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The performance of open-system quantum annealing is adversely affected by thermal excitations
out of the ground state. While the presence of energy gaps between the ground and excited states
suppresses such excitations, error correction techniques are required to ensure full scalability of
quantum annealing. Quantum annealing correction (QAC) is a method that aims to improve the
performance of quantum annealers when control over only the problem (final) Hamiltonian is pos-
sible, along with decoding. Building on our earlier work [S. Matsuura et al., Phys. Rev. Lett.
116, 220501 (2016)], we study QAC using analytical tools of statistical physics by considering the
effects of temperature and a transverse field on the penalty qubits in the ferromagnetic p-body
infinite-range transverse-field Ising model. We analyze the effect of QAC on second (p = 2) and
first (p ≥ 3) order phase transitions, and construct the phase diagram as a function of temperature
and penalty strength. Our analysis reveals that for sufficiently low temperatures and in the absence
of a transverse field on the penalty qubit, QAC breaks up a single, large free energy barrier into
multiple smaller ones. We find theoretical evidence for an optimal penalty strength in the case of a
transverse field on the penalty qubit, a feature observed in QAC experiments. Our results provide
further compelling evidence that QAC provides an advantage over unencoded quantum annealing.

I. INTRODUCTION

Quantum annealing (QA) is a heuristic optimization
method that minimizes classical cost functions using
quantum adiabatic evolutions [1–6]. For closed systems,
adiabaticity guarantees that the time-evolved state is an
instantaneous ground state of the time-dependent QA
Hamiltonian [7–9], which in turn guarantees that the final
state is a solution of the optimization problem. A non-
adiabatic evolution causes transitions into excited states,
which correspond to computational errors. In open sys-
tems, coupling to the environment causes further errors
even if the evolution is perfectly adiabatic. Coupling to
a thermal environment results in excitations at any finite
temperature [10–15].

While QA is believed to be robust against certain types
of decoherence [10–15], QA remains vulnerable to the
aforementioned thermal excitations that depopulate the
ground state, so quantum error correction is necessary
for scalability. Currently, despite considerable theoretical
progress in the development of quantum error suppres-
sion and correction for QA [16–27], an adiabatic version
of the accuracy-threshold theorem (see, e.g., Ref. [28])
has not yet been established. While it is clearly impor-
tant to address the theoretical fault tolerance challenge
[29], there has been a great deal of interest in investigat-
ing implementable error correction methods on near-term
devices. One motivation for this is the commercial avail-
ability of quantum annealing hardware, the D-Wave pro-

cessors [30–32], which are known to be prone to precision
and thermal errors [33–38]. Error correction methods
for QA, known as quantum annealing correction (QAC),
have been developed and demonstrated on the D-Wave
processors [39–43].

In QAC, the problem Hamiltonian is encoded using
a quantum error detection code. Excitations out of the
ground state are suppressed via the introduction of en-
ergy penalties that commute with the encoded problem
Hamiltonian. A classical post-processing (decoding) step
allows for further recovery of the logical ground state
even after such excitations have occurred. We distin-
guish between two versions of QAC. In one case desig-
nated penalty qubits are used to increase the energy of
erroneous states [39–42], while in the other case there are
no designated penalty qubits but some Ising couplings
are used to impose energy penalties [41–43]. Here we fo-
cus on the former and reserve a study of the latter for a
future publication [44].

In a previous paper [45], we investigated how QAC af-
fects the success rate of QA using mean field methods.
Focusing mostly on the zero temperature case, we showed
that QAC can remove or weaken phase transitions dur-
ing the the evolution by increasing the energy gap. As a
consequence the success rate for QA is expected to im-
prove when using QAC. Indeed, this is what was observed
experimentally [39–42].

The main goal of this paper is to extend the analy-
sis of QAC to the finite temperature case. To accom-
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plish this we use analytical methods borrowed from sta-
tistical physics, namely Landau-Ginzburg theory applied
to the free energy derived for the quantum model after
the Suzuki-Trotter procedure. In this setting we ana-
lyze the phase transitions associated with QAC at finite
temperature, since the nature of the phase transition of-
ten determines computational complexity: typically first
order transitions are associated with exponentially small
gaps, while second order transitions feature polynomially
small gaps (some exceptions wherein a first order quan-
tum phase transition is associated with a polynomially
small gap are known [46, 47]). We also consider the free
energy and study barrier height and width, as these de-
termine the tunneling rate and (as we show) can also be
related to the quantum gap; thus they set the inverse
time scales for adiabatic evolution.

In addition to studying QAC at finite temperatures, a
novel aspect of the analysis we present here is a study
of the effect of a transverse field acting on the penalty
qubits. The presence of the transverse field on the
penalty qubits is a feature of all the experiments per-
formed so far of QAC [39–42], but it was ignored for
simplicity in our earlier study [45]. We provide a theoret-
ical justification for the existence of an optimal penalty
strength that maximizes the undecoded ground state
probability, a feature that was observed in the experi-
ments [39].

This paper is organized as follows. In Section II we
briefly review QA and QAC. In Section III we study
the free energy and finite-temperature phase transitions
without a transverse field on the penalty qubits. We
show that the penalty term in general weakens the phase
transitions or splits one “hard” first-order phase transi-
tion into multiple, weaker phase transitions. This cor-
responds to larger energy gaps, which are expected to
improve the performance of QA. Thermal effects, how-
ever, have a competing effect, increasing the potential
barriers and thus reducing the gaps. In Section IV, we
consider phase transition with a transverse field on the
penalty qubits. We find that this transverse field also
increases the potential barrier at the phase transitions.
We therefore conclude that adding a transverse field on
the penalty qubits reduces the effectiveness of QAC. We
conclude in Section V. Additional technical details are
presented in the Appendix.

II. QUANTUM ANNEALING AND QUANTUM
ANNEALING CORRECTION

Quantum annealing is designed to solve combinatorial
optimization problems. It is formulated in terms of a
classical Ising Hamiltonian of the form

HZ = −
∑
i

hiσ
z
i −

∑
(i,j)

Jijσ
z
i σ

z
j , (1)

where i ∈ [1, N ] are the spin sites, {hi} are the local
fields, {Jij} are the Ising couplings, and σzi is the z com-
ponent of the Pauli matrices acting on site i. The opti-
mization problem is encoded into the parameters hi and
Jij . The search space is the set of classical spin configu-
rations, and the optimal solution is the ground state or
one of the ground states of the Ising Hamiltonian. For
general hi and Jij , finding a ground state of the Hamil-
tonian above is NP-hard [48]. In physical terms, the
Hamiltonian encodes a “rough” energy landscape so that
heuristic search methods such as simulated annealing [49]
tend to become trapped in local minima. QA uses quan-
tum fluctuations to find a ground state of the “problem
Hamiltonian” HZ . Quantum fluctuations are induced by
a simple “driver Hamiltonian” HX whose ground state
is easy to prepare since it involves no interactions. We
consider the standard transverse-field driver Hamiltonian

HX = −
N∑
i=1

σxi . (2)

The time-dependent QA Hamiltonian is given by

H(t) = A(t)HX +B(t)HZ , t ∈ [0, tf ] . (3)

The driver term dominates the Hamiltonian at the initial
time t = 0: A(0) � B(0). Then A(t) decreases while
B(t) increases, and at the end of the evolution t = tf , the
problem Hamiltonian dominates: A(tf )� B(tf ). In the
absence of any coupling to an external environment and
provided the evolution is slow (adiabatic) compared to
the timescale set by the minimum inverse gap ofH(t), the
final state is a ground state ofH(tf ) with high probability
and gives the solution to the optimization problem.

In the open system case the steady state is no longer
the ground state, and the spectral gap of the Liouvil-
lian sets the inverse timescale for adiabatic evolution [50–
53]. Coupling to the environment (typically modeled as
a thermal bath) introduces computational errors in the
form of thermally induced excitations [10–15]. Error cor-
rection is thus necessary in any physical implementation
of QA. In the QAC approach, the quantum state is pro-
tected in three steps. First, a classical repetition code is
used, whereby a logical qubit is encoded into C physi-
cal qubits. The problem Hamiltonian is correspondingly
“encoded”, e.g., every Pauli operator is replaced by the
corresponding encoded Pauli operator. In the second step
we deform the Hamiltonian by adding penalty terms that
(i) commute with the problem Hamiltonian and (ii) anti-
commute with bit-flip errors. Step (i) ensures that the en-
coded problem Hamiltonian and the penalty terms share
the same set of eigenstates, and step (ii) ensures that it
costs more energy for the environment to generate any
errors that anti-commute with σz. In the third step the
logical qubits are decoded at the end of the evolution,
either by majority vote [39–42] or energy minimization
[41, 42].

The encoded Hamiltonian for QAC that we consider is
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of the form

H =

C∑
c=1

(HZ
c + ΓHX

c + γHP
c ) , (4)

where HZ,X
c are C identical copies of the same HZ,X

defined in Eqs. (1) and (2). The third term HP
c is the

penalty term, with γ its strength. Γ is the strength of
the quantum term which sweeps from ∞ to zero during
the quantum annealing evolution.

As in our earlier work [45], we choose the penalty as the
sum over the stabilizer elements of the repetition code,
anticommuting with all single-qubit bit-flip errors, as re-
quired for error detection and suppression of such errors
[54]:

HP
c = −

N∑
i=1

σzicσ
z
i0 . (5)

The penalty term includes an independent penalty qubit
σzi0 for each logical qubit i. It couples ferromagneti-
cally to all C physical qubits corresponding to logical
qubit i, thus creating an energy penalty for misalignment
with the penalty qubit. Note that the degenerate ground
states of the penalty term are |0̄〉i|0〉P and |1̄〉i|1〉P where
|0〉P and |1〉P are the states of the penalty qubit, and
the code space of the ith logical qubit is spanned by the
two states with all the “problem spins” pointing in the
same direction: |0̄〉i = |00 · · · 0〉i and |1̄〉i = |11 · · · 1〉i,
where |0〉 and |1〉 are the eigenstates of σz. Therefore,
the ground state of the QAC Hamiltonian H at the end
of evolution (Γ = 0) is the ground state of the prob-
lem Hamiltonian HZ . However, the ground state of
HZ + ΓHX is not an eigenstate of HP =

∑
cH

P
c . Thus,

although the above form of the penalty term is natural
from the problem Hamiltonian point of view, it is not
a priori clear that it helps the performance of QA. To
ensure an increase in the ground state gap of HZ + ΓHX

one needs to have a time- and problem-dependent penalty
term, or encode the driver Hamiltonian as well [16].

We shall consider a modification of the QAC Hamilto-
nian in Eq. (4) by the inclusion of a transverse field on
the penalty qubit. This addition takes the form

V = −εCΓ

N∑
i=1

σxi0 , (6)

where ε is the strength of transverse field on the penalty
qubit relative to the problem qubits. All QAC exper-
iments to date [39–42] were performed in the presence
of this term, and one needs to account for this feature
in order to have a more complete understanding of the
experimental results.

III. QAC WITHOUT A TRANSVERSE FIELD
ON THE PENALTY QUBITS

Let us first consider QAC at finite temperature in the
absence of a penalty transverse field, i.e., with ε = 0 in
Eq. (6). Our problem Hamiltonian is a fully connected
p-body ferromagnet, i.e.,

HZ
c = −N

(
1

N

N∑
i=1

σzic

)p
, (7)

where i is the logical qubit index and c is the copy index.
The encoded QAC Hamiltonian (4) is therefore:

H = −N
C∑
c=1

(
1

N

N∑
i=1

σzic

)p
− Γ

C∑
c=1

N∑
i=1

σxic

− γ
C∑
c=1

N∑
i=1

σzicσ
z
i0 . (8)

Our model generalizes those in Refs.[55–64], where the
problem without encoding (C = 1) and without penalty
terms (γ = 0) was discussed. It is clear that the ground
state of the problem Hamiltonian HZ

c is the state with all
the spins pointing in the +z direction for odd p, and is
degenerate with all the spins pointing either in the +z or
−z direction for even p. This fact does not change after
we turn on the penalty γ. The sign of γ is not important
since the penalty spin σzi0 couples only to the problem
qubits σzic, and in the ground state either the penalty and
the problem qubits are parallel (γ > 0) or anti-parallel
(γ < 0). Without loss of generality we choose γ to be
non-negative.

Phase transitions occurring during the evolution are
the main bottlenecks hindering the performance of the
algorithm. Therefore, to obtain useful insights for the
mechanisms that help QAC in improving the perfor-
mance of QA, we analyze the phase transitions associated
with the QAC encoding defined in Eq. (8). In particular,
we study how such phase transitions are affected by both
the presence of a finite temperature and a transverse field
on the penalty qubits.

The free energy of this system can be computed using
the Suzuki-Trotter decomposition. In this decomposi-
tion, one can transform a quantum problem in d dimen-
sions into a classical problem in (d + 1) dimensions by
introducing a Trotter direction [65]. For our model, one
can write the partition function Z = Tr e−βH as a path
integral of an order parameter mc = 1

N 〈
∑
i σ

z
ic〉 along

the Trotter direction. In the large N limit, one can use a
static approximation in which mc does not change along
the Trotter direction.

As shown in Appendix A, the saddle point equation
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for mc is

mc =

∑
s∈{−,+}

vs,c
Qs,c

sinh(βQs,c)
∏
c′ 6=c cosh(βQs,c′)∏C

c′=1 coshβQ−,c′ +
∏C
c′=1 coshβQ+,c′

.

(9)

where

Qs,c =
√
v2
s,c + Γ2 , (10a)

vs,c(m) = pmp−1
c + sγ . (10b)

The minimum free energy solution is given by taking all
order parameters equal, mc = m,∀c, with m satisfying

m =

∑
s∈{−,+} sinh(βQs) coshC−1(βQs)

vs
Qs

(coshβQ−)C + (coshβQ+)C
, (11)

where we dropped the c subscript on Q±,c and v±,c. Con-
sidering only this solution, the resultant free energy F ,
defined by Z = exp(−βNF ), is

F/C = (p− 1)mp − 1

Cβ
ln

∑
s∈{−,+}

[2 cosh(βQs)]
C
.

(12)

Details of this calculation can be found in the Supple-
mental Material of Ref. [45] [in particular Eq. (19) there
becomes Eq. (12)].

A. The zero temperature limit

Note that when p is even, Q± and hence both F and
the RHS of Eq. (11) are invariant under the reflections
m ↔ −m and γ ↔ −γ. At zero temperature (β →
∞), only the largest term in the exponents in Eq. (12)
survives. By denoting v2 = max{v2

+, v
2
−}, the free energy

simplifies to

F/C = (p− 1)mp −
√
v2 + Γ2 , (13)

and the saddle point equation simplifies to

m =
v√

v2 + Γ2
. (14)

For |m| ≈ 0 we have, using v = p|m|p−1 +γ, and keeping
only the leading order term in |m|,√

v2 + Γ2 ≈
√
γ2 + Γ2

[
1 + 2γp|m|p−1/(γ2 + Γ2)

]1/2
≈
√
γ2 + Γ2 +

γp|m|p−1√
γ2 + Γ2

.

Therefore, when |m| ≈ 0:

(F/C)β→∞ = −
√
γ2 + Γ2− pγ√

γ2 + Γ2
|m|p−1 +O(mp) .

(15)

B. Second order phase transition: p = 2

Let us first study the p = 2 case at finite temperature.
If there is no penalty term (γ = 0), the phase diagram is
simply that of the transverse field Ising model. At zero
temperature [Eq. (13)], the ground state is determined by
the dominance of either the ferromagnetic coupling or the
quantum fluctuations (Γ). If the ferromagnetic coupling
dominates (small Γ), the state is in the symmetry-broken
(ferromagnetic) phase (m 6= 0). On the other hand, if the
quantum fluctuations dominate (large Γ), the state is in
the symmetric (paramagnetic) phase (m = 0). These two
phases are separated by a second order phase transition
at a critical value Γc.

The penalty term induces symmetry breaking. As
mentioned above, the ground state configuration for the
penalty term has both the problem spins and the penalty
spin parallel along the z direction. The symmetric con-
figuration in which the problem spins point in the x di-
rection costs more energy. In Ref. [45], it was shown that
the symmetry is always broken in the zero temperature
limit in the presence of the penalty term. Indeed, one
can easily see this by considering the free energy around
m = 0, given in Eq. (15). The presence of the linear term
shows that for any finite value of γ > 0, the origin m = 0
is unstable and the ground state is realized at |m| > 0.

At finite temperature, thermal fluctuations can change
the situation qualitatively. From Eq. (11), one can see
that m = 0 is always a solution of the saddle point equa-
tion. The left and the right hand sides of Eq. (11) are
plotted in Fig. 1. If the slope of the RHS of Eq. (11) at
m = 0 is less than 1, then m = 0 is the unique solution
which suggests that the system is in the symmetric phase
with m = 0. If the slope is larger than 1, then there are
two additional solutions with m 6= 0. In this case the
system is in the symmetry-broken phase. At finite tem-
perature, one can see that the critical value of Γ is finite.
The Taylor expansion of the right hand side of Eq. (11)
around m = 0 is(

2βγ2

γ2+Γ2 +
2Γ2 tanh(β

√
γ2+Γ2)

(γ2+Γ2)3/2

+
4βγ2 tanh2(β

√
γ2+Γ2)

γ2+Γ2

)
m+O(m2) . (16)

At sufficiently low temperatures such that βγ � 1, the
coefficient of m is greater than 1 for small Γ, while it goes
to zero as Γ → ∞. Therefore, the large Γ and the small
Γ regions are separated by a phase transition, and the
critical value is finite: 0 < Γc <∞.

To illustrate these considerations, Fig. 2 shows the
phase transition line in the (Γ, γ) plane for various tem-
peratures. Note that all the couplings γ and Γ, as well
as T and F have the dimension of the energy. They
are normalized so that the strength of the p-body inter-
action satisfies (8). The region above each fixed tem-
perature line (larger γ) is the symmetry-broken phase
while that below (smaller γ) is the symmetric phase.
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FIG. 1. Plot of Eq. (11) for C = 3, p = 2, γ = 0.1, β = 100
and Γ = 0.5, Γ = 4. Since β <∞, m = 0 is always a solution.
The number of solutions is determined by the slope of the
curves at m = 0: if the slope is greater than 1, there are
three solutions (m1 < 0,m2 = 0,m3 > 0), and the state is
in the symmetry-broken phase. If the slope is less than 1,
there is only one solution at m = 0, and the system is in the
symmetric phase.

The symmetry-broken phase is where the system solves
the (trivial) computational problem of finding the ground
state with high probability, while the symmetric phase is
where it does not. Therefore, from the point of view of
successful QAC, we would like the system to end up in
the symmetry-broken phase.

There are several interesting and noteworthy features;
in particular, we observe the existence of two critical
temperatures, T1 = 1 and T2 = 2. For temperatures
below T1, the phase transition lines converge to Γc = 2
as γ → 0. In the zero temperature limit, the slope of
the phase transition line goes to zero, corresponding to
the disappearance of the symmetric phase, i.e., an arbi-
trarily small penalty γ suffices to push the system into
the symmetry-broken phase. Conversely, for a fixed γ,
the phase transition happens at larger Γ (earlier in the
anneal) as the temperature decreases.

For temperatures between T1 and T2, the Γc(γ → 0)
point moves to values lower than 2. At T2, the phase
transition line intersects the origin, i.e., Γc(γ → 0) = 0.
For temperatures higher than T2, the phase transition
lines do not reach γ = 0. Therefore, there is no phase
transition for γ below a certain value, and the system
is always in the symmetric phase (and fails to solve the
computational problem) due to thermal fluctuations. An
example of such a case (T = 2.22) is shown in Fig. 2,
where there is no phase transition for γ < 0.53.

C. First order phase transitions: p ≥ 3

For p ≥ 3, the phase transition becomes first order,
characterized by a discrete jump in the value of m that
minimizes the free energy.

�=����

�=�

�=����

�=�

�=����

� � � � � � � �
���

���

���

���

���

���

Γ

γ

FIG. 2. Phase diagram (Γ, γ) at p = 2 for various values
of temperature T , and for C = 3. Each second order phase
transition line separates the symmetry-broken phase m 6= 0
(above the lines) from the symmetric phase m = 0 (below the
lines). For T < T1 = 1, the phase transition lines merge at
Γ = 2 as γ → 0. The Γ(γ → 0) point takes smaller values for
T1 < T < T2, and at T = T2 = 2 it is zero. Above T2, the
phase transition lines merge on finite γ in Γ → 0 limit. This
means that even in the absence of quantum fluctuations, the
spin fluctuations due to the temperature are large enough to
have m = 0 always be the global minimum if γ is not too
large.

1. T = 0

Let us first review the zero temperature case [45]. The
first order phase transition persists as long as γ is less
than some critical value γc(p). At the critical point, the
free energy barrier between different ground states be-
comes smaller for larger values of γ. We interpret this as
a softening of the phase transition as the penalty coupling
increases.

The Taylor expansion of the free energy around m = 0,
Eq. (15), shows that the symmetric phasem = 0 is always
unstable and will not be realized as the ground state.
The phase transition at finite γ is therefore a transition
between finite values ofm, which we denote bymsmall and
mlarge (msmall < mlarge). Both values are continuous in
γ. In particular, msmall goes to zero continuously as γ →
0. As γ increases, msmall becomes larger and eventually
it merges with mlarge at the critical value γ = γc. For
γ > γc, the phase transition disappears [45].

2. T > 0

At finite temperature, the symmetric point m = 0 be-
comes locally stable, as can be seen by computing the
Taylor expansion of the free energy [Eq. (12)] at m = 0:

F (m)/C = F (0)/C + (p− 1)mp +O(mp+1) . (17)

Therefore, phase transitions can happen not only be-
tween msmall and mlarge but also between m = 0 and
msmall, and between m = 0 and mlarge. Furthermore,
unlike the zero temperature case, at finite temperature
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the point Γ = 0 is always separated from Γ = ∞ by
first order phase transitions, similarly to what happens
for p = 2. However, the penalty γ does soften the phase
transition, in that it shrinks the free energy barrier sepa-
rating degenerate minima of the free energy. The reason
for this, as we show in Appendix B, is that the gap ∆ of
the QAC Hamiltonian for a range of p and β values can
be estimated as

∆ & e−β∆m∆FN . (18)

where ∆m is the width and ∆F is the height of the free
energy barrier at the phase transition. Thus, within the
range of range of p and β where this estimate is valid, a
smaller free energy barrier translates into a larger quan-
tum gap ∆.

The (Γ, T ) phase diagram is shown in Fig. 3. In
Fig. 3(a), we plot the phase transition lines for p = 4 and
γ = 0.5, 0.7, 1.5 (γc ' 0.8). The point (Γ, T ) = (0, 0),
which encodes the solution to the optimization problem,
is separated from the large Γ and/or the large T region
by first order phase transition lines. When quantum fluc-
tuations are very large (Γ� 1), the free energy minimum
is in the symmetric phase m = 0. As quantum fluctua-
tions decrease (Γ → 0), the free energy minimum shifts
to the ordered phase m = mlarge due to the ferromagnetic
coupling. The same thing happens for thermal fluctua-
tions: when the temperature is large, the system is in the
symmetric phase m = 0 and as temperature decreases it
crosses into the ordered phase m 6= 0. The details of the
first order phase transitions are sensitive to the value of
the penalty strength γ, which we we analyze next.

For γ < γc, there is a branch point and three phase
transition lines are connected there. For example, in
Fig. 3(a), such a branch point can be observed for γ = 0.5
at (T,Γ) = (0.02, 1.8) and for γ = 0.7 at (T,Γ) =
(0.078, 2.096) [at these points, F (m = 0), F (msmall), and
F (mlarge) all take the same value at the critical point
Γ = Γc. See Fig. 5]; let us denote such (γ-dependent)
branching points by (Tbranch,Γbranch). The phase tran-
sition line (T < Tbranch,Γ > Γbranch) indicates the tran-
sition between m = 0 and m = msmall. Likewise, the
phase transition line (T < Tbranch,Γ = Γbranch) indicates
the transition between msmall and m = mlarge, and the
phase transition line (T > Tbranch,Γ < Γbranch) indicates
the transition between m = 0 and m = mlarge. This
branching behavior is a generic feature for p ≥ 3, and we
show in Fig. 3(c) an example for p = 5 with γ ≤ γc.

3. Free energies along each phase transition line

In Fig. 4, we plot the free energies along each phase
transition line. Figure 4(a) shows the free energy for
(T < Tbranch,Γ > Γbranch). As the temperature decreases
the critical value of Γ becomes larger, and the free energy
barrier becomes smaller. The phase transition effectively
disappears at very low temperatures, which is consistent

with the fact that there is no corresponding phase tran-
sition at T = 0.

Figure 4(b) shows the free energy for (T <
Tbranch,Γbranch = Γ). This transition exists at T = 0,
and the phase transition line at T > 0 continuously con-
nects to the transition line at T = 0. The critical value
of Γ does not change within numerical precision.

Figure 4(c) shows the free energy for (T > Tbranch,Γ <
Γbranch). The critical value of Γ becomes smaller as
the temperature increases. Above a γ-dependent criti-
cal temperature, the global minimum of the free energy
is at m = 0, so the state is in the symmetric phase even
when there are no quantum fluctuations (Γ = 0). This
state can therefore not recover the solution to the opti-
mization problem. As can be observed in Fig. 3(a), the
value of this critical temperature increases with increas-
ing γ. We provide additional analysis of the free energy
in Appendix C.

IV. QAC WITH A TRANSVERSE FIELD ON
THE PENALTY QUBITS

Recall that all the experiments conducted to date on
QAC [39–42] involve a transverse field on the penalty
qubits. In this section we analyze this scenario, de-
fined by the total Hamiltonian that includes the “penalty
transverse field”, namely the sum of Eqs. (6) and (8):

H =−N
C∑
c=1

(
1

N

N∑
i=1

σzic

)p
− Γ

C∑
c=1

N∑
i=1

σzic − εCΓ

N∑
i=1

σxi0

− γ
C∑
c=1

N∑
i=1

σzicσ
z
i0 . (19)

Beyond the direct connection to experiments, the ad-
dition of the transverse field should make the penalty
qubits, and as a consequence the problem qubits, fluc-
tuate more easily, and it is interesting to study whether
this helps the QA process cross phase transitions more
efficiently.

When a transverse field on the penalty qubits is in-
cluded, the C copies of the problem qubits and the
penalty qubit are no longer effectively decoupled. This
means that to understand the effect of the penalty qubits
we need to study a 2C+1-dimensional Hilbert space in-
stead of a 2-dimensional one.

A. Second order phase transition: p = 2

We show in Appendix A that after the Suzuki-Trotter
procedure, the free energy at low temperature (β � 1)
can be written as

F/C = (p− 1)mp − 1

Cβ
ln [Tr exp(βHeff)] , (20)
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FIG. 3. (Γ, T ) phase diagrams for p = 4, 5 and different penalty values. The space to the right of the curves corresponds to the
paramagnetic or symmetric phase, labeled by ‘PM’, while the space to the left of the curves corresponds to the ferromagnetic
or symmetry-broken phase, labeled by ‘FM’. (a) For p = 4 and γ = 0.5, 0.7 and 1.5. At zero temperature, there is a first
order phase transition. The lower branch (Γ = 2.1, T < 0.07) of the phase boundary connects to the phase transition at zero
temperature. This line separates the state characterized by mlarge from msmall. Another line (Γ > 2.1, T < 0.07) is for the
phase transition between msmall and m = 0. There is no corresponding phase transition at T = 0 and this transition effectively
disappears (msmall goes to zero) as T approaches zero. For γ = 1.5, there is no corresponding phase transition at T = 0.
Therefore there is no branch that reaches T = 0. (b) A close-up around the branching point in (a). The branching temperature
increases as γ increases. (c) The phase diagram for p = 4, γ = 0.5 and for p = 5, γ = 0.8.
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FIG. 4. Free energy as a function of the order parameter m along the phase transition lines, for p = 4, γ = 0.7. (a)
Transition between m = 0 and m = msmall (T < Tbranch,Γ > Γbranch). (b) Transition between m = msmall and m = mlarge

(T < Tbranch,Γ = Γbranch). (c) Transition between m = 0 and m = mlarge (T > Tbranch,Γ < Γbranch).
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FIG. 5. Free energy at the branching point for γ = 0.7.
At T = 0.078 and Γ = 2.096, the free energy possesses three
minima at m = 0, m = msmall, and m = mlarge.

where Heff is an effective Hamiltonian given by

Heff = −(pmpσzc + γσzcσ
z
0 + Γσxc + εΓσx0 ) . (21)

The term Tr exp(βHeff) can be evaluated by numerically
diagonalizing the 2C+1 × 2C+1 matrix.

The phase diagram in the (Γ, T ) plane is shown for
p = 2 in Fig. 6(a) for various values of γ and ε. The phase
transition line separates the symmetry-broken phase m 6=
0 (below the lines) from the symmetric phase m = 0
(above the lines). As in the case without a penalty trans-
verse field studied in the previous section, there exists a
critical temperature above which the state is in the sym-
metric phase for all values of Γ even for finite ε. However,
unlike the ε = 0 case, we find that Γc approaches a finite
value in the low temperature limit for finite ε. The phase
transition lines at finite γ approach that of γ = ε = 0 as ε
increases. Thus, the penalty transverse field counterbal-
ances the effect of the penalty term γ, as it enlarges the
phase space of the symmetric phase with m = 0, where
the system fails to solve the optimization problem.

The location of the phase transition depends on the
value of C. In Fig. 6(b), we compare the phase transi-
tion lines for C = 2 and 3. While the qualitative features
for the two C values are the same, the symmetry-broken



8

phase is enlarged as C increases for both the ε = 0 and
ε = 1 cases. Thus, increasing C acts productively and
enhances the phase where the system solves the opti-
mization problem.

B. First order phase transitions: p ≥ 3

The phase diagram in the (Γ, T ) plane for various val-
ues of ε is shown in Fig. 7, for γ = 0.5. For sufficiently
small ε, the phase diagram is similar to that of ε = 0:
msmall still exists and can be the lowest free energy state
for sufficiently low temperatures. Therefore there are
two phase transitions, one from m = 0 to msmall and
the other from msmall to mlarge. As the temperature in-
creases, msmall goes to 0 and above a certain branch-
ing point temperature there is only one phase transition
from m = 0 to mlarge. At ε = 0.014 (not shown), this
branching point disappears, and there is only one phase
transition from m = 0 to mlarge.

In order to understand the disappearance of the phase
transition as ε is increased, we show a comparison of the
free energies for ε = 0 and ε 6= 0 at their respective
critical Γ’s in Fig. 8. For the choice of parameters shown,
there are three local minima for ε = 0. As we noted in
the previous section, there are correspondingly two phase
transitions, one between m = 0 and msmall followed by
a transition between msmall and mlarge. By increasing
ε, the free energy barrier between m = 0 and mlarge is
raised, and as a consequence the local minimum msmall

disappears for sufficiently large ε, as shown in Fig. 8 for
ε = 0.1.

Recall that as we discussed in Sec. III C, the splitting of
a first order phase transition into multiple smaller phase
transitions is beneficial from the QA point of view. Fur-
ther recall that the energy gap between the ground state
and the excited state decreases when the potential bar-
rier becomes larger [Eq. (18)]. This means that the trans-
verse field decreases the energy gap at the phase transi-
tion. Both effects thus adversely affect the success rate
of QAC in comparison to having no transverse penalty.

In Appendix D we supplement the analysis presented
here with perturbation theory in ε, which allows us to
show analytically how introducing the penalty transverse
field removes the local minimum at msmall.

C. Optimal value of γ

The experimental results reported in Refs. [39–43]
all included a penalty transverse field and showed a
marked improvement in performance relative to the un-
encoded case. These results required the optimization
of the penalty strength in order to maximize the suc-
cess probability of QAC after decoding, although an opti-
mal penalty strength was also observed when maximizing
the physical (i.e., encoded, but undecoded) ground state
probability. Here we do not include a decoding step and

instead study the phase transition as a function of γ for a
fixed value of ε in order to study whether any features of
the free energy may indicate the presence of an optimal
γ value for QAC.

We display the critical value of Γ, denoted Γc, as a
function of γ for ε = 1 in Fig. 9(a). Γc increases mono-
tonically with γ, so the phase transition happens earlier
in the evolution. (Note that for the value of ε relevant
to the experiments, there is only a single phase transi-
tion.) On the other hand, both the free energy height
and mlarge (which characterizes the free energy barrier
width) are non-monotonic functions of γ at the critical
point, as shown in Figs. 9(b) and 9(c). The free en-
ergy barrier height decreases for γ ≤ 5 and increases for
γ > 5. The barrier width decreases monotonically for
γ < 6 but increases monotonically for γ ≥ 6. Since the
barrier height and width control the behavior of the in-
stanton connecting the two free energy minima and hence
the tunneling rate at the phase transition point (more
details are provided in Appendix B), the presence of a
minimum as a function of γ that takes a value smaller
than that at γ = 0 is strong evidence in favor of an opti-
mal γ for QAC. While the position of the minima of the
barrier height and width do not coincide precisely, they
are broad minima, and it is possible that their combined
effect is responsible for the appearance of the optimal γ
observed for the undecoded ground state in experiments.

V. CONCLUSIONS

Building on the methods and results of Ref. [45], we
have extended the mean-field analysis of quantum an-
nealing correction to include the effects of temperature
and of a transverse field on the penalty qubits. We find
that the effects of a finite temperature T on QA man-
ifests themselves in two different but connected ways,
both of which are detrimental. First, the symmetric
phase, where quantum annealing fails to find the ground
state, is enlarged in the (γ, T ) phase space, where γ is
the penalty strength. Second, the free-energy landscape
is modified in such a way that the barrier between the
two minima at the phase transition is increased. This
implies that for sufficiently large temperatures the two
first-order phase transitions present for the p > 2 case
are replaced by one first-order phase transition with a
larger free energy barrier. For first order phase transi-
tions, larger barriers imply smaller tunneling rates be-
tween the two minima, which means that the probability
of finding the ground state is lowered at fixed anneal-
ing time. In fact, the energy gap between the ground
state and excited states is a function of the potential
barrier, which appears in the exponent for a model with
a first order transition [see Eq. (18)]. Thus the gap size
shrinks exponentially in the free energy barrier height
and width. Clearly, multiple phase transitions with small
barriers are preferable to a single transition with a large
barrier: in the former case the total annealing time is
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FIG. 6. (a) Phase diagram in the presence of a penalty transverse field. Shown are the p = 2 phase transition lines with C = 3
for different values of γ and ε. (b) Comparison of p = 2 phase transition lines with C = 2 and C = 3 for γ = 0.5 and ε = 0 and
1. The space to the right of the curves corresponds to the paramagnetic or symmetric phase, while the space to the left of the
curves corresponds to the ferromagnetic or symmetry-broken phase.
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FIG. 7. Phase diagram for p = 4 in the presence of a penalty
transverse field. The space to the right of the curves cor-
responds to the paramagnetic or symmetric phase, while the
space to the left of the curves corresponds to the ferromagnetic
or symmetry-broken phase. The penalty coupling is chosen
to be γ = 0.5 for all curves.

tsmall
a ∼ maxi 1/∆i ∼ maxi exp(β∆m∆F small

i N), while
in the latter tlarge

a ∼ 1/∆ ∼ exp(β∆m∆F largeN), and
tsmall
a � tlarge

a provided maxi ∆F small
i � ∆F large.

We have shown that the introduction of a transverse
field on the penalty qubit, for a fixed value of γ, makes
the critical value of the annealing parameter Γ smaller
for p = 2, and enlarges the potential barrier for p ≥ 2.
In this sense one might say that the penalty transverse
field favors the symmetric phase with m = 0.

Both the temperature and the additional transverse
field favor fluctuations (either of thermal or quantum
nature) that facilitate the appearance of the symmetric
phase, so part of our results have an intuitive explana-
tion. On the other hand, intuitively, the transverse field
should facilitate the annealing process by inducing quan-
tum fluctuations of the penalty qubit. However, we find
that the transverse field tends to reduce the tunneling
rate at the phase transitions, a counter-intuitive results.
A possible resolution of this puzzle may be that the free

ϵ=�

ϵ=���

��� ��� ��� ��� ���
����

����

����

����

�

�

FIG. 8. Free energies F with and without the penalty trans-
verse field at the critical points. Parameters are chosen to be
p = 4, γ = 0.5, T = 0.03. The blue line is for ε = 0,Γ = 1.85,
and the red line is for ε = 0.1,Γ = 1.76.

energy includes entropy considerations that may not be
relevant in the dynamics. Preliminary analysis of dy-
namics suggest that the transverse field on the penalty
qubits accelerates relaxation to equilibrium, possibly by
providing quantum transition paths that do not exist in
classical dynamics. It is an important future problem to
clarify the balance (or trade-off) between this dynamics
and the equilibrium effects associated with the transverse
field on the penalty qubit.

Finally, our analysis of the free energy as a function of
γ revealed a minimum for both the free energy width and
barrier height separating minima at the phase transition.
This provides a possible explanation for the observed ex-
perimental results reported in Ref. [39] of an optimal γ for
the undecoded (“physical”) ground state. We postpone
the inclusion of decoding to future work [44], which will
also include disordered spin models, such as the quantum
Hopfield model analyzed for T = 0 in Ref. [45].

Our analysis has been restricted to analyzing the
changes quantum annealing correction makes to the
quantum partition function and associated free energy,
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FIG. 9. (a) Critical value of Γ as a function of the penalty coupling γ. (b) mlarge as a function of γ. (c) the barrier height
∆F as a function of γ. In all panels p = 4, T = 0.025, and ε = 1.

which is a thermodynamic equilibrium analysis. We ex-
pect our conclusions to hold in a quantum annealing sys-
tem when the annealing time is sufficiently long that the
system has time to thermally relax to its instantaneous
thermal state along the anneal [53]. For shorter anneal-
ing times, we expect the interplay between the unitary
dynamics and open system dynamics, which can be de-
scribed using master equations [14, 66], to not be cap-
tured by our analysis. We leave the analysis of quantum
annealing correction in fully dynamical open systems as
an important future problem.
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Appendix A: Free energy for the case of a penalty
transverse field

We derive the free energy and the effective Hamiltonian
in the presence of a penalty transverse field. The total
Hamiltonian we start from is Eq. (19).

We first succinctly reproduce (with some notational
changes) the calculations in Section I of the Supplemen-
tal Material of Ref. [45], leading up to Eq. (17) there.
The partition function is computed by using the Suzuki-
Trotter decomposition to separate the σz-only dependent
part and the σx-only dependent part of the Hamiltonian

H, i.e., e−β(Hx+Hz) = limM→∞

(
e−

β
MHxe−

β
MHz

)M
,

where

Hz = −N
C∑
c=1

(
1

N

N∑
i=1

σzic

)p
− γ

C∑
c=1

N∑
i=1

σzicσ
z
i0 (A1a)

Hx = −Γ

C∑
c=1

N∑
i=1

σxic − εCΓ

N∑
i=1

σxi0 . (A1b)
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In detail:

ZM ≡ Tr
(
e−

β
MHxe−

β
MHz

)M
=

∑
{σzic,σzi0}

〈{σzic}|
[
exp

(
− β

M
Hz

)
exp

(
− β

M
Hx

)]M
|{σzic}〉

=
∑

{σzic,σxic,σzi0(α)}

M∏
α=1

{
exp

(
βN

M

C∑
c=1

(
1

N

N∑
i=1

σzic(α)

)p
+
βγ

M

C∑
c=1

N∑
i=1

σzic(α)σzic(α) +
βΓ

M

C∑
c=1

N∑
i=1

σxic(α)

+
βεCΓ

M

N∑
i=1

σxi0(α)

)
N∏
i=1

(
〈σzi0(α)|σxi0(α)〉〈σxi0(α)|σzi0(α+ 1)〉

C∏
c=1

〈σzic(α)|σxic(α)〉〈σxic(α)|σzic(α+ 1)〉

)}

=
∑

{σzic,σxic,σzi0(α)}

M∏
α=1

{
C∏
c=1

∫
dmcα

∫
dm̃cα

2π
exp

(
im̃cα

(
mcα −

1

N

N∑
i=1

σzic(α)

)
+
βN

M
mp
cα+

+
βγ

M

N∑
i=1

σzic(α)σzi0(α) +
βΓ

M

N∑
i=1

σxic(α) +
βε

M

N∑
i=1

σxi0(α)

)
×

N∏
i=1

(
〈σzi0(α)|σxi0(α)〉〈σxi0(α)|σzi0(α+ 1)〉

C∏
c=1

〈σzic(α)|σxic(α)〉〈σxic(α)|σzic(α+ 1)〉

)}
. (A2)

By applying the static approximation mcα = mc, m̃cα = m̃c, and changing variables m̃→ N
M m̃, we obtain

ZM =
∑

{σzic,σxic,σzi0(α)}

C∏
c=1

∫
dmc

∫
dm̃c

2π
exp (iMmcm̃c + βNmp

c)

M∏
α=1

N∏
i=1

{
exp

(
−i m̃cα

N
σzic(α) +

βγ

M
σzic(α)σzi0(α) +

βΓ

M
σxic(α) +

βεΓ

M
σxi0(α)

)
(
〈σzi0(α)|σxi0(α)〉〈σxi0(α)|σzi0(α+ 1)〉

C∏
c=1

〈σzic(α)|σxic(α)〉〈σxic(α)|σzic(α+ 1)〉

)}

=
∑

{σzic,σxic,σzi0(α)}

C∏
c=1

∫
dmc

∫
Ndm̃c

2πM
exp (iNmcm̃c + βNmp

c)

M∏
α=1

N∏
i=1

{
exp

(
−i m̃c

M
σzic(α) +

βγ

M
σzic(α)σzi0(α) +

βΓ

M
σxic(α) +

βεΓ

M
σxi0(α)

)
(
〈σzi0(α)|σxi0(α)〉〈σxi0(α)|σzi0(α+ 1)〉

C∏
c=1

〈σzic(α)|σxic(α)〉〈σxic(α)|σzic(α+ 1)〉

)}
. (A3)

We take M →∞ to go from the classical system back to the quantum system:

Z =

C∏
c=1

∫
dmc

∫
dm̃ce

(iNmcm̃c+βNm
p
c )

(
Tr

C∏
c=1

e−im̃cσ
z
c+βγσzcσ

z
0+βΓσxc+βεΓσx0

)N
. (A4)

This reproduces Eq. (17) of the Supplemental Material of Ref. [45]. Note that here we did not divide the penalty
transverse field term by C (denoted K there).

The saddle point equation for mc is:

im̃c + βpmp−1
c = 0 , (A5)

which gives

Z =

C∏
c

∫
dmce

(βN(1−p)mpc )

(
Tr

C∏
c=1

eβ(pmp−1
c σzc+γσzcσ

z
0+Γσxc+εΓσx0 )

)N
. (A6)
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This yields the free energy F , defined by Z = exp(−βNCF ), as in Eq. (20), i.e., F/C = (p − 1)mp −
1
βC log Tr

∏C
c=1 e

−βHeff , where Heff = −(pmp−1σzc + γσzcσ
z
0 + Γσxc + εΓσx0 ) is the effective Hamiltonian [Eq. (21)],

which describes the fluctuation around the mean field value.
Note that Ref. [45] did not pursue the effect of the penalty transverse field [ε was set to zero after Eq. (17) there]

and was concerned primarily with the large β limit, which we do not assume here.
When ε = 0, copies with different values of c are decoupled. Therefore, one can obtain the free energy analytically.

Consider the trace:

Tr

C∏
c=1

eβ(pmp−1
c σzc+γσzcσ

z
0+Γσxc ) = Tr

C∏
c=1

eβ(pmp−1
c σzc+γσzc+Γσxc ) + Tr

C∏
c=1

eβ(pmp−1
c σzc−γσ

z
c+Γσxc )

=

C∏
c=1

(
eβ
√

(pmp−1
c +γ)2+Γ2

+ e−β
√

(pmp−1
c +γ)2+Γ2

)
+

C∏
c=1

(
eβ
√

(pmp−1
c −γ)2+Γ2

+ e−β
√

(pmp−1
c −γ)2+Γ2

)
=

∑
s∈{−,+}

C∏
c=1

[2 cosh(βQs,c)] . (A7)

Then the free energy is

F/C =
1

C

C∑
c=1

(p− 1)mp
c −

1

βC
log

∑
s∈{−,+}

C∏
c=1

[2 cosh(βQs,c)].

(A8)

If we set mc ≡ m and Qs,c ≡ Qs, this recovers Eq. (12).
The saddle point equation (9) is obtained by evaluating
∂F/∂mc = 0.

Appendix B: Instantons, tunneling, and a relation
between free energy and gaps

In the main text, we argued that the width and height
of the free energy barrier at the quantum phase transition
point can be used to estimate the ground state energy
gap. In this section, we provide support for this argu-
ment. We closely follow (and expand upon) Ref. [55],
which showed that the energy gap between the ground
state and the first excited state comes from the tunneling
between the two free energy minima. The tunneling rate
is given by an instanton solution, which is a solution of
the Euclidean action connecting the two free energy min-
ima. In our derivation of the free energy in Appendix A,

we neglected such solutions by using the static approx-
imation, which assumes that the order parameter m is
constant along the Euclidean time direction τ . There-
fore, to get an estimate of the energy gap, we must relax
the static approximation.

Let us assume that we have fixed the value Γ such that
the saddle-point free energy has two degenerate minima
at m1 and m2 with value F0. These two minima con-
tribute 2e−βNF0 to the partition function Z. We wish
to consider non-perturbative corrections to Z by relaxing
the static approximation and integrating m over all possi-
ble configurations along τ satisfying the periodic bound-
ary condition m(τ = 0) = m(τ = β).

The partition function [Eq. (A6)] and the free energy
[Eq. (A8)] are obtained by assuming that m(τ) is a con-
stant. We therefore return to Eq. (A2) and proceed with-
out the static approximation. For simplicity, we set the
penalty transverse field to zero, i.e., we take ε = 0. We
first perform the sum over the penalty qubit values, which
yields:

ZM =
∑

{σzic,σxic(α)}

M∏
α=1


C∏
c=1

∫
dmcα

∫
dm̃cα

2π

∑
s0={+1,−1}

exp

(
im̃cα

(
mcα −

1

N

N∑
i=1

σzic(α)

)
+
βN

M
mp
cα+

+
s0βγ

M

N∑
i=1

σzic(α) +
βΓ

M

N∑
i=1

σxic(α)

)
×

N∏
i=1

(
C∏
c=1

〈σzic(α)|σxic(α)〉〈σxic(α)|σzic(α+ 1)〉

)
. (B1)

After changing variables m̃cα → N
M m̃cα, a variation with respect to mcα gives the on-shell value of m̃cα

im̃cα = −βpmp−1
cα , (B2)
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FIG. 10. Illustration of instanton trajectories. (a) the four-instanton solution. If the transition between two minima happens
very quickly, the Euclidean action can be approximated by the sum of the zero instanton action shown in (b) and four times the
transition action shown in (c). The partition function is multiplied by β4/4! due to the possible locations of τi, i ∈ {1, 2, 3, 4}.

which we can then insert into our expression for the par-
tition function to give in the M →∞ limit:

Z =
C∏
c=1

∫
m(0)=m(β)

Dmc(τ) exp

(
N

∫ β

0

dτ(1− p)mp
c(τ)

)
×(

Tr

C∏
c=1

e
∫ β
0
dτ(pmp−1

c (τ)σzc (τ)+γσzc (τ)+Γσxc (τ))

+ Tr

C∏
c=1

e
∫ β
0
dτ(pmp−1

c (τ)σzc (τ)−γσzc (τ)+Γσxc (τ))

)N
,

(B3)

where we have expressed:

lim
M→∞

M∏
α=1

e
β
M (Γσx+pmp−1σz±γσz)

= e
∫ β
0
dτ(Γσx(τ)+pmp−1σz(τ)±γσz(τ)) (B4)

This is a natural generalization of the result in Ref. [55]
for the ferromagnetic p-model:

Z =

∫
m(0)=m(β)

Dm(τ)e−S[m(τ)] , (B5)

with the action

S[m(τ)] = −N
∫ β

0

dτ ((p− 1)m(τ)p)

+N log Tr e
∫ β
0
dτ(Γσx(τ)+pmp−1σz(τ)) . (B6)

There are many classical solutions (solutions of the
equation of motion derived from the Euclidean action
S[m(τ)]) that satisfy the boundary condition m(0) =
m(β). The simplest solutions are m(τ) = m1 and
m(τ) = m2 for all 0 ≤ τ ≤ β. These are zero instan-
ton solutions, and the Euclidean action takes the value
S0 = βNF0 for each solution, resulting in the contribu-
tion 2e−S0 to the partition function. More generally, we
can consider instanton solutions that perform an even

number (due to the periodic boundary condition) of dis-
crete jumps between m1 and m2 and their contribution
to the partition function:

Z =

∞∑
k=0

Z2k . (B7)

The next simplest solutions after the zero-instanton so-
lutions are the two-instanton solutions. These start with
m(0) = m1(2), stay in the same minimum, then switch
to m(τ1) = m2(1) at τ = τ1, then stay in the same mini-
mum until τ = τ2, and then switch to the initial minimum
m(τ2) = m1(2). If we assume that these transitions hap-
pen almost instantly, the two-instanton Euclidean action
can be approximated by the sum of the zero-instanton ac-
tion S0 and the sum of the two transition actions Strans,
i.e., S2 ≈ S0 +2Strans. The partition function (due to the
path integral) must account for the possible locations of
τ1 and τ2, namely∫ β

0

dτ2

∫ τ2

0

dτ1 = β2/2! . (B8)

Thus, we have for the two instanton partition function:

Z2 =
2β2

2!
e−S2 = ε2β2e−S0 , (B9)

where

ε ≡ e−Strans . (B10)

If we consider the case of 2k transitions occurring at
τ1 < τ2 < · · · < τ2k, illustrated in Fig. 10 for k = 2, then
we have

Z2k = 2e−S0ε2k

∫ β

0

dτ2k

∫ τ2k

0

dτ2k−1 . . .

∫ τ2

0

dτ1

= 2e−βNF0
(βε)2k

(2k)!
, (B11)

where for simplicity we assumed that all transitions are
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equal. This then gives:

Z = 2e−βNF0 cosh(βε) = e−β(NF0+ε) + e−β(NF0−ε)

(B12a)

= Tr[exp(−βH̃)] , (B12b)

where

H̃ =

(
NF0 ε
ε NF0

)
. (B13)

We see that this effectively describes a two-level system
with an energy gap ∆̃ = 2ε, i.e., the energy gap is re-
lated to the transition from m1 to m2, which is the one-
instanton contribution:

Z(one-instanton)

Z(zero-instanton)
=

2e−βNF0βε

2e−βNF0
= βε . (B14)

Moreover, the gap of the effective Hamiltonian H̃ ap-
proaches the gap ∆ of the QA (closed system) Hamil-
tonian in the β → ∞ limit. This is the sense in which
the instantonic approach and tunneling between valleys
of the free energy allows us to estimate the gap of the

QA Hamiltonian.
It remains to calculate Strans. We can do this with

a two-instanton ansätz for the ferromagnetic p-model
where sharp transitions occur at τ = s and τ = β:

m(τ) =

{
m1 , 0 ≤ τ < s
m2 , s ≤ τ < β

, (B15)

where m(0) = m(β). While this is not technically a two-
instanton solution, i.e., it is not a solution to the equa-
tions of motion derived from the action in Eq. (B6), it
gives a (crude) upper-bound on the two-instanton action
since a true two-instanton solution would minimize the
action. For this ansätz we have:

M∏
α=1

e
β
M (Γσx+pmp−1σz) =

Ms∏
α=1

e
β
M (Γσx+pmp−1

1 σz)

×
M∏

α=Ms+1

e
β
M (Γσx+pmp−1

2 σz) ,

(B16)

where we have defined Ms such that limM→∞ βMs/M =
s. We can calculate the trace of this operator by diago-
nalizing each term:

Tr lim
M→∞

M∏
α=1

e
β
M (Γσx+pmp−1σz)

=
∑

r∈{−,+}

〈λr(m1)| lim
M→∞

[
Ms∏
α=1

(
eλ+(m1)|λ+(m1)〉〈λ+(m1)| + eλ−(m1)|λ−(m1)〉〈λ−(m1)|

)
×

M∏
α=Ms+1

(
eλ(m2)|λ+(m2)〉〈λ+(m2)| +e−λ(m2)|λ−(m2)〉〈λ−(m2)|

)]
|λr(m1)〉 , (B17)

where we have denoted the two eigenvalues by λ±(m) =

±λ(m), where λ(m) =
√

Γ2 + (pmp−1)2, with the re-
spective orthonormal eigenvectors:

|λ±(m)〉 =
1√

Γ2 + (pmp−1 ± λ(m))2

×
[(
pmp−1 ± λ(m)

)
|0〉+ Γ|1〉

]
, (B18)

and used that fact that we are free to choose any fixed
orthonormal basis to compute the trace (we selected
|λ±(m1)〉). Interchanging the order of the sum and prod-

uct we thus obtain:

Tr lim
M→∞

M∏
α=1

e
β
M (Γσx+pmp−1σz) (B19)

= esλ(m1)e(β−s)λ(m2) |〈λ+(m1)|λ+(m2)〉|2

+ esλ(m1)e−(β−s)λ(m2) |〈λ+(m1)|λ−(m2)〉|2

+ e−sλ(m1)e(β−s)λ(m2) |〈λ−(m1)|λ+(m2)〉|2

+ e−sλ(m1)e−(β−s)λ(m2) |〈λ−(m1)|λ−(m2)〉|2 .

Let us now consider the case where β � 1 such that
the first term in Eq. (B) dominates. We then have for
this particular sharp two-instanton action, by combining
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FIG. 11. A comparison of the gap scaling coefficient ∆ = e−αN estimated using the sharp instanton and using the area under
the free energy potential barrier for the ferromagnetic p-model. (a) The area of the potential barrier (shaded region). (b) The
comparison for β = 20. (c) The comparison for β = 30. The solid blue curve corresponds to the area under the free energy
barrier [Eq. (B28)], while the dashed orange curve is the sharp instanton coefficient − log |〈λ+(m1)|λ+(m2)〉|).

Eqs. (B6), (B9), and (B):

S2/N = s(p− 1)mp
1 + (β − s)(p− 1)mp

2 − sλ(m1)

− (β − s)λ(m2)− 2 log |〈λ+(m1)|λ+(m2)〉| .
(B20)

Because we have assumed that we are calculating the
instanton at the point where the free energy F (m) is
degenerate, i.e.,

F (m1) = (p− 1)mp
1 − λ(m1) = (B21a)

F (m2) = (p− 1)mp
2 − λ(m2) , (B21b)

we can write our sharp two-instanton action in an s-
independent way as:

S2 = NβF (m1)− 2N log |〈λ+(m1)|λ+(m2)〉| . (B22)

Therefore, we can estimate the two-instanton partition
function, using Eq. (B9), as:

Z2 = β2e−S2 = β2e−S0e−2N log|〈λ+(m1)|λ+(m2)〉| , (B23)

where we have used the zero-instanton action S0 =
NβF (m1). Comparing with the expression for Z2 in
Eq. (B9), we can now readily identify a lower bound on
the quantity ε:

ε ≥ e−N(− log|〈λ+(m1)|λ+(m2)〉|) . (B24)

Recall that the reason that the sharp instanton only gives
a lower bound on ε is that it is not a true solution to
the equations of motion. Therefore, the gap ∆̃ is lower
bounded by

∆̃ = 2ε ≥ 2e−N(− log|〈λ+(m1)|λ+(m2)〉|) . (B25)

In the β → ∞ limit, Ref. [55] showed numerically that
the instanton calculation provides a lower bound on the
Hamiltonian gap ∆

∆ ≥ ∆̃ , (B26)

so the sharp instanton calculation in the β → ∞ limit
provides a lower bound on the Hamiltonian gap:

∆ ≥ 2e−N(− log|〈λ+(m1)|λ+(m2)〉|) . (B27)

This agrees with the result in Ref. [55] for the sharp in-
stanton.

For small but non-zero T where the value of the sharp
instanton estimate of ∆̃ does not change substantially,
we wish to see whether we can further lower-bound ∆̃ by

e
−βN

∫m2
m1

[F (m)−F (m1)]dm
, (B28)

an action term corresponding to the area under the
free energy potential barrier, as depicted in Fig. 11(a).
In the case of the ferromagnetic p-model, m1 = 0,
and we can numerically solve for m2. We show in
Figs. 11(b) and 11(c) that β

∫m2

m1
[F (m) − F (m1)] >

− log |〈λ+(m1)|λ+(m2)〉|), for sufficiently small p, and
hence it provides an upper bound for the sharp instanton
prediction (and hence a lower bound on the gap) in this
regime. As we increase β the regime of p where this is
valid grows. However, as we increase β, the bound is gen-
erally less tight. Therefore, for the range of parameters
in Figs. 11(b) and 11(b) we have that ∆̃ & e−β∆m∆FN .

Since for this same range we still have that ∆ ≥ ∆̃, we
may conclude that ∆ & e−β∆m∆FN , which is Eq. (18).
The simple ferromagnetic p-spin model was used here to
illustrate the idea behind the justification of Eq. (18), but
qualitatively the situation would not be very different for
the case with a penalty term.

Before closing this section, we mention that we can ex-
plicitly have a time-derivative term for m(τ) in the action
[Eqs. (B3) and (B6)] by diagonalizing the instantaneous
Hamiltonian. This method was used in Ref. [67] in a
similar setup. For the above sharp instanton ansätz, this
derivative term determines the value of Strans. More gen-
erally one can solve the equation of motion and evaluate
the Euclidean action with it.
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Appendix C: Free energy diagrams

In order to better understand the phase diagram asso-
ciated with p > 2, we consider the following three cases:
(i) a low temperature and γ < γc, (T, γ) = (0.025, 0.5);
(ii) a low temperature and γ ' γc, (T, γ) = (0.025, 0.8);
(iii) a high temperature and γ < γc, (T, γ) = (0.1, 0.7).

a. Case (i): low temperature and γ < γc

Let us first consider case (i). The free energy when
γ = 0.5 and T = 0.025 is shown in Fig. 12(a) for various
values of Γ. When quantum fluctuations are large (Γ =
1.95), the unique minimum is at m = 0. As Γ decreases,
the free energy forms a new local minimum around m =
msmall ' 0.3 at Γ = 1.91 [Fig. 12(b)]. At this point there
is a first order phase transition from m = 0 to msmall.
As Γ decreases further, there is another first order phase
transition at Γ = 1.846 [Fig. 12(c)]. The free energy
minimum changes from m = msmall ' 0.328 to m =
mlarge ' 0.844. Below this value of Γ, the free energy
minimum stays at mlarge. Note that m = 0 is always
an unstable point at zero temperature and for any finite
value of γ, and there is only a single first order phase
transition at Γc = 1.847 [45] from msmall to mlarge.

The phase transition from m = 0 to msmall at finite
temperature is governed by a very small free energy bar-
rier. The width and height of the potential barrier in the
second transition, from msmall to mlarge, are much larger
than those of the m = 0 to msmall transition. Since
the tunneling rate depends on the height and width of
the free energy barrier, this second transition dominates.
Nevertheless, the potential barrier is smaller than in the
case of a single phase transition from m = 0 to mlarge.
The comparison of the free energies at the phase tran-
sitions for γ = 0 (between m = 0 and mlarge) and for
γ = 0.5 (between m = msmall and mlarge) at T = 0.025
is shown in Fig. 12(i). The introduction of the penalty
terms thus results in the breaking up of a single, large free
energy barrier into multiple smaller ones. In this sense,
the penalty term weakens the phase transition. We ex-
pect that having multiple first order phase transitions
from m = 0 to mlarge results in more efficient QA than a
single first order phase transition.

This beneficial splitting of the phase transition, how-
ever, occurs only for sufficiently small values of the
temperature. As the temperature increases, msmall ap-
proaches 0 and above a certain “branching point” tem-
perature there is only one phase transition from m = 0 to
mlarge. Thus, above the branching point, the first order
phase transition is not split.

b. Case (ii): low temperature and γ ' γc

Next, we consider case (ii), with (T, γ) = (0.025, 0.8).
The chosen value of γ corresponds to the point where the

first order phase transition disappears at zero tempera-
ture. The free energy for various values of Γ is shown
in Fig. 12(d). When Γ is very large, there is a unique
ground state at m = 0. As Γ becomes smaller, a new
local minimum appears around m = msmall ' 0.3 and
there is a first order transition between m = 0 and msmall

[Fig. 12(e)]. As Γ decreases further, the minimum of the
free energy becomes almost flat between msmall ' 0.5
and mlarge ' 0.7 [Fig. 12(f)]. Therefore the state can
shift (almost) smoothly from the local minimum msmall

to the global minimum mlarge. For γ ≤ γc, the first
order phase transition between msmall and mlarge was a
remnant of that at zero temperature. As this first order
phase transition disappears for γ ≥ γc at T = 0, the cor-
responding phase transition also disappear at finite but
low temperature.

c. Case (iii): high temperature and γ < γc

Finally, we consider case (iii), with (T, γ) = (0.1, 0.7).
The free energy for various values of Γ is shown in
Fig. 12(g). As Γ decreases, there is a phase transition
from m = 0 to mlarge. There is a bump in the free en-
ergy around m = msmall ' 0.45 Fig. 12(h). However,
the local minimum at mlarge reaches the value F (0) first
and the phase transition between m = 0 and mlarge takes
place before any other transition between m = 0 and
msmall happens. Therefore, this is the only first order
phase transition.

Appendix D: Perturbative analysis in the presence
of a penalty transverse field

We study the phase transition using perturbation the-
ory. Specifically, we compute the energy gap between the
ground state and the first excited state of the effective
single-body Hamiltonian.

Heff = H0 + V , (D1a)

H0 =

C∑
c=1

Hc, Hc = −pmp−1σzc − γσz0σzc − Γσxc ,

(D1b)

V = −εΓσx0 . (D1c)

The eigenvalues of Hc are ±E±, where

E± =
√

(pmp−1 ± γ)2 + Γ2 , (D2)

and the superscript corresponds to the eigenvalues (±1)
of σz0 . We denote the eigenstates of Hc by |c+±0〉 with

respective eigenvalues ±E+, and |c−±1〉, with respective
eigenvalues ±E−. The second entry (0 or 1) refers to the
eigenstates of σz0 . The eigenstates of H0 are, correspond-
ingly, |1+

±2+
± · · ·C+

±0〉 and |1−±2−± · · ·C−±1〉, where now the
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FIG. 12. Free energy as a function of the order parameter m for p = 4. T = 0.025 in (a)-(f) with γ = 0.5 in (a)-(c), and
γ = 0.8 in (d)-(f). (a) Four different Γ values for γ = 0.5, with two separated for clarity in (b) and (c); (b) Γ = 1.91, (c)
Γ = 1.846. (d) Four different Γ values for γ = 0.8, with two separated for clarity in (e) and (f); (e) Γ = 2.95, (f) Γ = 2.22. In
(g) and (h) T = 0.1, γ = 0.7. (g) Four different Γ values, with Γ = 2.08 separated for clarity in (h). (i) Again T = 0.025. The
green solid line is for γ = 0.5 [Fig. 12(c)] and the red dotted line is for γ = 0. The potential barrier for γ = 0 is much larger
than that of γ = 0.5. See text for analysis.

last entry refers to the eigenstates of σz0 . The ground
state of H0 is, for m > 0,

|Ψg〉 = |1+
−2+
−3+
− · · ·C+

−0〉 (D3)

with

H0|Ψg〉 = −CE+|Ψg〉. (D4)

This ground state |Ψg〉 is non-degenerate in m > 0. We
treat the penalty transverse field as a perturbation and
compute the energy change. The first-order perturba-
tion vanishes. The second order contribution comes from
a flip of σz0 from +1 to −1 and then back to +1 with all
other states kept intact. Then the perturbative correc-
tion to the ground state energy is, for m > 0

∆E =
ε2Γ2

C(E+ − E−)
, (D5)

where E± is given in Eq. (D2). This ∆E is to be added
to Eq. (13). In this perturbative regime, for a given γ, p,
and Γ, ∆E is a monotonically decreasing function of m.
Therefore the free energy at smaller m will be lifted more
than that at larger m by the presence of the transverse
field on the penalty qubit. This is consistent with our
observation that for a sufficiently large ε, the transverse
field on the penalty qubit removes the additional local
minimum msmall.

In the case of m = 0, the ground state is doubly de-
generate:

|Ψg,1〉 = |1+
−2+
−3+
− · · ·C+

−0〉 , (D6a)

|Ψg,2〉 = |1−−2−−3−− · · ·C−−1〉 (D6b)

We can then perform degenerate perturbation theory as
long as ε� Γ to obtain:

∆Em=0 = ε2Γ . (D7)
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We can argue that the value above is a minimum, as a
function of m, for the contribution of the transverse field
on the penalty qubits to the free energy. To see this,
notice that first, that the free energy is symmetric under
m ↔ −m even in the presence of the penalty transverse
field, so m = 0 should be a local extremum. Second, m =
0 should be a local minimum, since the penalty transverse

field aligns the penalty qubits along the x direction, and
this favors the problems qubits to point in the x direction,
which is am = 0 state. Our analysis implies the existence
of an intermediate value of m where the free energy is
maximally lifted. An important consequence of this is
that the penalty transverse field increases the potential
barrier between m = 0 and mlarge, and may remove the
additional local minimum msmall.
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[60] Michele Filippone, Sébastien Dusuel, and Julien Vidal,
“Quantum phase transitions in fully connected spin mod-
els: An entanglement perspective,” Phys. Rev. A 83,
022327 (2011).

[61] Yuya Seki and Hidetoshi Nishimori, “Quantum annealing
with antiferromagnetic fluctuations,” Physical Review E
85, 051112 (2012).

[62] B Seoane and H Nishimori, “Many-body transverse in-
teractions in the quantum annealing of the p-spin ferro-
magnet,” Journal of Physics A 45, 435301 (2012).

[63] Kabuki Takada and Hidetoshi Nishimori, “Critical prop-
erties of dissipative quantum spin systems in finite di-
mensions,” arXiv:1602.08187 (2016), arXiv:1602.08187.

[64] Sergei V. Isakov, Guglielmo Mazzola, Vadim N. Smelyan-
skiy, Zhang Jiang, Sergio Boixo, Hartmut Neven, and
Matthias Troyer, “Understanding quantum tunneling
through quantum monte carlo simulations,” Phys. Rev.
Lett. 117, 180402 (2016).

[65] Masuo Suzuki, “Relationship between d-dimensional
quantal spin systems and (d+1)-dimensional ising sys-

http://dx.doi.org/10.1103/PhysRevB.82.024511
http://dx.doi.org/10.1103/PhysRevB.82.024511
http://dx.doi.org/10.1109/TASC.2014.2318294
http://dx.doi.org/10.1109/TASC.2014.2318294
http://dx.doi.org/10.1038/nphys2900
http://dx.doi.org/10.1038/nphys2900
http://arXiv.org/abs/1401.7087
http://dx.doi.org/ 10.1140/epjst/e2015-02346-0
http://dx.doi.org/ 10.1140/epjst/e2015-02346-0
http://link.aps.org/doi/10.1103/PhysRevA.90.042317
http://link.aps.org/doi/10.1103/PhysRevA.90.042317
http://www.nature.com/articles/srep05703
http://www.nature.com/articles/srep05703
http://www.nature.com/articles/srep15324
http://www.nature.com/articles/srep15324
http://dx.doi.org/10.1038/ncomms4243
http://link.aps.org/doi/10.1103/PhysRevA.91.042302
http://link.aps.org/doi/10.1103/PhysRevA.92.042310
http://link.aps.org/doi/10.1103/PhysRevA.92.042310
http://dx.doi.org/ 10.1007/s11128-015-1201-z
http://dx.doi.org/10.1038/npjqi.2016.17
http://dx.doi.org/10.1038/npjqi.2016.17
http://link.aps.org/doi/10.1103/PhysRevLett.116.220501
http://link.aps.org/doi/10.1103/PhysRevLett.116.220501
http://link.aps.org/doi/10.1103/PhysRevB.35.7062
http://link.aps.org/doi/10.1103/PhysRevB.35.7062
http://dx.doi.org/10.7566/JPSJ.82.114004
http://dx.doi.org/10.7566/JPSJ.82.114004
http://stacks.iop.org/0305-4470/15/i=10/a=028
http://stacks.iop.org/0305-4470/15/i=10/a=028
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/ 10.1007/s00220-007-0299-y
http://dx.doi.org/10.1103/PhysRevLett.105.050503
http://dx.doi.org/10.1103/PhysRevLett.105.050503
http://dx.doi.org/10.1007/s00220-012-1504-1
http://link.aps.org/doi/10.1103/PhysRevA.93.032118
http://dx.doi.org/10.1103/PhysRevA.54.1862
http://dx.doi.org/10.1103/PhysRevA.54.1862
http://stacks.iop.org/0295-5075/89/i=4/a=40004
http://stacks.iop.org/1742-5468/2012/i=06/a=P06007
http://stacks.iop.org/1742-5468/2012/i=06/a=P06007
http://stacks.iop.org/1742-5468/2012/i=06/a=P06007
http://dx.doi.org/ http://dx.doi.org/10.1016/0029-5582(65)90862-X
http://dx.doi.org/10.1103/PhysRevE.78.021106
http://dx.doi.org/10.1103/PhysRevE.78.021106
http://stacks.iop.org/1742-5468/2012/i=01/a=P01023
http://stacks.iop.org/1742-5468/2012/i=01/a=P01023
http://stacks.iop.org/1742-5468/2012/i=01/a=P01023
http://dx.doi.org/10.1103/PhysRevA.83.022327
http://dx.doi.org/10.1103/PhysRevA.83.022327
http://dx.doi.org/ 10.1103/PhysRevE.85.051112
http://dx.doi.org/ 10.1103/PhysRevE.85.051112
http://dx.doi.org/10.1088/1751-8113/45/43/435301
http://arxiv.org/abs/1602.08187
http://arxiv.org/abs/1602.08187
http://dx.doi.org/10.1103/PhysRevLett.117.180402
http://dx.doi.org/10.1103/PhysRevLett.117.180402


20

tems: Equivalence, critical exponents and systematic ap-
proximants of the partition function and spin correla-
tions,” Progress of Theoretical Physics 56, 1454–1469
(1976).

[66] Heinz-Peter Breuer and Francesco Petruccione, The The-
ory of Open Quantum Systems (Oxford University Press,

2002).
[67] Sergey Knysh, “Zero-temperature quantum annealing

bottlenecks in the spin-glass phase,” Nat Commun 7
(2016).

http://dx.doi.org/ 10.1143/PTP.56.1454
http://dx.doi.org/ 10.1143/PTP.56.1454
http://dx.doi.org/10.1038/ncomms12370
http://dx.doi.org/10.1038/ncomms12370

	Quantum annealing correction at finite temperature: ferromagnetic p-spin models
	Abstract
	Introduction
	Quantum Annealing and Quantum Annealing Correction
	QAC without a transverse field on the penalty qubits
	The zero temperature limit
	Second order phase transition: p=2
	First order phase transitions: p3
	T=0
	T>0
	Free energies along each phase transition line


	QAC with a transverse field on the penalty qubits
	Second order phase transition: p=2
	First order phase transitions: p3
	Optimal value of 

	Conclusions
	Acknowledgments
	Free energy for the case of a penalty transverse field
	Instantons, tunneling, and a relation between free energy and gaps
	Free energy diagrams
	Case (i): low temperature and <c
	Case (ii): low temperature and c
	Case (iii): high temperature and <c


	Perturbative analysis in the presence of a penalty transverse field
	References


