitude follows that of the
acoustic mode, having a Gaussian radial profile and form-
ing a standing wave along ŷ-axis. The polarization direc-
tion of each standing-wave anti-node is approximately
constant and opposite to that of its neighboring anti-
nodes. Based on this structure, we can refine our upper
bound for g using

g ≤
2 |~pion|

∣∣∣~Pmax

∣∣∣
4π~ε̄

∫
V

d3r

r3
≈ 3.2

|~pion|
∣∣∣~Pmax

∣∣∣
4π~ε̄

, (25)

where we utilized the fact that the interaction energy
between two dipoles obtains a maximum when they are
aligned with the vector ~r connecting them. For the mode
configuration in Fig. 12, we get g ≤ 2π × 1.7 Hz. This
bound is confirmed in appendix A, where we numerically
calculate the coupling strengths for various ion motion
axes according to Eq. (19) and get g/2π in the range of
0.49 to 1.46 Hz.

To increase the coupling strength, we could reshape
the dipole field associated with the trapped ion, to better
match the acoustic mode polarization density. A simple
and practical way to do this is to use a capacitor to medi-
ate the electric fields between the ion and the quartz res-
onator (see [15], appendix C), as in Fig. 13. Here, the ion
motion generates image currents on the trap electrodes
that generate a time-varying, but uniform, electric field
near the center of the crystal.

The coupling g can be calculated directly as done
in A 3. However, since the BVD equivalent capaci-
tance Cquartz and inductance Lquartz of the quartz res-
onator have been measured for various acoustic modes,
we present here a simpler analysis based on the BVD
equivalent circuit of both the ion and the quartz res-
onator, shown in Fig. 13(b). We rewrite Eq. (9) for this
case, as

g =
ω0

2

√
CionCquartz

Ctrap + Cshunt
, (26)

where we utilized the fact that the trap and shunt capac-
itance are much larger than the mechanical equivalent
capacitances Cion and Cquartz. In fact, Cion < 0.2 aF
(see Eq. (13)) and typical values for Cquartz are in the
1 to 200 aF range [69, 70]. Therefore, it is impera-
tive that the sum of the trap and shunt capacitance
Ctotal ≡ Ctrap + Cshunt are kept to a minimum. On the
other hand, the quartz capacitor must be large enough to
have considerable overlap with the quartz acoustic mode.
Because the mode radius is on the order of σ ∼ 1 mm,
the capacitor plate area should have a comparable ra-
dius, leading to Cshunt ∼ 0.13 pF, given the dielectric
constant of these crystals ε = 4× 10−11 Fm−1. The trap
capacitance, therefore, should be comparable or lower
than that value. Fig. 13c shows an ion trap design where
these low capacitances can be realized. The crux of the
design is that instead of forming a trap capacitor sepa-
rate from the quartz resonator capacitor and connecting
them with wires, the top capacitor plate of the BVA also
serves as the trap bottom dc plate. This arrangement is
therefore able to minimize the effect of additional stray
capacitances. Using an electrostatic simulation, we esti-
mate Ctotal = 0.18 pF.

The capacitor reshaping of the ion electric field in-
deed improves the coupling to 10 to 20 Hz for known
parameters of Cquartz. With N ions we get gQ/2π ∼√
N × 1010 Hz, requiring a Wigner crystal of more than

100 ions in order to satisfy the strong coupling regime
constraint at 4 K. Maintaining such a crystal in the trap
might not be trivial due to the anharmonicities and finite
size of the trap. In A, we show that the coupling depen-
dence on different device parameters and mode overtone
number does not allow for substantial increases in g. It
has been shown that high overtone modes, e.g. n = 65,
can exhibit quality factors of almost Q ∼ 1010 [64]. That
high-Q is counteracted by the n−0.5 dependence of g in
the mode number (see appendix A).

Nonetheless, it is worth noting the outstanding prop-
erties of such a device. The mechanical mode, which is
resonantly coupled to the ion motion, can potentially be
cooled to near its ground state by laser cooling the ion.
Since laser cooling can be done much faster than the
coupling rate, the quartz cooling rate is close to 2g/2π.
Thermal heating rate is (1− e−1)nthermalτ

−1
thermal ≈ (1−

e−1)kBT/(~Q) (see Sec. III). The steady state number
of quanta of the quartz acoustic mode would therefore be

n̄ ≈ π(1− e−1)
kBT

~gQ
. (27)

If operated at 4 K, the 5 to 15 MHz mechanical modes
of the quartz resonator could be cooled to n̄ ∼ 16 quanta
by laser cooling the coupled ion. Starting at dilution-
refrigerator temperatures (< 50 mK) would result in
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FIG. 12. Piezo-electrically induced polarization density ~P for third overtone acoustic mode (Eq. (24) with n = 3). Magnitude
(relative) is shown by the color plot. Direction is shown by the unit-vector arrows (arrow brightness indicate field strength).
Inset: mode overlap between the electric-dipole field due to a fixed dipole ~pion at the ion position, which is associated with its
motion along ŷ, and the quartz resonator polarization density ~P . The ion is assumed to be trapped 50 µm above the resonator
surface. The integral over the dipole-dipole interaction between ~pion and ~P (Eq. (21)) yields a coupling strength g/2π ≤ 1 Hz
(see appendix A).

n̄ ∼ 0.2 quanta. The mechanical coherence times τcoh =
~Q/kBT could reach ∼ 2 ms in a 4 K environment and
up to 150 ms in a 50 mK environment. Due to its very
large mode mass (1 to 10 mg), such a device, if placed
in a superposition state of motion, could be used to
restrict certain decoherence theories of massive objects
(see Sec. VII).

VI. PRACTICAL CONSIDERATIONS FOR
COUPLING AN ELECTRON TO A

SUPERCONDUCTING RESONATOR

In Sec. IV, we concluded that based on its small mass,
the electron is potentially the most favorable candidate
for a strongly coupled hybrid system composed of a
charged particle and a superconducting resonator. Cou-
pling strengths on the order of 0.1 to 1 MHz can be ex-
pected for an electron trapped 50 to 100 µm away from
the trap electrodes, requiring a very moderate quality
factor of Q ≥ 104 for the electrical resonator, at dilution-
refrigerator temperatures. To estimate electron motional
decoherence, we take the measured heating rates for
trapped ions and extrapolate them to an electron with
a secular oscillation frequency of 1 GHz. We find a heat-
ing rate of ṅ ∼ 100 quanta · s−1, well below the coupling
rate (see appendix B).

An electron-based hybrid system might enable a fast
and coherent quantum information processing technol-
ogy. A platform of trapped electrons could be realized
where the electron spin serves as the quantum bit (qubit).
Unitary single and two-qubit gates can be implemented
using rf-gradients [71, 72]. In the presence of magnetic
gradients, the electron spin couples to its motion, which

in turn is coupled to the underlying LC resonator. Spin
initialization and readout could therefore be implemented
with the superconducting resonator acting both as a
reservoir and as an interface for readout circuitry (e.g.
see [73]). The proposed architecture may be more scal-
able compared to trapped ion QIP since the interconnect-
ing elements are chip-based, requiring only rf/microwave
control and no optical elements or laser beams. The ab-
sence of optical design constraints could allow for smaller
traps, which translates into stronger coupling between
electrons and superconducting elements, enabling faster
two-qubit gates. Moreover, recent advances in QIP with
trapped ions have reached gate speeds that are only an
order of magnitude slower than the trap frequency [9]. If
that scaling holds for electrons, that would correspond to
tens of nanosecond gate times, making them on-par with
superconducting qubit gate times (see for example [74]).
Qubit (i.e. spin) coherence could extend to seconds [75].
Thereofore, an electron-based QIP platform could allow
for a coherence time to gate time ratio of ≥ 108, far
exceeding any other QIP technology. Moreover, if the
motional heating rates estimated in appendix B are ex-
perimentally verified, such fast gates would correspond to
a Bell-state generation fidelity error of ∼ 10−6 (see [76]).

The hybrid nature of such a system might offer an addi-
tional way, albeit slower, to entangle electrons, using the
coupling to the underlying circuitry. This would enrich
the QIP toolbox available for electron spins, for exam-
ple, by entangling electrons in different traps that are far
apart. Here, using magnetic field gradients, the spin of
the electron can be entangled with its motion. Since the
motion of each electron is strongly coupled (g/2π ∼ 0.1
to 1 MHz) to a corresponding LC resonator, entangle-
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FIG. 13. Coupling an ion to a quartz resonator mediated
by a shunt capacitor. (a) The ion is trapped between two
endcap electrodes forming a capacitor between FL and DC1.
Ion motion generates image currents in the wires connecting
the trap endcap DC1 and the quartz shunt capacitor (formed
between FL and DC2), that in turn generate an oscillating
electric field at the quartz resonator, actuating its acoustic
modes through piezoelectricity (b) BVD equivalent circuit of
the two coupled systems. The capacitance CFL is the total
capacitance between FL and ground. (c) A Paul trap design
minimizing CFL for maximal coupling of a 9Be+ ion to the
quartz resonator. The trap is formed from a circular inner
dc electrode (DC 1), surrounded by an outer cylindrical shell
rf electrode (RF). Two disks of 1 mm radius placed at the
top (FL) and bottom (DC 2) of the quartz resonator form
the quartz shunt capacitance. Ideally, the top plate should be
kept floating (FL) or connected to ground by a large (> GΩ)
resistor. The trap drive circuity that connects to the RF
electrode and the RF ground connection between DC 1 and
DC 2 is omitted.

ment can be achieved by electrical coupling (either in-
ductive or capacitive) of the two LC circuits. Moreover,
the inclusion of Josephson-junction based devices could
play an important role within the rf circuitry, allowing

for greater flexibility in addressing and connecting elec-
trons, e.g. by enabling tunable and/or parameteric cou-
pling [77, 78] between electrons. In addition, the electron
could couple to an on-chip Josephson-junction (JJ) based
qubit, a non-linear resource with a high speed of opera-
tion. For example, swapping information to a JJ qubit
could enable high fidelity state readout (e.g. see [79]).

The idea of using trapped electrons as part of a hy-
brid quantum system was first suggested for Penning
traps [15, 29]. To that end, novel planar Penning traps
have been developed and demonstrated [80, 81]. More-
over, electrons were trapped with cryogenic planar Pen-
ning traps [82]. Although single electrons have already
been detected in three-dimensional Penning traps by
driving their motion [16, 83], the anharmonicity of planar
traps makes single electron detection challenging. An op-
timization of the design of the planar trap electrodes [84]
led to the detection of one or two electrons [85]. The
outlook for planar Penning traps is discussed elsewhere
[85–87].

Recently, an ensemble of ∼ 105 electrons trapped on
superfluid Helium with normal mode frequencies in the
tens of gigahertz range, were non-resonantly coupled to
a superconducting resonator at ∼ 5 GHz [88]. By mea-
suring dispersive shifts in the resonator frequency in the
presence of the electrons, the authors could deduce a cou-
pling strength of ∼ 1 MHz per electron. Further studies
of that technology could determine if the single electron
regime can be achieved, establishing a new and interest-
ing route for quantum information processing with elec-
trons, as proposed in [30, 89–92].

The potential advantages and prospects of using rf
Paul traps for electron-based quantum information pro-
cessing were suggested and analyzed [18]. Clearly, since
a Paul trap does not involve the strong magnetic fields
required in a Penning trap, it naturally avoids exceed-
ing the typical critical magnetic fields of superconduct-
ing circuitry. Strontium ions, for example, have been
trapped with a superconducting Niobium planar chip
trap [93]. Two-dimensional trapping of electrons with
rf fields was recently demonstrated, resulting in guiding
electrons along a given trajectory [94]. To date, how-
ever, electrons have been almost exclusively trapped in
three-dimensional Penning traps, with the exception of
[95]. There, a macroscopic combined Penning and Paul
trap was used to simultaneously trap tens of ions and
electrons.

In [18], a ring Paul trap design for electrons is ana-
lyzed, where a parametric coupling scheme is suggested,
based on geometric nonlinearities of the potential. The
coupling rates and decoherence rates reported here are
consistent with those results. The trap volume used
in [18] was relatively small [5 µm × π × (15 µm)2] with
a trap depth of 1 meV, placing the electron 5 µm away
from the nearest electrode, rendering a strong coupling
of g = 2π × 1.1 MHz.

Here, we analyze the experimental conditions of two
trap geometries, aimed at achieving the strong coupling
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regime, for a larger trapping volume and a deeper trap.
As will be apparent in what follows, the design of these
traps involves a delicate interplay between the trap sta-
bility and depth, its ability to maintain superconduc-
tivity, the energy range of the electron source, and the
strong coupling requirement. In broad strokes, it is eas-
ier to build a large trap that is stable and deep so that
currently available electron sources could be used. Large
trap dimensions, however, would prevent satisfying the
coupling criteria in Eq. (10). On the other hand, a small
trap is optimal for strong coupling, but it can only sup-
port a shallow trapping potential and therefore requires
a low energy electron source to ensure trapping. Because
these problems are intertwined, our presentation includes
a discussion of each of these aspects, as well as their com-
patibility.

A. Stable trapping of electrons

A Paul trap [1] is formed when a time-varying voltage
Vrf cos(Ωrft) is applied to an electrode arrangement that
gives a quadratic spatial dependence for the electric po-
tential in the neighborhood of its electric field null point.
For simplicity, we assume cylindrical symmetry and write
the time varying potential in terms of the standard (ρ, z)
cylindrical coordinates as

φ = qVrf cos(Ωrft)Φ(ρ, z), (28)

Φ(ρ, z) = β
ρ2 − 2z2

d2
, for ρ, z � d,

where q is the electron charge, β is a unit-less geome-
try prefactor (β = 1 for an ideal quadrupole), and d is
the trap electrodes length scale (e.g. distance from the
trap center to the nearest point of an electrode surface).
The time varying field generates a confining potential
provided that the Mathieu criterion for stability is satis-
fied [1]:

qmathieu ≡
8βqVrf
md2Ω2

rf

< 1. (29)

The confinement can then be described, to lowest order,
by a time-independent pseudo-potential:

φpseudo =
q2V 2

rf

4mΩ2
rf

|∇Φ|2 , (30)

where m is the electron mass. It follows that the
pseudo-potential trap depth can be expressed as D =
qVrfqmathieu/ζ, where ζ is a unit-less factor dependent
only on the trap geometry. For a perfect quadrupole
trap D = qVrfqmathieu/6, whereas, for example, for
a planar “five-wire” surface electrode trap [96], D =
qVrfqmathieu/404.

The first constraint we consider is trap stability
(Eq. (29)). Since the electron mass is small compared

to ions, either the trap voltage should be lowered or the
trap scale d and/or frequency Ωrf should be increased, as
compared to ion traps, to maintain stability. Lowering
the voltage would reduce the trap depth and increasing d
would diminish the coupling strength. Therefore, it ap-
pears to be advantageous to increase the trap frequency
to the gigahertz regime.

The second parameter we consider is trap depth. Nat-
urally, it is easier to trap electrons in a deeper trap. For
that purpose, increasing Vrf is beneficial. Other con-
straints, namely the need to maintain superconductivity
in the trap electrodes and circuitry, limit the maximal rf
voltage to a few tens of volts (see section Sec. VI B). Thus
far, the shallowest Penning trap that was able to main-
tain trapped electrons, had a trap depth of D ∼ 1 eV,
the electrons being loaded first into a 5 eV deep trap
whose voltages were subsequently lowered to form the
1 eV trap [85]. We therefore will require the trap depth
to be at least D ∼ 1 eV.

Figure 14 shows two different three-dimensional ge-
ometries of traps satisfying the above constraints. Ta-
ble II summarizes the resulting trap parameters. Figure
14(a) describes a three-dimensional configuration of elec-
trodes similar to [97]. Here, the trap endcap to endcap
distance is set to d = 100 µm in order to yield reasonable
coupling, while keeping a minimum distance of 50 µm
between the ion and the nearest electrode to avoid large
heating rates. The coupling also benefits from having
no nearby dielectrics thereby minimizing the trap ca-
pacitance. The challenge in constructing such a trap,
however, is the tolerance required for holding and align-
ing the electrodes. One way to solve this is shown in
Fig. 14(b) where a trap is constructed from stacked chips,
with lithographically patterned metal electrodes, pressed
and aligned together [98, 99]. Because convenient wafer
thickness is ≥ 100 µm, d = 200 µm and the trap ca-
pacitance is increased (due to the additional dielectrics),
lowering the coupling rates.

B. Maintaining superconductivity

An immediate concern with the above designs is that
the relatively high rf currents involved will generate dis-
sipation and magnetic fields that could potentially lead
to breakdown of the superconductivity in the trap elec-
trodes. Usually, the electrodes of Paul traps form part
of the capacitance C of a parallel rf LC resonator (e.g.
in Fig. 17, it would be the total capacitance between
the two leads of Lrf). We can estimate the on-resonance
peak current Imax from the rf voltage amplitude Vrf using
1
2LI

2
max = 1

2CV
2
rf . We find Imax in the range of 200 to

400 mA for the conditions described below.

For simplicity, we restrict our analysis to thin film
wires on chip, where an analytic treatment is available.
The critical current Ic, above which a thin film wire is
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FIG. 14. Two Paul trap designs for electron trapping. (a) An
rf ring with 300 µm inner diameter and 500 µm outer diameter
forms a quadrupole field at its center with respect to two dc
endcaps. The flat-ended endcaps have a diameter of 200 µm
and are 100 µm apart. (b) A two-dimensional cut through a
stacked chip version of a. Blue region is a silicon substrate.
The electron is trapped at the center of the middle rf ring
electrode. The upper and lower endcap disks are 200 µm
apart. The center ring inner diameter is 240 µm and the
silicon-free region diameter is 500 µm. table II summarizes
the resulting trap parameters.

no longer superconducting, is

Ic =
Λ
√
wb

0.74
Jc, (31)

where b is the film thickness, w is its width, Λ is the Lon-
don penetration depth of the superconducting material,
and Jc is its critical current density [100].

Of the two commonly used materials for superconduct-
ing circuits, namely aluminum (Al) and niobium (Nb),
aluminum is disadvantageous due to its lower values for
Jc and Λ and, with a critical temperature of Tc = 1.2 K, it
requires operation at dilution refrigerator temperatures.
For example, a 100 nm × 10 µm aluminum wire has a
critical current of Ic = 11.3 mA. A niobium wire with
the same dimensions would have a critical current of
Ic = 221 mA and would be fairly strongly superconduct-
ing even at 4 K (Tc = 9.2 K).

To maintain superconductivity in the chip-based de-
sign in Fig. 14(b) with niobium films, we require thick-
nesses and widths that satisfy bw > 16µm2. Here, the
features of the narrowest electrode or wire would serve
as the bottleneck determining the critical current for the
entire circuit. For example, a 50 µm × 500 nm film cross
section would be convenient to fabricate and could pro-
vide an Ic = 1.105 A. These numbers are compatible
with those measured in a superconducting niobium trap
for strontium ions [93].

Equation (31) actually constrains the dc critical cur-
rent through a wire, however, the rf critical current for

Parameter Fig. 14a Fig. 14b

Vrf 50 V 50 V

Irf 42 mA 243 mA

Ωrf/2π 9 GHz 7.15 GHz

ωx,y/2π 0.6 GHz 0.75 GHz

ωz/2π 1.2 GHz 1.5 GHz

D 1 eV 0.9 eV

qmathieu 0.4 0.6

Ctrap 15 fF 108 fF

d 100 µm 200 µm

g 2π × 1.2 MHz 2π × 203 kHz

TABLE II. Trap parameters for the designs shown in Fig. 14.
The pseudo-potential secular frequencies are ωx,y,z where x, y
are in the plane of the rf ring and z is perpendicular to it,
D is the trap depth, Ctrap [see Eq. (14)] is the inherent total
capacitance between the dc endcaps and g is the electron-
superconducting resonator coupling rate [see Eq. (14) as well
as Fig. 17 for circuit schematics]. With the above choices
of d, the geometric parameter in Eq. (14) is α ∼ 1 for both
traps. Parameters are estimated using an electrostatic simu-
lation (this is a reasonable approximation since in both traps
the rf wavelength is > 10 cm, i.e much larger than trap di-
mensions).The maximal rf current Irf is estimated based on
Irf = ΩrfCtrapVrf . Additional capacitance would result in
higher values for the rf-current.

a superconducting resonator has similar values [101], at
least for the case of a half-wavelength stripline resonator.
Whether or not a similar result holds for a lumped ele-
ment resonator, where the current distribution is signifi-
cantly different, has yet to be demonstrated.

C. Low energy electron source

In principle, one method to load electrons into the trap
would be to target the trapping volume with slow elec-
trons and capture them by turning the trap on when
they reach the trap center. In this case, the challenge lies
in the fast electronics required. A slow electron source
could be, for example, an ultra-cold GaAs photocath-
ode [102, 103], which has demonstrated beams with less
than 1 eV average energy and less than 50 meV energy
spread [104]. Such slow 0.1 to 1 eV electrons traversing
a trap with a typical length of 100 to 200 µm, requires
turning the trap on faster than 0.1 to 1 ns. In Sec. VI D,
however, we show that the trap resonator quality factor
should exceed 104 in order to comply with the typical
cooling power of a cryogenic refrigerator. This would re-
alistically limit the switching time of such a trap to the
microsecond regime. We could mitigate this problem by
constructing even slower electron sources. For example,
using electron tunneling from bound states on the surface
of liquid helium [105] could potentially generate < 1 meV
electrons, thereby relaxing the trap switching time con-
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straint. The analysis of such a source is beyond the scope
of this paper.

A second type of electron source, which is commonly
used in Penning traps, is based on secondary elec-
trons [106, 107]. For example, in [85], a sharp tungsten
tip was used to field-emit high energy (≥ 200 eV) elec-
trons that collided with the trap surfaces, liberating gas
molecules. During this process, some of these molecules
reach the trapping region where they have a probability
of being ionized by the incoming fast electrons. The rel-
atively slow “secondary” electrons generated in the ion-
ization process can then be trapped.

This approach seems to be effective with deep (≥ 5 eV)
and large (d = 0.1 to 2 cm) traps [85]. Trap depth
Udepth is defined as the maximum minus the minimum of
the trap pseudo-potential within the trap volume. It is
not obvious that this technique would be efficient enough
for a Udepth = 1 eV trap with a typical length scale of
100 µm. As an alternative, photo-ionization of a cold
atomic gas could be more compatible with a shallow trap
(e.g. see [108]), albeit at the expense of requiring optical
access to the cryogenic chamber of the electron trap. One
would also have to consider whether or not the cold atoms
would immediately stick to the trap surfaces thereby cre-
ating a possible charging effect that would change the
trapping potential. Here, we consider a refinement of the
secondary electron technique that might be less violent
to the trap electrodes, as well as increase the trapping
probability, while not requiring optical access.

Rather than directing the incoming beam of electrons
at the trap electrodes, we consider focusing the beam into
the center of the trapping region and away from any sur-
faces. As a source of secondary electron emitters, a cold
charcoal adsorber containing helium might be used. Pri-
marily used for pumping residual helium gas, a charcoal
adsorber can be heated with a resistor in order to liber-
ate some helium and increase its vapor pressure in the
chamber [109]. Incoming electrons will ionize the helium
gas and generate secondary electrons that could then be
trapped. In Sec. VI D we show that in order to accom-
modate for the heat load generated by the trap, it should
be operated at temperatures in the range of 1 to 4 K and
not dilution refrigerator temperatures. That would also
leave enough cooling power to remove the heat generated
by the charcoal heating resistor. We henceforth assume
that the refrigerator is operated at 4 K.

The total cross section for helium ionization is maxi-
mal when the incoming electrons have a kinetic energy
of Ep ∼ 120 eV [110]. Here, however, we are interested
in maximizing the cross-section for generating low en-
ergy secondary electrons rather than the total ionization
cross section. In fact, since the threshold ionization for
helium is ∼ 24.58 eV, it is not surprising that the low
energy cross-section peaks at Ep ∼ 30 eV [111, 112].
The incoming electron energy should therefore be set to
around 30 eV, resulting in an optimal cross section of

σion ∼ 0.05 Å
2

for secondary electrons with energy be-
low 1 eV [111]. The resulting ionizing rate of helium

atoms within the trapping volume is

Γion '
Jπr20
qe

nHelσion, (32)

where J is the incoming current density of electrons, qe is
the electron charge, r0 is the incoming electron beam ra-
dius, l is the radius of the spherical trapping volume, and
nHe is the vapor density of helium atoms. We restrict the
discussion to secondary electron generation due to the in-
teraction of helium with the primary incoming electron
beam. Additional ionization events due to, for example,
elastically scattered electrons, could only increase Γion.
In the presence of the rf trap, the incoming electrons en-
ergy Ep will be spread by less than ±15 eV around 30 eV
as shown in appendix C. This, in turn, could reduce

the average value of σion by < 18 % to σion > 0.041 Å
2

(see [111]). Equation (32) can therefore be considered as
an average estimate for Γion. In addition, trap rf voltage
can deflect the incoming electrons, causing the average
beam radius to expand to r1 = ξr0. Since the rf trap
voltages Vrf considered in this paper have the same or-
der of magnitude as Ep/qe (see table II) ξ ≤ 4 as shown
in appendix C. We can still use r0 in Eq. (32) since it
depends on the total current of electrons traversing the
trapping region. As long as r1 < l, electrons are not lost
due to collisions with the trap walls and this total current
should be preserved.

The steady state number of trapped electrons is de-
termined by the ratio between the low-energy secondary
electron generation rate Γion and the total electron loss
rate. Electrons that have already been trapped may col-
lide with incoming electrons or with the surrounding he-
lium atoms. The average energy of the electrons gradu-
ally increases due to these collisions (heating) until even-
tually it exceeds the trap depth and they are lost (boil-
ing).

In appendix C, we derive analytically an upper bound
on the contribution to the heating rate due to collisions
with incoming electrons. Briefly, since each collision is
a Rutherford-type scattering problem, it cannot be at-
tributed a finite cross section. Its geometric scale is
therefore dictated by the incoming electron beam finite
radius r where r0 ≤ r ≤ r1. Therefore, the average en-
ergy a single trapped electron gains in a single collision is
< q2e/(4πε0r0). Since the rate of collisions is Jπr20/qe the
resulting heating rate is (dE/dt)|e < Jr0qe/(4ε0). This
translates to an electron loss rate of

Γe =
1

Udepth

(
dE

dt

)∣∣∣∣
e

<
Jr0qe

4ε0Udepth
. (33)

The contribution to the heating rate due to collisions
with the helium gas is known as “rf-heating”. This fol-
lows from the helium atom playing the role of a hard im-
movable ball in the collision process, being much heavier
than the electron. Therefore, when an electron collides
with it, its instantaneous micro-motion kinetic energy be-
fore the collision transforms into the secular motion en-
ergy after the collision [113, 114]. During the harmonic
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secular motion of the ion, kinetic energy is exchanged be-
tween rf and secular motion, the rf fraction being maxi-
mal farthest from the trap center and ideally zero at the
center. Therefore, collisions that occur farther from the
center will potentially transfer more energy into the secu-
lar motion. If the secular energy of the trapped electron
prior to collision is Ein, the energy gain after a single
collision is ≤ Ein/2, when averaging over the secular mo-
tion period. Assuming that the trapped electrons have
a uniform energy distribution between 0 and Udepth, the
average energy gain per collision with a single helium
atom is smaller than Udepth/4. The rate of collisions in

this case is ∼ σelasticnHe〈|v|〉 where σelastic ∼ 6 Å
2

is
the electron-helium elastic cross section for low energy

(≤ 2 eV) electrons [115] and 〈|v|〉 ∼ 4
√
2

3π

√
Udepth/me

is the average velocity of the trapped electrons, me be-
ing the electron mass. The resulting heating rate is
(dE/dt)|He < σelasticnHe〈|v|〉Udepth/4. We translate it
to an electron loss rate of

ΓHe <
1

Udepth

(
dE

dt

)∣∣∣∣
He

=
σelasticnHe

3π

√
2Udepth

me
. (34)

Combining equations Eq. (32)-(34), the steady state
number of electrons in the trap, Ne, is dictated by setting
dNe/dt = 0 in the rate equation

dNe
dt

= Γion −Ne(Γe + ΓHe). (35)

For trapping, we require the steady state number of
electrons Ne be greater than a threshold value Nthreshold,
as we discuss below. This can always be satisfied if the
current density J and the density of helium nHe are
large enough [Eq. (35)]. To see this quantitatively, in
Fig. 15(a), we plot the number of steady state electrons
for different current densities and helium pressure values.

The value for Nthreshold depends on the dynamics of
the electron loading process, specifically on the cooling
rate of the electron motion Γcool during loading. With-
out cooling, once the incoming electron source is turned
off (J → 0), any trapped electrons would rapidly boil out
of the trap due to collisions with the helium background
gas. Indeed, the helium pressure can be decreased sig-
nificantly to avoid this process by allowing the charcoal
adsorber to cool to its 4 K surroundings. However, the
timescale for removing the helium is likely to be long
compared to 1/ΓHe. The latter is inversely proportional
to the helium pressure and, for example, equals 1.3 µs
at a helium pressure of 10−2 Pa. Collisions with other
atoms are neglected in our discussion as we expect the
trap chamber to be in an ultra-high vacuum cryogenic
environment with pressures of 10−10 Pa or less.

In the design we consider below, we assume the z mo-
tion of the trapped electrons is strongly coupled to an
LC-resonator to experience damping. In Sec. VI E, we
show that a ∼ 1 GHz LC resonator with a quality fac-
tor Qdet ∼ 1000 should suffice for single electron de-
tection. Therefore, the LC resonator equilibrates with
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FIG. 15. Effect of loading parameters. (a) Estimated steady-
state number electrons Ne in a 1 eV-deep trap having a trap-
ping volume of ∼ (95 µm)3, when the electron gun is on.
Incoming electron beam radius is assumed to be r0 = 10 µm.
(b) 1/e-time to reach steady state number of electrons.

its 4 K surroundings at a ∼ 1 MHz rate, i.e. much
faster than the coupling rate g between the LC res-
onator and the electron motion. The resulting z-motion
damping rate is dictated by the slower of the rates,
Γcooling ∼ g/2π ≥ 100 kHz. In order to cool the x and
y motion, these modes could be parametrically coupled
to the z motion [116] as discussed in Sec. VI F. We will
henceforth assume a similar damping rate for all axes.

Once the incoming electron beam is turned off, the
trapped-electron energy E is dictated by the cooling rate
and the helium collision-induced heating rate:

dE

dt
= −ΓcoolE +

1

π
(σelasticnHe)

√
2E

me
E. (36)

For this equation to be correct, the initial energy of
the electron must be below a value Einit determined by
trap anharmonicity, which manifests as an amplitude-
dependence of the resonant frequency. Since damping is
based on resonant coupling to the LC resonator, large
amplitude motion will not cool effectively. Based on
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Sec. VI E, we can estimate Einit . 0.3 meV. This thresh-
old can be increased in a few ways. One technique could
be to detune the trap in order to match the resonant
frequency of higher energy electrons, then adiabatically
follow their frequency as they cool down. Another way
is to design a trap with lower anharmonicity (see ref-
erences in Sec. VI E). A third way could be to design
an LC resonator with a tunable quality factor using a
tunable coupler [77, 117] where the Q-factor is first low-
ered for cooling purposes and increased once the elec-
trons are cold. For the sake of the discussion here, we
will adopt the more conservative estimate value for Einit

of ≤ 0.3 meV.
To achieve net cooling, the right hand side of Eq. (36)

should be negative, i.e.,

E ≤ Ecapture ≡
me

2

(
πΓcool

σelasticnHe

)2

. (37)

Therefore, if the electron z-motion satisfies E <
Ethresh ≡ min (Ecapture, Einit), it will remain trapped.
For helium pressures below 0.027 Pa, Einit is the smaller
of the two and determines Ethresh = 0.3 meV. For
a pressure P greater than that, Ethresh = Ecapture =
0.3 meV × (0.027 Pa/P ).

Equation (36) was based on the assumption that ex-
cess micromotion can be neglected. Excess micromotion
occurs when the ion experiences rf fields even at its equi-
librium position that is usually shifted from the rf-null
due to stray fields. This would lead to a constant heat-
ing term in Eq. (36), thereby limiting both Ecapture as
well as the steady-state energy. Using dc compensation
fields, the eletron position can be adjusted back to the
rf null. We require the heating rate due to excess mi-
cromotion to be much lower than the heating rate for
electrons with Ecapture energy. If the electron is at a
position x away from the rf null, this constraint can be
written as mev

2
mm(x) � Ecapture where vmm(x) is the

micromotion velocity amplitude at x. For a 1 GHz trap
and Ecapture = 0.3 meV this constrains x� 1 µm.

From Figs. 15(a) and (b) we can extract the time
needed to trap a single electron. Within the parame-
ters explored, the steady state number of trapped elec-
trons Ne is less than one and the threshold energy is
Ethresh ∼ 0.3 meV or smaller. Therefore, the load-
ing process should be operated in pulsed mode, with
∼ (Udepth/Ethresh)/Ne pulses required on average to trap
a single electron (provided that the electron energy dis-
tribution is uniform between zero and Udepth). Com-
bined with the 1/e time required to reach the steady state
[Fig. 15(b)], we extract the average total time required
for trapping a single electron, shown in Fig. 16(a). As
long as Ethresh is not dominated by the helium pressure
P , i.e. by Ecapture, increasing P is beneficial since Ne
increases. An optimal helium pressure of ∼ 0.027 Pa is
reached, beyond which Ethresh = Ecapture ∝ 1/P 2.

These estimates assume that once a single electron is
trapped, it is immediately detected. Realistically, some
sort of detection procedure needs to be applied in order
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FIG. 16. Estimated average total time Ttot for trapping and
detecting a single electron, based on the same parameters
used for Fig. 15. The incoming electron beam gun is oper-
ated in pulse mode, the duration of each pulse [Fig. 15(b)]
allows a steady state number of electrons [Fig. 15(a)]. This
translates into a probability of trapping a single electron af-
ter a single pulse. The process must be repeated a number
of times, which is inversely proportional to that probability.
After the electron loading pulse, a detection procedure needs
to be applied for Tdet. (a) Assuming Tdet = 0, i.e. negligi-
ble. (b) Assuming Tdet = 10 µs based on the conservative
detection-time estimates from Sec. VI E.

to verify that indeed an electron is present. In Sec. VI E,
we analyze the detection scheme of [31]. We estimate
that the time to detect a single electron Tdet is in the
1 to 10 µs range. In Fig. 16(b), we plot the total time
required to trap and detect a single electron for the more
conservative estimate of Tdet = 10 µs . Based on the plot,
working in the helium pressure range of 10−4 to 10−1 Pa
and a current density range of 1 to 100 A/m2, the range
of times we get is similar to that of Paul trap loading
times for ions.

The current density range in Figs. 15 and 16 is chosen
such that the total current of incoming electrons is in the
nano-amp regime for a beam radius of r0 = 10 µm. The
beam radius was chosen so that even after expansion to
r1 due to the trap rf fields, it would avoid the trap walls.
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These parameters can be easily obtained with commercial
electron sources. Smaller beam radii with the same to-
tal current would reduce the total time required to trap
an electron even further. That would require a design
of electron optics combined with either a commercial or
home made cold field emission source, the details of which
are beyond the scope of this paper.

D. Electrical circuitry

Stable trapping requires applying large voltages and
currents in a cryogenic environment, next to a sensitive
detection resonator. This has implications on the heat
load experienced by the refrigerator and the circuit de-
sign of the trap.

Achieving a trap drive amplitude of Vrf = 100 V at
frequencies in the 7 to 9 GHz range requires resonating
the trap capacitance Crf with an inductor. The resulting
dissipation rate would be Pdis = ΩrfCrfV

2
rf/Q, where Q

is the rf resonator quality factor. With Crf ≤ 150 fF
(based on simulations of the traps in Fig. 14) and Q in
the 104 to 105 range, implies ≤ 0.2 to 2 mW of dissipated
power for frequencies in the 7 to 9 GHz range. With the
cooling power of a dilution refrigerator typically being in
the 100 to 400 µW range at T = 100 mK, too low to
survive such heat loads, it seems that working at 4 K
would be required, where 2 mW of power dissipation is
easily absorbed, even with a lower (Q ∼ 104) quality
factor. In fact, even 1 − 2 K cryostats with ∼ 60 to
200 mW of cooling power would suffice.

To understand the implications of the trap drive on
the electron detection circuit, we model the traps in
Figs. 14(a)&(b) with a lumped element circuit shown
in Fig. 17. Detecting the presence of electrons would
be accomplished using a tank circuit technique [31, 83].
The electron thermal motion generates image currents
that couple to the resonator formed from the trap capac-
itance and the inductor Ldet, chosen to be resonant with
the ∼ 1 GHz secular motion. The trap is driven by a
different resonator, formed from the ring-to-end-caps ca-
pacitance and another inductor, Lrf , chosen to resonate
at the 7 to 9 GHz drive frequency.

The possible cross talk between the drive and detec-
tion resonators could deteriorate their respective qual-
ity factors. If the trap is electrically symmetric, i.e.
Crf,1 = Crf,2 and Ciso,1 = Ciso,2, the two circuits are es-
sentially orthogonal. The detection circuit is connected
to equi-potential points in the trap drive circuit and
is therefore not influenced by the high currents flowing
there. Moreover, due to the Wheatstone bridge topology,
the detection circuit is not sensitive to the rf inductor Lrf

and its coupling port. It is only influenced by the addi-
tional capacitances Ciso,j for j = 1, 2 that add to the total
trap capacitance. Similarly, the rf resonator is indifferent
to the added impedance of the detection resonator. The
impact of trap asymmetry on the quality factor of the

two resonators can be estimated by

∆Qrf

Qrf
∼ Qrfω0

QdetΩrf

Ccap

Ciso,1 + Crf,1 + 2Ccap
ε, (38a)

∆Qdet

Qdet
∼ Qdetω0

QrfΩrf

Ciso,1 + Crf,1

Ciso,1 + Crf,1 + 2Ccap
ε, (38b)

ε =
|Crf,1 − Crf,2|+ |Ciso,1 − Ciso,2|

Crf,1 + Ciso,1
, (38c)

where Qrf and Qdet are the rf and detection resonator
quality factors respectively when the trap is completely
symmetric, ∆Qrf and ∆Qdet is their respective change
due to asymmetry, ω0 ∼ 2π × 1 GHz is the secular fre-
quency, Ωrf/(2π) ∼ 7 to 9 GHz is the trap drive frequency
and ε is the asymmetry parameter. Clearly, if Qrf and
Qdet are comparable, and the capacitances involved are
on the same order of magnitude, then keeping ε below a
few percent should suffice.

E. Non-linearity and detection of a single electron

One of the main concerns with detecting a single elec-
tron in Penning trap experiments is the trap anharmonic-
ity [82, 84, 86]. In these traps, the signal of a single elec-
tron has a few hertz linewidth due to damping resulting
from its coupling to the detection circuit, whereas the ef-
fect of anharmonicity in these planar traps is to broaden
the electron detection signal to 10 kHz to 1 MHz. How-
ever, in [84], it was shown that by adding compensation
electrodes and carefully adjusting their relative voltages,
we could avoid the dominant anharmonic terms of the
potential. Similarly, careful consideration for electrode
shape and geometry allow for higher degree of harmonic-
ity in three-dimensional traps [118, 119].

In the designs considered here, the electron is strongly
coupled to the detection circuit, giving a relatively broad
signal linewidth, which in turn relaxes the constraints on
the trap harmonicity. By assuming a moderate quality
factor for the detection circuit Qdet ∼ 1000, the detec-
tion circuit linewidth is on the order of ∼ 1 MHz and
therefore larger than anharmonicity induced broadening
of the electron signal, as we show below. In order to
reach the strong quantum regime, however, we require
Qdet � 7000 (see table I). However, with a tunable
coupler [77, 117], we could potentially tune the quality
factor of the detection circuit to accommodate for both
Q-factor regimes. Detailed analysis of such a coupler is
beyond the scope of this paper. Therefore, in this section
and in Sec. VI F, we use the lower Qdet ∼ 1000 value.

Figure 17 shows the schematics of a typical tank de-
tection circuit and Fig. 18 shows a simplified equivalent
circuit. The simplification follows first from replacing the
trapped electron with its BVD equivalent network Le, Ce
and a current source Ie corresponding to the induced
currents due to electron motion. Further simplification
is achieved by replacing the entire network connected to
the two ends of the detection inductor Ldet with its total
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FIG. 17. Trap and detection resonators schematic for the traps illustrated in Fig. 14. The electrodes DCU, DCL and rf of
Fig. 14 are indicated here in the schematic. The trap capacitances are shown in blue where Crf,1 and Crf,2 are the capacitances
between the center ring and each end-cap and Ccap is the end-cap to end-cap capacitance. For the trap in Fig. 14(a), these
equal to 21.3 fF, 21.3 fF, 4.6 fF correspondingly. For the trap in Fig. 14(b), these equal to 146 fF, 146 fF, 35 fF correspondingly.
The Lrf inductor forms a resonator with the total capacitance between its ends generating the quadrupole trapping field. The
Ldet inductor along with the capacitance shown forms the detection resonator that monitors the electron motion (double red
arrow). The four isolation capacitors enable independent dc-biasing of the upper and lower end-caps (Vcap,j, j = 1, 2) with bias
resistors R ≥ 10 MΩ to avoid loading the detection circuit, assumed to have a quality factor of ∼ 1000 [see Sec. VI E]. The
leftmost isolation capacitors Ciso,1 and Ciso,2 are chosen to equal Crf,1 = Crf,2. The rightmost isolation capacitors Ciso,3 and
Ciso,4 are chosen to be much greater than the total capacitance between DCL and DCU, e.g. on the order of 1 pF. The mutual
inductance of Ldet and Lcpl allows for the electron detection using an amplifier.

Ie

Ce

Le

Ctotal Ldet Rdet

FIG. 18. Simplified electron detection circuit, based on the
circuit in Fig. 17. Here, Ctotal is the total capacitance between
the two ends of the detection inductor Ldet. The trapped
electron is replaced by its electrical equivalent of a series LC
resonator with inductance Le and capacitance Ce. Currents
generated by electron motion are represented by Ie. The cou-
pling inductor Lcpl in Fig. 17 transduces the input impedance
of the amplifier to an effective resistance, which, combined
with LC internal dissipation, are represented by an equiva-
lent shunt resistor Rdet.

equivalent capacitance Ctotal. This will define the tank
circuit resonant frequency ω0 = 1/

√
LdetCtotal, which we

assume to be resonant with the electron trap frequency.
Finally, the amplification network that couples to Ldet

via mutual inductance to the coupling inductor Lcpl is
replaced by an equivalent resistor Rdet. The coupling
inductor Lcpl transduces the input impedance of the am-
plifier, the real part of which presents an effective resis-
tance Rext in parallel with the internal resistance Rint of
the LC tank circuit. The total resistance of the detec-
tion circuit is therefore Rdet = RextRint/(Rext + Rint).
The width of the electron signal can be estimated to be
Rdet/Le ∼ 2π × 100 kHz, expressed in terms of the trap
parameters

Rdet

Le
=

Qdetq
2
eα

2

ω0Ctotalmed2
, (39)

where d ∼ 200 µm is the end-cap to end-cap distance,
ω0 = 2π × 1 GHz is the trap secular motion frequency,
and Ctotal ∼ 180 fF for the trap in Fig. 14(b). The
capacitance Ctotal is calculated by expressing it in terms
of the other capacitances in Fig. 17 as

Ctotal = Ccap +
Crf,1Crf,2

Crf,1 + Crf,2
+

Ciso,1Ciso,2

Ciso,1 + Ciso,2
, (40)

assuming that Ciso,k (k = 3, 4) are much larger than
Ctrap.

While Crf,k, k = 1, 2 and Ccap are dictated by the trap
electrodes, Ciso,k, k = 1, 2 can be chosen independently.
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There is an inherent trade off in this choice, however. On
the one hand, these should be much larger than Crf,k in
order to maximize the trap drive voltage. On the other
hand, these should be as small as possible so as to min-
imize Ctrap and increase the coupling rate g. For sim-
plicity, here we choose Ciso,1 = Ciso,2 = Crf,1 = Crf,2

but other choices could be explored. For the trap in
Fig. 17(a), Ctotal ∼ 26 fF, so Rdet/Lion ∼ 2π× 0.7 MHz.
See caption of Fig. 17 for the capacitance values for both
traps. The relatively large difference between the sig-
nal bandwidths calculated above and the typical signal
bandwidth in a Penning trap experiment follows from the
small dimensions and small capacitance of the designs
considered here.

The width of the electron signal should be compared
to the frequency spread resulting from the trap anhar-
monicity. Using first order perturbation theory, we can
estimate the effects of the r4, r2z2, z4 terms in the trap
potential (see for example [82]) resulting in ≤ 0.5 MHz
dispersion in the signal for both traps in Fig. 14, assum-
ing the electron thermal motion equilibrates to a 4 K
bath. This should contribute very little to the broad-
ening of a single electron signal, thereby simplifying its
detection without the need for a more elaborate electrode
design. Notice also, that the ≤ 0.5 MHz dispersion falls
within the bandwidth of the detection circuit described
above, rendering the cooling induced by coupling to the
detection circuit to be effective for electrons with tem-
peratures ≤ 4 K (energies ≤ 0.34 meV). Even in the
presence of non-linearities, a single electron could be de-
tected by parametrically driving its motion and coher-
ently detecting the resulting image currents in the detec-
tion circuit [16].

The bandwidths calculated above fall in the 0.1 to
1 MHz, and therefore correspond to a single electron
detection time of 1 to 10 µs. By integrating the ther-
mal power spectral density at Rdet over a bandwidth
of B ≡ Rdet/(2πLe) centered at ω0, the total detected
power will vary from Pdet ∼ 4kbTB when no electron
is trapped to Pdet ∼ 0 when an electron is trapped [31].
This is a result of the fact that on-resonance, the electron
equivalent circuit is effectively a short which shunts Rdet,
as seen in Fig. 18. To avoid a large noise background, an
amplifier with an effective noise temperature that is ≤ T
is required. As an example, for the T = 4 K experiments
explored here, using an amplifier with a noise temper-
ature of 2 K at ω0/2π ∼ 1 GHz such as in [120] could
suffice, giving an estimated signal to noise ratio of one
or larger in determining the variation in Pdet before and
after trapping.

F. Parametric cooling

The low-energy electron source described in Sec. VI C
relies on the ability to cool the motion in all three spatial
axes. As described there, adequate z-motion cooling can
be achieved when the detection circuit is resonant with

the z-motion. By parametrically coupling the radial x
and y-motion to the z-motion, cooling on all axes can be
achieved [116]. Such a scheme has the benefit of not need-
ing an extra radial electrode for damping or additional
resonant circuitry on the existing ring electrode.

The coupling scheme in [116] was based on xy and xz
terms in the pseudo-potential, which were proportional
to a voltage U . Time-modulating U(t) = U0 cos(∆ωt) at
the difference frequency ∆ω = ωi−ωj , causes energy ex-
change between the motion in the i and j axes. The traps
considered in Fig. 14, however, are axially symmetric and
therefore should have negligibly small cross terms of that
type. We could also consider this approach by modifying
the electrodes to be able to induce couplings of this form.
Alternatively a variation on this coupling scheme could
be used, that incorporates the symmetry of the simpler
electrode structures. To see this, we approximate the
trap pseudo-potential around its minimum as

φpseudo =
1

2
me

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(41)

+ βx2z2 + γy2z2,

where the x2y2 anharmonic term is also negligible for the
axially symmetric traps considered and β ≈ γ. In terms
of the harmonic ladder operators, the x2z2 cross term,
for example, contains the following summands:

~ξ
(
a2b†2 + b2a†2

)
, (42)

where a, a† are the z-motion operators and b, b† are the
x-motion counterparts. Coherently driving the z-motion
at ωd = 2ωx − ωz can be described mathematically by
replacing a 7→ αe−iωdt + a. Rewriting Eq. (42) and ne-
glecting fast rotating terms introduces terms of the form

2~ξα
(
ab†2 + b2a†

)
. (43)

As an example, consider the trap design in Fig. 14(a).
There, in order to achieve x − z coupling, ωd should be
∼ 2π× 90 MHz. By expressing β in terms of the pseudo-
potential parameters

β = ζ
2q2eV

2
rf

meΩ2
rfd

6
, (44)

where ζ = 0.166 is a geometric pre-factor, we can express
the x-z coupling frequency as

2ξα = ζ

√
2~q3eV 2

rfVd
m3.5
e Ω2

rfωxω
2.5
z d7

, (45)

where Vd is the drive voltage applied to the trap end-
caps. For the trap in Fig. 14(a), we get a rate of
2π × 0.92 MHz/V × Vd. Therefore, a Vd ∼ 109 mV
drive, corresponding to ∼ 3.36 µm of motion amplitude,
would render an x − z coupling rate of 2π × 100 kHz.
This would enable cooling of the x-motion on the order
of that rate. With a Q-factor of 1000 for the detection
circuit, a 109 mV drive at ωd ∼ 2π×90 MHz would dissi-
pate less than 10 nW of power, well within the cryogenic
capabilities of the refrigerator.
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G. Planar arrangements

Planar chip traps have some advantages over the three-
dimensional traps analyzed above. They can be easier to
fabricate, require no alignment and are more suited for
scalability. Such traps, however, have a much shallower
trapping potential for the same applied voltages and fre-
quencies, as compared to three-dimensional traps. This
can be mitigated by adding a cover electrode a few mil-
limeters away from the trap chip, and applying a negative
voltage [84, 121, 122].
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FIG. 19. Planar point Paul trap for electrons. (a) Inner
DC disk radius is 100 µm. Outer RF ring radius is 250 µm.
The electron is trapped at a height of ∼ 100 µm above the
surface. (b) Pseudo-potential trap depth of the trap in (a),
with 100 V trap drive at 7.1 GHz and a capping electrode, here
represented by adding a uniform field of 58.5 V/cm along −z.
Trap minimum is at r = 0, z ∼ 100 µm. Resulting secular
frequency along z is ωz = 2π × 1.46 GHz.

Figure 19 shows an example of a planar electrode Paul
trap [121, 123], here chosen to be cylindrically symmet-
ric for simplicity. With the addition of a cover electrode
generating a uniform field of 58.5 V/cm, the trap depth is
D = 0.02qVrfqmathieu. When applying a trap drive volt-
age of Vrf = 100 V to the RF annulus electrode (DC and
GND electrodes are rf-grounded) and assuming a Math-
ieu parameter of qmathieu ∼ 0.5, we expect a 1 eV trap
depth, as in the three-dimensional designs shown earlier.
The relevant trap capacitance that dictates the value of
the coupling rate g is formed between the central dc elec-
trode and ground. Due to the trap geometric aspect ra-

tio, the coupling rate decreases to g = 2π × 180 kHz.
As a side effect of using a cover electrode, the electron
equilibrium position should shift towards the trap chip
by 7.7 µm. This would result in ∼ 2 µm micromotion
amplitude (corresponding to a pseudo-potential energy
of ∼ 15 meV) that should be compatible with a stable
trap operation. This, however, would compromise elec-
tron loading into the trap due to the additional rf heating
resulting from excess micromotion (see Sec. VI C). One
remedy could be to compensate for micromotion by ap-
plying dc voltages on the center DC electrode. In the
example considered here, 1.5 V of dc bias would restore
the ion position to the rf-null point, while still rendering
1.6 eV deep trap.

Although planar traps seem promising, separating the
detection circuit from the drive circuit would be more dif-
ficult due to the lack of symmetry assumed in Sec. VI D.
Also, since planar traps tend to be more an-harmonic
compared to three-dimensional ones, additional compen-
sation electrodes may be required in order to enable
single-electron detection [84].

VII. CONCLUDING REMARKS

We have first considered coupling the motion of a con-
fined charged particle to a superconducting resonator.
Limited by the currently achieved quality factors of such
resonators (Q ≤ 106), we conclude that for the sys-
tems considered, it will be very difficult to reach the
strong coupling regime using a single trapped charged
particle, with perhaps the exception of 9Be+ at dilution-
refrigerator temperatures or trapped electrons.

We explored coupling a trapped ion to a nano-
mechanical resonator, either through electrostatics or
piezoelectricity. Based on recent advances in the fab-
rication of membranes (Q ≥ 108), we considered their
electrostatic coupling to a trapped ion. By coating such
a membrane with a thin metallic film and voltage bias-
ing it, the coupling could be on the order of 10 Hz for a
1 V bias, within reach of the strong-quantum regime at
T = 50 mK.

We analyzed the possibility of direct piezo-electric cou-
pling of ion motion to a mechanical resonator. An inter-
esting candidate was a quartz acoustic resonator with a
very high quality factor (Q > 109). However, due to the
relatively small overlap between the ion electric field and
the acoustic mode shape, the coupling strength is found
to be on the order of 1 Hz. Reshaping the ion field with
the aid of a capacitor led to an increase in the coupling,
to 10 Hz, approaching the strong quantum regime.

By laser cooling a single 9Be+ ion that interacts with
the quartz resonator, the acoustic mode with an effective
mass of ≥ 1 mg (!) could be cooled close to its ground
state of motion. If such a massive object is placed in a
superposition state, it could be used to restrict various
macroscopic decoherence theories. For example, quan-
tum gravity has been suggested to result in a motional
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decoherence rate that is proportional to M2 for an object
of mass M [124]. If a few milligram mechanical oscillator
is placed in a superposition of position states differing by
twice its zero-point motion, that superposition would de-
cohere in ∼ 10 ps. This effect should be testable since the
expected coherence time of the quartz resonator is much
longer, even at 4 K. To be well within the strong quan-
tum regime, we could engineer a different resonator, per-
haps with stronger piezo-electric coefficients, that main-
tains a high Q factor and where the acoustic mode shape
has a large overlap with the ion electric field. Such a
task, however, is not straightforward as these different
demands may not be compatible.

Lastly, we considered coupling an electron to a super-
conducting electrical resonator. We examined two spe-
cific trap designs with a 1 eV trap depth, a depth we
view as crucial for initial trapping where laser cooling is
not available. The relatively high voltages and currents
required to create such a trap depth suggest the need for
thick niobium conductors to form the trap, in order to
maintain superconductivity. Additionally a 1 eV trap re-
quires a low-energy source of electrons, and damping to
combat heating. We examined a three-dimensional trap
arrangement, which can separate the high voltage, high
current rf trapping circuitry from the low voltage, low
currents flowing in the electron detection circuit, using
trap symmetry. Obtaining a similar effect for a planar
chip trap geometry would be more complicated due to
the lack of symmetry.

It is worth noting the appealing properties that a hy-
brid system based on a trapped electron might have.
Such an architecture might be more scalable compared
to trapped ion QIP since the interconnecting elements
are chip-based, requiring only rf control and no optical
elements or laser beams. The absence of optical elements
could allow for smaller traps, enabling stronger cou-
pling between electrons and superconducting elements.
Moreover, as the speed of entangling gates based on the
Coulomb interaction of two charged particles scales with
the trapping frequency, and as a trap for electrons would
typically have secular frequencies that are two orders of
magnitude larger than for ions, we expect shorter elec-
tron gate times as compared to trapped ions [71]. Recent
advances in entangling trapped ions have reached gate
speeds that are only an order of magnitude slower than
the trap frequency [9, 125]. If that were to scale for a
trapped electron, it would correspond to a ∼ 10− 100 ns
gate time, comparable to superconducting qubit gate
times [74]. Electron spin-coherence times can exceed a
second [75] and therefore be orders of magnitude larger
than coherence times for superconducting qubits, where
the best values to date are close to a millisecond [126].
Therefore a hybrid QIP platform based on trapped elec-
trons might have a much larger qubit coherence time-to-
gate time ratio. The platform might offer an additional
way to entangle electrons, mediated by the underlying
circuitry. This would enrich the QIP toolbox available
for electron spins. For this second method, gate speed

is limited to the exchange rate between the electron and
its accompanying superconducting resonator, which we
estimate to be on the order of g ∼ 2π×1 MHz for 50 µm
distance between electrons and superconducting circuitry
and faster for smaller traps.
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Appendix A: Calculating quartz resonator to ion
coupling

Coupling calculations require knowing the quartz
resonator mode-shape ~s, the orientation of crystallo-
graphic axes of the resonator, the corresponding 3 × 6
piezo-electric coefficient matrix of quartz e, and the
ion electric field. We focus on the high Q modes
[Eq. (24)] that are quasi-longitudinal, i.e. along the
n̂ = (0.226, 0.968, 0.111) unit vector, in the coordinate
system described in Fig. 20. The BVA quartz resonators
are made from doubly-rotated SC (stress-compensated)
cut quartz [64]. The coefficient matrix e for this cut is
taken from table 7 in the IEEE standard of piezoelectric-
ity [127].

Denote the overlap integral in the nominator
of Eq. (24) by gc, i.e.,

gi =

∫
V
d3r∂iEiones

′

2ω0

√
Mmion

≡ gc

2ω0

√
Mmion

, i = x, y, z. (A1)

The mode mass is calculated by the integral

M =

∫
v

d3rρquartz |s|2 (A2)

= ρquartzπσ
2 t

2

(
1− e−L2/σ2

)
,

where σ is the Gaussian profile radial scale of the mode
shape ~s. From [68],

σ =

(
Rt3

3n2π2

)1/4

, (A3)
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where R = 300 mm is the radius of curvature of the
upper surface of the resonator, t is its thickness and n is
the mode number (see Fig. 20). An approximate formula
for the resonance frequency is

ω0 = csound
nπ

t
, (A4)

where csound = 6750 m/s is the speed of sound for the
quasi-longitudinal modes.

An exact calculation of gc can be found in ap-
pendix A 2. Before doing so, we first estimate in ap-
pendix A 1 an upper bound on gc and correspondingly g,
by avoiding the vector nature of the overlap integrand.

R

t

L

r

y

FIG. 20. BVA geometry. Cylindrically symmetric about the
y axis with a maximal thickness t. The BVA lower surface
is a flat disk of radius L. The BVA upper surface can be

described by a curved surface y = t(1 − r2

2Rt
) with a radius

of curvature R. We consider a resonator (not to scale) with
R = 300 mm, L = 6.5 mm, t = 1.08 mm.

1. Upper bound on direct ion-quartz coupling

An upper bound can be obtained by using the Cauchy
Schwartz inequality, applied to gc:

gc =

∫
d3r∂iEioneu

′ (A5)

≤
√∫

d3r (∂iEion)
2
∫
d3r(eu′)2

≤
√∫

d3r (∂iEion)
2 × emax ×

∫
d3r(u′)2,

where emax ≈ 0.234 C·m−2 is the square root of the max-
imal eigenvalue of e†e. The electric field of an ion hover-

ing at a height h along the ŷ axis is Eion(~r) ≈ q ~R/4πεR3

where ~R = ~r−hŷ and ε is the average dielectric constant
of vacuum and quartz. We can therefore write,

gc ≤ γ
emaxq

4πε
√
h3

√∫
d3r(u′)2, (A6)

where γ is a numerical factor of order unity for all i =
x, y, z directions.

To estimate the last integral of the strain (u′)2, recall
that the mode mass M =

∫
d3rρquartzu

2, where ρquartz =
2.6× 103 kg/m3 is the quartz density. Due to the mode

shape [Eq. (24)] we may approximate u′ ∼ ku, where k
is the wavenumber of the longitudinal oscillations within
the BVA, i.e. kt = nπ for t the resonator thickness and
n = 1, 3, 5, . . .. Therefore,

∫
d3r(u′)2 ∼ k2

∫
d3ru2 and

we may estimate an upper bound,

g ≡ gc

2ω0

√
Mmion

(A7)

≤ γ emaxq

4πεcs
√
mionρquartzh30

∼ 2π × 1 kHz,

where cs = 6757 m/s is the speed of sound for the quasi-
longitudinal mode.

2. Direct ion-quartz coupling calculation

Now that the upper bound has been established, we
numerically calculate the integral in Eq. (A1) for the low
frequency modes of the quartz resonator (table III). We
see that all coupling strengths are below 1.5 Hz.

n Frequency gy gx gz

3 9.4 MHz 2π × 1.46 Hz 2π × 1.09 Hz 2π × 0.49 Hz

5 15.6 MHz 2π × 1.39 Hz 2π × 1.02 Hz 2π × 0.47 Hz

7 21.9 MHz 2π × 1.33 Hz 2π × 0.97 Hz 2π × 0.44 Hz

9 28.1 MHz 2π × 1.28 Hz 2π × 0.94 Hz 2π × 0.43 Hz

TABLE III. Direct coupling of a 9Be+ ion to a BVA quartz
resonator. The ion is assumed to be trapped 50 µm above
the quartz. The quartz thickness is assumed to be 1.08 mm.
Coupling strength gi for i = x, y, z is the coupling strength
for an ion motion along the i axis. The longitudinal mode
number is n.

It is interesting to notice the weak dependence of the
coupling strengths on the mode number n. Due to
the frequency and mode mass scaling, the denominator
of Eq. (A1) scales like

√
n. On the other hand, be-

cause the derivative of the ion field is equivalent to a
dipole field, the integrand of gc scales as 1/r3 whereas
its Jacobian scales as rdr so overall we should expect a
1/r ∼ 1/σ ∼ √n dependence, which nearly cancels the
similar dependence in the denominator for the expression
in g. Although, for very high frequency modes, g should
deteriorate due to high spatial frequency averaging of the
ion field.

3. Ion-quartz coupling via a shunt capacitor

In the paper body, we estimated the coupling of the
ion to the quartz resonator via a shunt capacitor, using
a BVD equivalent electrical circuit. The main advantage
of that approach, other than its simplicity, is that the ef-
fective capacitance of a BVA quartz resonator is a rather
easily measurable quantity [69].
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Here, we use Eq. (A1) to directly calculate the cou-
pling strength, in order to infer its dependence on mode
parameters. To this end, we have to introduce param-
eters that describe the geometry involved. The ion is
assumed to be trapped at the center of a parallel plate
capacitor whose plates are a distance dT from one an-
other (see Fig. 21). The quartz resonator is assumed to
be enclosed in another parallel plate capacitor, with a
distance dQ between the plates and a plate area of A.

dQ

A

Cshunt

Le

q,miondTCtrap

FIG. 21. Coupling an ion to a quartz resonator mediated by a
shunt capacitor. An ion is elastically trapped (trap electrodes
no shown) at the center of a parallel plate capacitor. The
ion motion generates image currents that in turn generate an
electric field between the parallel plate capacitor (each plate
with area A = πL2

e) encapsulating the quartz resonator.

If the ion is displaced by ∆y from equilibrium to-
wards one of the plates, it will generate an image charge
q∗ = ∆yq/dT . A portion of these image charges spread
uniformly on the BVA shunt capacitor plates, creating a
charge density σ = q∗/A(1 + Ctrap/Cshunt) and exerting
a field inside the BVA volume E = σ/ε. We get

dE

d∆y
=

q

εAdT (1 + Ctrap/Cshunt)
, (A8)

where Ctrap is the trap capacitance, and Cshunt is the
BVA shunt capacitance and the field is perpendicular to
the plates. As before, we focus on the quasi-longitudinal
mode shapes [Eq. (24)]. Performing the overlap integral
in this case results in

gc =
4qē

εdT

σ2

L2
e

(1− e−L2
e/2σ

2

)
1

1 +
Ctrap

Cshunt

, (A9)

where Le is the electrode radius, ē is the mode-shape
weighted average of e22, e2,4, e26, i.e ē = nye22 + nze24 +
nxe26 = 7.43 × 10−2 Cm−2 and n̂ = (nx, ny, nz) =
(−0.23,−0.97, 0.1) is the quasi-longitudinal mode direc-
tion vector. By maximizing gc as a function of Le and for
Ctrap = 50 fF trap capacitance, we estimate Le = 1.05σ
so the coupling rate is

g =
0.58qe

εdTω0

√
Mmion

= 2π × 10 Hz, (A10)

where we assumed coupling to a 9Be+ ion, trapped be-
tween capacitor plates a distance dT = 200 µm away
from one another.

Trap material T ion d f ṅ Ref.

Au on sapphire 5 K 88Sr+ 50 µm 1.32 MHz 4 quanta/s [131]

Au on quartz 300 K 9Be+ 40 µm 3.6 MHz 58 quanta/s [132]

Nb on sapphire 6 K 88Sr+ 100 µm 1 MHz 2 quanta/s [93]

TABLE IV. Selected measured heating rates ṅ for ion traps.
Ion to surface distance is d, f is the trap frequency.

To see the geometric scaling of this, recall that σ =

( t3R
3π2n2 )

1
4 and ω0 ≈ csnπ/t [68]. We get

g ≈ 0.3
qe

εcs
√
mionρquartz

1

dT (tR/2)
1
4
√
n
. (A11)

From Eq. (A11), we expect the coupling to diminish
for higher modes (increasing n). The dependence in the
geometrical parameters t, R is also very weak (1/4 expo-
nent) with values limited to thicknesses in the range of
0.5 to 1 mm and radii of curvature in the R ∼ 300 mm
range.

Appendix B: Estimating electron “anomalous”
motional heating rate from ambient noise

We estimate the “anomalous” heating rate of the elec-
tron motion by extrapolating from known ion heating
rates [128–130]. If n denotes the average number of mo-
tional quanta in a trap with frequency f then

ṅ ∝ q2

m

1

d4f1+α
, (B1)

where q,m are the particle charge and mass respectively
and α has varied between 0.5 and 2 in various experi-
ments. In this expression, d is the distance of the charge
from the nearest electrode and we assume the electric
field noise is generated by independent fluctuating patch
potentials of extent < d [128].

From table IV and Eq. (B1) we can estimate the elec-
tron heating rate to be between 30 to 160 quanta/s for
a trap-to-electron distance of ∼ 50 µm and an electron
motional frequency of ∼ 1 GHz, assuming α = 0.5. For
α = 2, all of the extrapolated heating rates are below
0.02 quanta/s. These rates are at least three orders of
magnitude smaller than the coupling rates we expect be-
tween the electron and the superconducting resonator.
Specifically, with the traps considered in this paper the
coupling rates were estimated to be in the range of 0.18
to 1.06 MHz.

Appendix C: Electron heating rate due to incoming
electrons during the loading process

We estimate an upper bound for the heating rate of
trapped electrons due to collisions with incoming elec-



26

trons during trap loading. We assume that a single elec-
tron is trapped in a three-dimensional harmonic potential
with ∼ 1 GHz secular frequency in all axes with a trap
depth of Udepth = 1 eV. Incoming electrons, each having
Ep = 30 eV of kinetic energy, collide with the trapped
electron causing heating.

We focus on a single trapped electron collision process,
since we are aiming at a steady state number of just one
to few trapped electrons. Moreover, we assume that the
trapped electron interacts with just one incoming elec-
tron at a time. This is consistent with the incoming-
electron current values we considered in Sec. VI C and
the time scale for the collision process (see below).

We ignore the trap dynamics during any single colli-
sion since the former is relatively slow compared to the
latter. To see this, first note that the time scale for a col-
lision process is b/vp,0 where b is the impact parameter
and vp,0 is the incoming electron initial velocity. The im-
pact parameter is limited by the overall incoming electron
beam radius r0, which we assume is < 100 µm. The inci-
dent electron speed is vp,0 =

√
2Ep/me = 3.2× 106 m/s

where me is the electron mass. Therefore the collision
duration times are ≤ 3 × 10−11 s, i.e. shorter than the
trap drive period (∼ 10−10 s) and much shorter than the
trap harmonic period (∼ 10−9 s). Based on our trap pa-
rameters, we can estimate that during a collision, trap
forces will change the positions of the two electrons by
no more than ∼ 20 % as compared to a collision where
no trap is involved. Since we are interested only in an
order-of-magnitude estimate, we ignore these deviations
from a trap-free calculation.

For our purposes, however, the trap still plays a role in
determining the initial conditions of the collision process.
Trapped electrons have an initial energy below Udepth.
For simplicity we assume that the initial energy distribu-
tion is uniform in the range 0 ≤ Es,0 ≤ Udepth (see for
example figure 5 in [111]). The incoming electron, at the
moment of entrance into the trapping region, either ac-
celerates or decelerates prior to the collision, depending
on the phase of the trap drive. For concreteness we use
the geometry in Fig. 14(b), trap parameters of table II,
and assume that the incoming electrons velocity is ini-
tially along the trap symmetry axis (z). The incoming
electron’s initial kinetic energy prior to collision will be
spread by ±15 eV around Ep = 30 eV, as we show later.
Since the primary electron beam is initially aligned par-
allel to the rf electric field, the rf-trap-induced spread in
Ep is maximal. If, for example, the electrons come at
an angle of ∼ 54.7◦ with respect to z, the energy spread
in Ep reduces to ±2.5 eV. At this angle, to first order,
the rf-trap field lines are perpendicular to the incoming
electrons initial velocity. Our choice of geometry and
electron direction therefore accentuates the spread in Ep
due to the rf in order to fully appreciate its influence on
the heating rate. Another effect of the trap is electron de-
flection in the transverse direction resulting in a rastering
of the incoming beam. It can be shown using elementary
electrostatic consideration that the beam radius will ex-

pand by ≤ exp(2 arcsin (qeVrf/(Ep + eVrf))) < 4. There-
fore, we must make sure that the initial beam diameter
is small enough such that the beam does not strike the
trap electrodes from rastering.

We assume that the process can be reasonably cap-
tured by classical mechanics. We therefore ignore the
spins of the electrons, as well as, scattering interfer-
ence effects. The ratio between the quantum me-
chanical differential cross section for electron-electron
Coulomb scattering (dσ/dΩ)quantum and its classical

counterpart (dσ/dΩ)classical can be bounded by 0.5 <∣∣∣(dσ/dΩ)quantum / (dσ/dΩ)classical

∣∣∣ < 1.03, based on our

parameters [133]. The quantity of interest is the energy
gain per collision, ∆E, which is the average of the energy
gained per scattering direction over an appropriate range
of solid angle. Therefore, our classical estimation of ∆E
will also not deviate from a full quantum-mechanical es-
timation by more than the above bounds.

x

y

z

~vs,0

e−,me~rs

~vp,0

~rp

e−,me

x′

z′

~v

b

~r

e−, µ

θR

(b)(a)

FIG. 22. Geometry of electron-electron scattering. (a) Lab
frame. An incoming fast electron with velocity ~vp,0 collides
with a slow (trapped) electron with velocity ~vs,0. (b) Reduced
mass frame of reference. Here, ~r ≡ ~rp − ~rs, ~v ≡ ~vp,0 − ~vs,0
and µ = me/2 is the reduced mass. The angle θR is the
deflection angle of ~v with respect to its initial direction, after
the collision.

The geometry of a collision process is shown in
Fig. 22(a). An incoming electron with velocity ~vp,0 and
position ~rp collides with a relatively slow trapped electron
(the target electron) with velocity ~vs,0 and position ~rs.
Our subscripts follow the convention of electron scatter-
ing terminology where the incoming electrons are called
“primary” whereas the (possibly) scattered electrons are
called “scattered”. The scattering problem can be de-
scribed in the center of mass and reduced mass coordi-
nates: Rcm ≡ (~rp + ~rs)/2, and ~r ≡ ~rp − ~rs, respectively.
Ignoring the trapping potential as mentioned above, we
can assume that the center of mass will move at a con-
stant velocity of ~Vcm = (~vp,0 + ~vs,0)/2. The relative mo-
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tion is described in the primed coordinate system shown
in Fig. 22(b). It is subsequently reduced to a Rutherford
scattering problem of a particle of one electron charge
and a reduced mass of µ = me/2, moving with an initial
velocity ~v = ~vp,0 − ~vs,0 and an impact parameter b, in
the Coulomb potential of a fixed electron at the origin
[see Fig. 22(b)]. The relative velocity vector will there-
fore be deflected with respect to its initial direction by

θR = 2 arctan

(
q2e/4πε0b

µv2

)
, (C1)

where v ≡ |~v|.
Returning to the lab frame, the target electron final

velocity is

~vs =
~vp,0 + ~vs,0

2
− ~v cos θR + vû sin θR

2
, (C2)

where,

û =
~r − (~r · v̂)v̂

|~r − (~r · v̂)v̂| , v̂ =
~v

v
. (C3)

Using Eq. (C2) and the triangle inequality we can find
an upper bound for |~vs| as

|~vs| ≤ |~vp,0 − ~vs,0|
∣∣∣∣sin θR2

∣∣∣∣+ |~vs,0| (C4)

≤
(

1 +

√
Ethresh

Ep

)
|~vp,0|

∣∣∣∣sin θR2
∣∣∣∣+ |~vs,0|,

where Ethresh is the maximal energy of an initially
trapped electron (see Sec. VI C). This translates into
a bound on the change in the kinetic energy of the target
electron

|∆E| =
∣∣∣∣12me|~vs|2 −

1

2
me|~vs,0|2

∣∣∣∣ (C5)

≤ γEp
∣∣∣∣sin θR2

∣∣∣∣ ,
where

γ =

(
1 +

√
Ethresh

Ep

)(
1 + 3

√
Ethresh

Ep

)
. (C6)

If we use Udepth as a bound for Ethresh, we get γ ≈ 1.83.
However, in Sec. VI C we showed that only electrons with
Ethresh = 0.3 meV are expected to be trapped, corre-
sponding to γ ≈ 1.01. The average change in the absolute
value of the target electron kinetic energy is therefore,

〈|∆E|〉 ≤ γ q2e
4πε0r0

, (C7)

where r0 is the incoming electron beam radius. Here, we
averaged over all possible impact parameters b, assuming

that the incoming electrons are uniformly distributed in
an electron beam having a radius of r0〈

γEp

∣∣∣∣sin θR2
∣∣∣∣〉 =

γEp
2r20

∫ 2r0

0

dbb
1√

1 + ( 2πε0bmev2

q2e
)2

≈ γEp
2r20

∫ 2r0

0

dbb
1√

1 + (
4πε0bEp

q2e
)2

≈ γ q2e
4πε0r0

, (C8)

where the approximation v ∼ vp was used.
A subtle point in the calculation of the average in

Eq. (C8) is the assumption of a uniformly distributed
(spatial) incident electron beam. While this assumption
is reasonable in the laboratory frame, it is not imme-
diately clear that it is adequate for the center of mass
frame. For trapped electrons with an initial energy
≤ Ethresh = 0.3 meV, that is, significantly smaller than
Ep = 30 eV, the assumption of uniformity is a good
approximation since the lab frame and center of mass
frame are nearly identical. The value of Ethresh might
be larger if measures are taken to decrease trap anhar-
monicity. The ultimate bound for Ethresh is therefore
Udepth. In that case, we can see numerically that go-
ing to the center of mass frame redistributes the impact
parameters to include a larger range of distances and con-
sequentially a lower average impact energy. The calcula-
tion in Eq. (C8) can therefore be regarded as an upper
bound on the actual average value of | sin(θR/2)|. As
an example, we compare this bound to a histogram of
|∆E| derived from a numerical integration of the colli-
sion equation of motion for a random set of initial condi-
tions, as seen in Fig. 23. The target electron energy be-
fore collision Es,0 is assumed to be uniformly distributed
0 ≤ Es,0 ≤ Udepth. The incoming electron beam is as-
sumed to be uniformly distributed. From the histogram,
the average absolute value of the energy imparted to the
target electron per collision is ∼ 0.74 × 10−7Ep. As-
suming 0 ≤ Es,0 ≤ Uthresh, this average decreases to
∼ 10−9Ep. Both values are consistent with the ana-
lytic expression in Eq. (C7) which yields a bound of
4.8 × 10−7Ep. The simulation is set up to account for
the effect of the trapping pseudo-potential during the
collision process, thereby serving as an independent val-
idation of the omission of trap dynamics in our analytic
derivation.

Since the bound in Eq. (C7) does not depend on the
target electron initial velocity, it can be translated to a
corresponding average heating rate bound by multiplying
it by the incoming rate of electrons. A current density
of J incoming electrons results in Jπr20/qe collisions per
second, which in turn results in a heating rate bound of(

dE

dt

)
e

≤ qeJr0
4ε0

, (C9)

where we approximated γ ≈ 1.
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FIG. 23. Histogram of the absolute value of the change in to-
tal energy of a trapped electron, |∆E|, due to collisions with
an Ep = 30 eV incoming electrons. Shaded pink region shows
the analytic bound in Eq. (C7). We numerically integrate
the equations of motion for an electron, trapped initially at
x = y = z = 0, with initial energy Es interacting with the
incoming electron. We assume a pseudo-potential harmonic
trap with 1 GHz frequencies in all axes in a trapping volume
of l3 = (95 µm)3. Here we do not account for micro-motion
dynamics. The energy Es is assumed to be uniformly dis-
tributed between 0 ≤ Es ≤ Udepth = 1.01 eV and the in-
coming electron position is assumed to be at z = −1 mm
with x, y uniformly distributed in the beam cross-section,√
x2 + y2 ≤ r0 = 100 µm.

The above discussion did not include the effect of mi-
cromotion on the collisions. The effect of the trap drive
is to spread the kinetic energy of the incoming electron as
well as the impact parameter of the collision. The bound
in Eq. (C9) changes only by a factor of order unity due
to micromotion. To see this, we first consider the simple
case of a target electron initially at rest in the absence of
rf fields. Using Eq. (C2) we can write the target electron
exact final kinetic energy due to a single collision:

Es = Ep
x2

1 + x2
, x ≡ q2e/4πε0b

Ep
. (C10)

For x� 1 (equivalently b� 1 Å), faster (slower) incom-
ing electrons result in a smaller (larger) increase of the
target electron energy, Es ∝ 1/Ep.

In the presence of an rf trap, the incoming electron
can either accelerate or decelerate before the collision,
depending on the initial phase of the trap drive when
it entered the trapping region. An accelerated (deceler-
ated) electron will therefore transfer less (more) energy
to the target electron as compared to the no-trap colli-
sion. This is exactly the case for the two examples shown
in Fig. 24(a) and (b). These simulate collision processes
for initial rf phases that differ by π radians. For con-
creteness, we assumed an rf trap with dimensions and
frequencies as in Fig. 14(b) and table II. We simplified

the calculation by assuming the trap is harmonic in the
entire cylindrical volume bounded by the electrodes. The
incoming electron initial velocity is assumed to be par-
allel to the trap z axis. Figure 24(a) shows a collision
process where the incoming electron is maximally decel-
erated to a kinetic energy of Ep = 15 eV at the begin-
ning of the collision. This results in the ejection of the
target electron from the trap. Figure 24(b) shows the
other extreme case where the incoming electron experi-
ences maximal acceleration resulting in Ep = 46 eV so
the target electron remains trapped. Although this may
seem paradoxical, it follows immediately from Eq. (C10)
for impact parameters which satisfy b� 1 Å.

To see how well this explanation encapsulates the ef-
fect of micromotion for the general case, we compare the
theory in Eq. (C10) to the values of Es extracted from
numerical simulations as a function the impact param-
eter b. We vary the values of b from 1Å, below which
collisions are essentially head-on [equivalently x ∼ 1 in
Eq. (C10)], to 100 µm, i.e. the electron-beam radius.
For a given value of b, the different values of the trap
initial rf phase result in the spread in Es values shown in
Fig. 24(c) (blue x markers). The center of these distri-
butions, however, follows the theory in Eq. (C10), which
assumes no trap drive [solid red line in Fig. 24(c)]. Over-
all, the effect of micromotion is a ∼ 60 % spread in the
value of Es, centered at the value given by Eq. (C10).

Finally, we extend our treatment to include non-zero
initial velocity for the target electron. To this end, we
repeat the calculation in Eq. (C8) with the addition of
averaging over the rf initial phase φrf ,〈

γEp

∣∣∣∣sin θR2
∣∣∣∣〉 =

=
γ

2πr20

∫ r0

0

dbb

∫ 2π

0

dφrf
Ep,col√

1 + ( 2πε0bcolmev2

q2e
)2
, (C11)

where Ep,col and bcol are the impact energy and impact
parameter at the time of collision and are functions of
φrf . Numerical evaluations of Eq. (C11) are in good
agreement with the analytic theory which assumed the
absence of a trap [Eq. (C8)], as can be seen in Fig. 24(d).
Here, the value of γ in Eq. (C6) changes to γ ∼ 2.23 to ac-
count for the maximally decelerated incoming electrons,
with energies as low as 15 eV.
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FIG. 24. The effect of micromotion on electron-electron scattering for a harmonic trap with dimensions and frequencies similar
to those described in Fig. 14b. (a) Example of a simulated trajectory of a trapped electron (dotted blue curve) colliding with
an incoming electron (dashed red curve) at an impact parameter b = 10 Å, as a function of time in units of the trap rf period
τrf . Trap center is assumed at the origin x = y = z = 0 and ~r is the particle position. The instantaneous kinetic energy of the
incoming electron Ep (solid green curve) decreases prior to the collision due to the varying rf potential. When the incoming
electron is at a distance on the order of ∼ b from the trap center (dashed black line), the incoming electron looses 1.39 eV
giving the trapped electron enough energy to escape the trap. (b) Same as (a), for an initial rf phase shifted by π radians as
compared (a). In this case, the trapped electron gains 0.27 eV due to the collision, resulting in confined oscillations. (c) Blue
vertical lines show the spread in the final target electron energy Es vs. impact parameter b, resulting from different initial trap
rf phases. Analytic theory of Eq. (C10) is shown by the solid red line. (d) Bound on the average energy gain per collision vs.
incoming electron-beam radius r0. Target electron initial kinetic energy is assumed to be uniformly distributed from 0 eV to
1 eV. Analytic theory of Eq. (C8) (solid blue line) is compared to a numerical integration of Eq. (C11) that includes the spread
in impact parameters and incoming electron kinetic energies due to micromotion (blue circles). The spread in these values is
calculated by numerical integration of the equations of motion for the two electrons, for various initial conditions, under the
influence of the trap rf field as well as their Coulomb repulsion. Initial conditions are assumed uniform as in Fig. 23.
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