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 By applying a Foldy-Wouthysen-like transformation and a low momentum approximation to 

the usual quantum field theoretical Dirac Hamiltonian in one spatial dimension, we introduce a 

new Hamiltonian for which the kinetic portion and the original potential are diagonal in the 

corresponding spinor space and a second potential occurs that is off-diagonal.  This two-potential 

Hamiltonian is applied to study the electron-positron pair creation process from the vacuum.  

Here the diagonal potential provides only the energy degeneracy of the lower and upper manifold 

of continuum states, which is one requirement for the permanent creation of particles.  The off-

diagonal potential actually triggers the creation process by providing the necessary coupling 

between the degenerate states.  It also provides a concrete example of a model system for pair 

creation where the creation rate is perturbative in the coupling strength. 
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1. Introduction 

 It has been predicted that a sufficiently strong electric field can break down the 

electromagnetic vacuum and create electron-positron pairs.  While an exciting new series of 

experiments is being planned in numerous laboratories [1-3] that try to exploit highly focused 

laser pulses to establish the required supercritical field situation, a direct experimental verification 

of the Schwinger pair creation process is presently still lacking [4-6]. 

 The theoretical analysis of this predicted process is also conceptually rather challenging.  One 

of the many reasons for these difficulties is that the potential representing the external field plays 

a dual role for the pair creation process.  On the one hand, it creates the electrons and positrons 

from the vacuum and on the other hand it facilitates their permanent separation by providing the 

force field that can accelerate the electrons and positrons in opposite directions.  The latter step of 

vacating the pair creation zone such that further particles can be created is actually crucially 

important as those particles that cannot leave the creation zone would Pauli block [7-9] the 

continued pair creation.  In fact, if this removal of particles from the interaction zone is disabled, 

it can even bring the creation process to a complete halt.  This complete suppression of pair 

creation despite supercritical field conditions was demonstrated in numerical simulations where 

the external force field was modeled by a potential well [10]. 

 From an energetic point of view this dual role of the external potential manifests itself in the 

upward shifting of the lower energy continuum to create an important degeneracy with the 

positive energy states and then to provide simultaneously the coupling between these degenerate 

continuum states.  Another consequence of this dual role is the non-perturbative scaling of the 

pair creation rate as a function of the electric field in the famous Schwinger expression [11], 

where the inverse of the potential strength V0 occurs in the negative exponent.  This analytical 

expression cannot be expanded as a series in positive powers of V0. 

 The dual role leads also to a well-known conceptual difficulty to uniquely identify particles 

inside the interaction zone, which makes an early recognition and tracing of the particle dynamics 

very challenging.  So far each theoretical analysis has defined what constitutes a real particle 

based on the projection on force-free energy eigenstates of the corresponding system.  Due to the 

existence of the 2mc2 mass gap, these states permit us to unambiguously use the (free) energy as a 

criterion to distinguish between electrons and positrons.  This energy-based distinction, however, 

becomes impossible, for supercritical electric fields where the states of the lower and upper 
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manifold overlap.  It has therefore been impossible to uniquely identify particles inside the 

interaction zone and important physical quantities that characterize the creation process such as 

number of particles or their energy spectrum become unambiguous only once the particles have 

left the pair creation zone.   

 In this work we propose an approximate model Hamiltonian that permits us to distinguish for 

the first time between the dual role of the external field.  Using a Foldy-Wouthuysen like 

transformation of the Dirac equation [12], we can generate a new Hamiltonian that contains two 

potential terms.  The first one leads to the required energy degeneracy and also provides the force 

field for the separation, but it does not couple the degenerate states.  The second potential 

provides this coupling and therefore is solely responsible for the creation of the particles.  There 

are three interesting outcomes of this model.  It provides a fully analytical expression for the pair 

creation rate for the special case of a supercritical potential step and suggests that the widely-used 

Hund rule [13-15], which equates the transmission coefficient directly to the pair creation rate, 

can be generalized.  It also provides for the first time a concrete example of a model system for 

pair creation where the pair creation rate is actually perturbative in the coupling strength.  By 

being able to project onto the dressed energy eigenstates of the diagonal part of the Hamiltonian 

we can also obtain some first insight into the particles inside the interaction zone.  The data reveal 

that even under a constant electric field there are regions where particles cannot be generated, 

suggesting that the pair creation rate is not solely determined by the local strength of the electric 

field.  This is consistent with the findings of numerous other works.  For example, Dinu et al. [16] 

have studied the locally-constant field approximation based on the polarization operator, whose 

imaginary part is related to the pair creation rate.  Gies and Torgrimsson [17] have examined the 

role of the electrostatic energy between virtual electrons and positrons on the relationship between 

the Schwinger effect and critical transitions.  The role of highly energetic re-collisions between 

created particles was examined, for example, by a work by Kuchiev [18] and recently by Meuren 

et al [19] using a semi-classical analysis. 

 This work is structured as follows. In Section 2 we derive the new form of the Hamiltonian 

from the Dirac Hamiltonian.  In Section 3 we compare its predictions for the pair creation process 

due a supercritical potential step with that of the Dirac equation.  In Section 4 we examine spatial 

probability densities inside a supercritical pair creation zone.  We summarize this work in Section 

5 and conclude with a brief summary of possible future challenges that this work raises.  
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2. Derivation of the approximate two-potential (ATP) Hamiltonian  

 There are two aspects that characterize Dirac-equation based framework for describing the 

pair creation process.  First, as the force free (kinematic) part of the Dirac Hamiltonian is not 

diagonal in spinor space, each spinor component is nonzero for any force-free eigenstates 

associated with both the positive and negative energy manifolds.  Despite being diagonal in this 

representation the potential V(x) couples different spinor components.  Second, as outlined in the 

introduction, the potential (such as a supercritical barrier of height V0>2c2) plays a dual role by 

up shifting the negative energy states and then coupling the resulting energy degenerate 

continuum states with each other.  

 In one spatial dimension the Dirac Hamiltonian is given by [20]  

 

                                        HD  = c p σ1 + c2 σ3  + V(x)    (2.1) 

 

where c is the speed of light, σi are the 2 ×2 Pauli matrices and below we denote the unit matrix 

with σ0.  Atomic units are used, where three fundamental constants [amount of the charge of the 

electron, its mass m, and Planck’s constants h] are all unity by definition.  As a result, the speed 

of light is c=137.036 a.u.   

 In order to bring the force-free part of the Hamiltonian c p σ1 + c2 σ3 into a form that is 

diagonal in spinor space, we apply the unitary Foldy-Wouthysen transformation [12,21] to it, 

based on the 2×2 matrix: UFW  ≡ [e σ3 + p σ1]/(p2 + e2)1/2  with the abbreviation e ≡ c+(c2+p2)1/2.  

The inverse of UFW
 is identical to itself.  We obtain UFW HD UFW

 = (c4+c2p2)1/2 σ3 + UFW V(x) 

UFW.  The transformed Hamiltonian  HTP   ≡  UFW HD UFW
  contains two new potentials Fdiag and 

Foff each of which is a complicated function of the original potential V(x) and its higher order 

derivatives. 

 

                      HTP  
 =  (c4+c2p2)1/2 σ3 + Fdiag σ0 + i Foff σ2 (2.2a) 

 

where  

 

                 Fdiag = e/(p2 + e2)1/2 V e/(p2 + e2)1/2 + p/(p2 + e2)1/2 V p/(p2 + e2)1/2 (2.2b) 
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                 Foff   = e/(p2 + e2)1/2 V p/(p2 + e2)1/2 – p/(p2 + e2)1/2 V e/(p2 + e2)1/2  (2.2c)

    

While the kinetic portion is now in the desired diagonal form, the action of the complicated 

functions of the momentum operator on the potential V(x) is very difficult.  The diagonal part 

Fdiag σ0 describes the structure of that part of the external force that is solely responsible for 

dressing the created particles, while the off-diagonal term i Fdiag σ2 couples the states of the upper 

and lower energetic manifolds.   

 If we formally assume that the momentum operator p acts only on states with small 

velocities, we can Taylor expand the matrix UFW up to first order in p/c, which simplifies the 

matrix operator to UFW = σ3 + p/(2c) σ1 + O[(p/c)2], which is identical to its inverse (in the same 

order).   This simplifies the action of UFW on V(x) significantly and we obtain UFW V(x) UFW  ≈ 

[σ3 + p/(2c) σ1] V(x) [σ3 + p/(2c) σ1] + O[(p/c)2].  Using the commutator relationship pV = –

idV/dx + Vp, σ1σ3 = -i σ2 and σ1σ3 +σ3σ1 = 0, this expression simplifies to UFW V(x) UFW  ≈ 

V(x) σ0  – (2c)-1 dV/dx σ2.  As a last step, we apply another unitary transformation based on 

UG=((1, 0), (0, i)) on both sides, and using UG σ2 UG
-1 = – σ1 we obtain the final result of this 

derivation 

 

  UGUFW V(x) UFW UG
-1 ≈ HATP = (p2/2+c2) σ3 + V(x) σ0  + (2c)-1 dV/dx σ1  (2.3) 

 

We would like to point out that this is not a fully non-relativistic theory the kinetic part of the 

Hamiltonian still contains c as a finite parameter.  This is important such that a finite mass gap 

2mc2 can be maintained, permitting a clean separation of the dressing and transition triggering 

roles of the diagonal and off-diagonal parts of the potential.  Furthermore, if the mass gap became 

infinitely wide, there would be no pair creation.   

 We will argue below, that this new approximate two-potential (ATP) Hamiltonian has the 

potential to make a direct analysis of the pair creation zone in terms of electrons and positrons 

possible.  It will permit us to compute unambiguous spatial densities of electrons in this zone, 

while it captures the essential mechanisms of pair creation in a more transparent way.  It has two 

major advantages over the traditional Dirac equation based theory.  Its force-free part is diagonal 

in spinor space and it permits us to separate between a diagonal potential V(x) (that causes the 
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degeneracy between the lower and upper energy manifolds) and a new force-based term 

proportional to dV(x)/dx whose sole purpose is to trigger the pair creation process.   

 In order to establish that this model is reasonable we compare the pair creation rate obtained 

from this approach with that of the Dirac equation in Section 3.  This comparison can be done on 

a fully analytical level for both approaches, if we use a simple barrier step potential.  Here it is 

important to note that as long as V(x) is sufficiently large to cause the required degeneracy 

(V0>2c2) even an infinitesimal force strength λ would be sufficient to cause a permanent creation 

of electron-positron pairs.   

 

3. Analytical solution for the pair creation rate for a potential step   

 The quantum field theoretical problem of computing the number of created particles as a 

function of time can be mapped onto a quantum mechanical problem, where each single-particle 

state (representing the entire initially occupied Dirac sea) needs to be evolved in time [20].  We 

denote the corresponding force-free eigenstates of H0 = (c σ1 p + σ3 c
2) as H0 |u;E〉 = E |u;E〉 and 

H0 |d;E〉 = – E |d;E〉.  Based on these field-free states the number of particles at a given energy E = 

(c4+c2p2)1/2 is usually defined by projecting all time-evolved states of the lower energy continuum 

on the electronic state |u;E〉 as N(E;t) ≡  ∫dE’ |〈u;E| exp(-i H t) |d;E’〉 |2.  The time-derivative of its 

long-time limit is then used to define the pair creation rate at this energy, Γ(E) ≡  dN(E;t)/dt.  We 

will show in Sec 3.2 how this rate can be obtained analytically from the corresponding 

transmission coefficient.  

 

3.1 The transmission coefficient   

 We apply here the ATP Hamiltonian approach to examine the permanent pair creation process 

induced by a supercritical potential step V(x) = V0 θ(x), where θ(x) is the unit-step function.  For 

this system it is possible to use the ATP Hamiltonian to derive a fully analytical expression for the 

energy spectrum as well as the asymptotic long-time pair creation rate from the quantum 

mechanical transmission coefficient. 

 The ATP Hamiltonian for this external field configuration is given by 

 

  HATP = (c2+p2/2) σ3  + V0 θ(x) σ0 + λ δ(x) σ1  (3.1) 
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where we have introduced the coupling parameter λ to separate between the effects due to the 

dressing (associated with the diagonal potential) and the actual creation of the particles with 

strength λ.  

 In order to compute the required time evolution of the states |d;E’〉, it is advantageous to 

determine first the energy eigenstates of the ATP Hamiltonian in the relevant energy range c2 < E 

< V0 – c2.  There are two energy degenerate eigenstates Ψe(E; x) and Ψp(E;x), such that HATP 

Ψe,p(E;x) = E Ψe,p(E;x) where 

 

Ψe(E;x)   =   [exp( i k x) + Ae,u exp(-i k x)] Lu  +  Be,u exp(-κ x)  Ru  

                  +                        Ce,d exp( κd x) Ld       +  Ce,d exp(-i kd x) Rd  (3.2a) 

 

Ψp(E;x)   =             Cp,u exp(-i k x)  Lu  +  Cp,u exp(-κ x)  Ru  

                +             Bp,d exp( κd x)  Ld  +  [ exp( i kd x) + Ap,d exp(-i kd x)] Rd  (3.2b) 

 

Here we distinguish between the two spatial domains (left and right) and the spinor components 

(up and down) with the compact notations Lu ≡ θ(-x) (1,0), Ru ≡ θ(x) (1,0), Ld ≡ θ(-x) (0,1) and 

Rd ≡ θ(x) (0,1).  The four positive momenta are defined as k ≡ [2(E-c2)]1/2, κ ≡ [2(V0-E+c2)]1/2,  

κd ≡ [2(E+c2)]1/2 and kd ≡ [2(V0-E-c2)]1/2.  It is important that due to the coupling λ, both spinor 

components have to be non-zero.  While the upper spinor component of Ψe(E;x) describes the 

wave function for an incoming electron with amplitude 1 that scatters off of the potential step and 

tunnels to x>0, the lower component describes a particle coming in from the right side [note that 

Exp(i kd x) describes a left moving particle] and tunnels to x<0.  

 By assuming the usual continuity Ψ(E;x−ε) = Ψ(E;x+ε) and also the discontinuity of the 

derivative required for this Hamiltonian, ∂xΨ(E;x+ε) = ∂xΨ(E;x−ε) + 2iλ σ2 Ψ(E;x=0), we can 

construct the six coefficients as   

 

  Ae,u  =  [(kd – i κd)(k – i κ) – 4λ2] D (3.3a) 

  Be,u  =  2 k ( kd – i κd) D  (3.3b) 

  Ce,d  =  – 4 i λ k D   (3.3c) 
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  Ap,d  =  [(kd + i κd)(k + i κ) – 4λ2] D  (3.3d) 

  Bp,d  =  2  kd (k + i κ) D   (3.3e) 

  Cp,u  =  – 4 i λ kd D   (3.3f) 

 

with the common denominator D ≡ 1/[(kd - i κd)(k+ i κ) + 4λ2].  These amplitudes can be directly 

related to each other by exchanging the spinor labels u and d and complex conjugation.  This 

symmetry leads to an interesting relationship between both states.   

 While due to the degeneracy any superposition of Ψe(E;x) and Ψp(E;x) is an energy 

eigenstate, the two specific states in Eqs. (3.2) were chosen with regard to their coupling-free 

(λ=0) limit, that allows us to uniquely distinguish between electronic and positronic states.  This 

unique identification of particle states is not trivial for the degenerate states from the Dirac 

equation, where all spinor components are mixed even for V0=0.  Here the corresponding 

eigenstates Ψe(E;x,λ=0) ~ (1,0) and Ψp(E;x,λ=0) ~ (0,1) have purely electronic and positronic 

forms, corresponding to vanishing spinor components Ce,d=0 and Cp,u=0.  

 

 Ψe(E;x,λ=0) =   [exp( i k x) + A’e,u exp(-i k x)] Lu  +  B’e,u exp(-κ x) Ru    (3.4a) 

 Ψp(E;x,λ=0) =   B’p,d exp( κd x) Ld  +  [exp( i kd x) + A’p,d exp(-i kd x)] Rd  (3.4b) 

 

where the primed coefficients are identical as in Eqs. (3.3), except that λ=0.   

Here they simplify significantly to A’e,u = (k – i κ)/(k + i κ), B’e,u  =  2k/(k + i κ), A’p,d = (kd + i 

κd)/(kd – i κd) and B’p,d = 2kd /( kd - i κd).   

 For conceptual simplicity we have assumed that the part of the wave functions that represent 

the incoming particles have unit amplitude.  As a result the states are not normalized correctly.  In 

Appendix A we show how we can approximate the overall normalization factors as N = [2π |ku|]–

1/2, such that these states can be normalized on an energy scale such that we have 〈Ψ(E1) |Ψ(E2)〉 

= δ(E1–E2).  

 As it plays a key role for the calculation of the pair creation rate (as shown in Sec. 3.2), we 

determine next the transmission coefficient.  This will also permit us a first comparison of the 

predictions of the ATP Hamiltonian with the Dirac Hamiltonian.  Using the functional 
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dependence of the coefficients in Eq. (3.3a), we can derive it by the ratio of the incoming and 

transmitted current as T(E) = jtrans/jinc, we obtain TATP(E) =  kd|Ce,d|2 /k = k|Cp,u|2 /kd = 16 λ2 k kd 

|D|2.  The non-monotonic dependence of TATP(E) on the coupling force strength TATP(E) ~ 

λ2/|z+4λ2|2 indicates that there are also two competing mechanisms associated with the force term 

λ δ(x) σ1.  For small λ, it increases the transmission (as Ce,d increases with λ) but for larger λ the 

same force term leads also to an increased reflection (as Ae,u increases with λ and therefore Ce,d 

decreases), effectively decreasing the transmission.  As the result, there is an optimum coupling 

strength for each energy, λ = |z|1/2/2 = |[(kd - i κd)(k+ i κ)|1/2/2 that maximizes the transmission.  

For E=1.5c2 it amounts to 0.816 V0/(2c), which coincidentally happens to be close to the 

amplitude V0/(2c) from Eq. (2.2).  For simplicity, we choose V0/(2c) from now on. 

 

 
Figure 1. Comparison of the quantum mechanical transmission coefficients T(E) obtained from the 
original Dirac and ATP Hamiltonian for a supercritical potential step of height V0 = 3c2.  We used a 
coupling strength λ=V0/(2c) for the ATP Hamiltonian. 

 

 In Figure 1 we have compared this coefficient with the well-known one [22] obtained from 

the corresponding Dirac equation approach.  It is given by TD(E) = 2 c2 p q / [E(V0-E)+c2pq +c4], 

where the relativistic momenta are p ≡ (E2-c4)1/2/c and q ≡ [(V0-E)2-c4]1/2/c.  In the non-

relativistic limit (c→∞) we have p→k and q→kd.  We see that all essential features such as the 

energy range, c2<E<V0-c2, and the location of a single maximum at E=V0+c2/2 can be 

qualitatively reproduced by the Hamiltonian HATP.  This gives us some confidence that basic 

features of the pair creation process can be described by this (more transparent) model. 

 There are two mechanisms that could be responsible for the observed difference between 

TD(E) and TATP(E) in Fig. 1.  A Hamiltonian with the kinetic operator (c2+p2/2) σ3 permits the 
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occurrence of velocities that can exceed c, whereas any velocity in the Hamiltonian with a 

(relativistic) kinetic operator of the form (c4+c2p2)1/2 σ3 has to obey the speed limit v<c.  So if 

hypothetically the external force would excite the same momentum states in both systems, in the 

non-relativistic description this would correspond to higher velocities.  As faster particles can 

leave the pair creation zone more effectively this mechanism by itself would increases the pair 

creation rate and therefore would predict TD(E)<TATP(E), which, however, is not observed in the 

simulation.  The original potential V(x) was chosen piecewise constant but the unavoidable delta 

functions in x [associated in the higher derivatives of V(x)] contained in the two potentials Fdiag  

and Foff in Eq. (2.2) were omitted in HATP.  We therefore conjecture that the larger Dirac 

transmission coefficient TD(E) is due to these omitted terms. 

 

3.2 The ATP pair creation rate for the potential step  

 Finally, we use all of this information to show how the pair creation rate is directly related to 

the transmission coefficient T(E).  As shown above, the number of created electrons with energy 

E as a function of time can be defined by projecting the time-evolved ATP-Dirac sea states |d;p’〉 

on the states of the upper energy continuum, N(E;t) ≡   ∫dE’  | 〈u;E| exp(-i HATP t) |d;E’〉 |2.  We 

can replace the force-free state 〈u;E| with twice the true energy eigenstate 〈Ψ(E)| of the ATP 

Hamiltonian.  The factor of 2 is due to the fact that 〈Ψ(E)|u;E’〉 is close to ½δ(0).  The action of 

HATP on 〈Ψ(E)| reproduces the energy exp(-i E t), leading to N(E;t) =  ∫dE’ 4 | 〈Ψ(E)|d;E’〉 |2 that 

seems to have become independent of time.  However, the inner product expressed as a spatial 

integral yields an important delta function in the energy 

 

〈Ψ(E)|d;E’〉 =  N Nf ∫–∞
0dx [C*

e,d exp(κdx+iknx)]+ ∫0
∞C*

e,d exp(ikdx+iknx)]]  

                    =  N Nf { C*
e,d (κd+ikn)–1 + C*

e,d [πδ(kd+kn)+i/(kd+kn)] }   

                    ≈  N Nf C
*
e,d π δ(kd+kn)   

                    =  N Nf C
*
e,d π |kd| δ(E–En)   (3.5) 

 

where we have dropped the principal parts.  If we square the absolute value of Eq. (3.5) and use 

δ(E–En)2 = δ(E–En) δ(E=0) and δ(E=0) = t (2π)–1, we obtain 
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   N(E,t) = 4 |N Nf
 Ce,d π kd |2 (2π)–1 t ≡ Γ(Ε) t  (3.6) 

 

 If we then insert the normalization constant (derived in Appendix A) the resulting expression 

for the pair creation yield simplifies significantly and we obtain the final result 

 

                                              Γ(Ε)  = (2π)–1 T(E)  (3.7) 

 

where T(E) is the quantum mechanical transmission coefficient derived above.  This relationship 

was first conjectured by Hund [13]. 

 This result is rather interesting and confirms the usual Hund rule, which for the case of the 

Dirac equation relates the pair creation rate directly to the corresponding transmission coefficient, 

is also valid for the ATP system.  In order to test the validity of both proposed analytical 

expressions (and the approximations in its derivation) we have computed the number of created 

electrons N(E;t) ab initio from a time-dependent simulation of the dynamics.  For the 

computational details of these ab-initio simulations, see [9,10,20,22-26].  In order to describe 

numerically an abrupt potential step, we have actually used a smooth tanh(x/w)-like step [27] with 

the very narrow turn on width of w=0.01/c. 

 

 
 
Figure 2.  The energy dependence of the number of created electrons N(E,t) per energy at time t 
obtained from ab-initio simulations of the pair-creation process based on the Dirac and the ATP 
Hamiltonian.  The continuous data are the predictions  N(E,t) = Γ(E) t based on the asymptotic long-
time rate, which can be obtained analytically.  [t=2×10-3 a.u., same parameters as in Fig. 1] 
 

 

 The true energy distribution of the emitted particles N(E,t) at time t is the accumulated result 
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of several pair creation mechanisms.  At early times, N(E,t) covers a wide energy range associated 

with temporally induced transitions associated with the abrupt turn on of the external force field.  

This leads to many low energy electrons as well as electrons with energies that exceed 2c2, but the 

distribution decreases monotonically with E.  The asymptotic long-time pair creation regime is 

charaterized by the circularly shaped distribution, whose maximum occurs at energy Emax=V0/2.  

As we have derived above, this distribution can be derived analytically from the transmission 

coefficient, N(E,t) = (2π)–1 T(E) t.  The data in Figure 2 show nicely how the true yields evolve in 

their asymptotic form for the Dirac as well as ATP Hamiltonian. 

 If we integrate the long-time energy spectrum over all energies, we can also obtain the total 

pair creation rate, N(t) = ∫ dE Γ(E) t ≡ Γ t.  While for the ATP dynamics the numerical data for 

N(t) predicts a slope of about  dN(t)/dt = 388 a.u., the integral (2π)–1 ∫ dE Τ(E) amounts to 381 

a.u., leading to a relative difference of less than 2%, which is fully consistent with the expected 

numerical accuracy of the computational simulations.  

 We should finish this section by pointing out an important difference between the Dirac and 

the ATP vacuum rate with respect to their perturbative nature.  For an infinitely extended system, 

the functional dependence of the Schwinger rate on the electric field is non-perturbative as it 

cannot be Taylor expanded for small field amplitudes.  Even for a finite system, such as the step 

potential, the corresponding Dirac rate is also non-perturbative.  In this case the nonperturbative 

character is due to the fact that the rate is discontinuous in V0 as it has to exceed a certain 

threshold value of 2c2 to become supercritical.  In contrast, as we have derived above, the rate of 

the ATP Hamiltonian ΓATP(E) ~ λ2/|z+4λ2|2 is a differentiable function of the coupling force 

strength λ and therefore fully perturbative. 

 

4.  Pair creation triggered by a spatially extended electric field 

 We will argue below that for more general and spatially extended external fields, the ATP 

Hamiltonian can offer some conceptual advantages over the usual approach based on the Dirac 

equation.  To have a concrete example, we examine the simplest case of an extended region  

0<z<w where the external electric field is constant.  The well-known Schwinger rate for an 

infinitely extended electric field [11] predicts that the pair creation yield depends on the electric 

field amplitude, which might suggest, that in our case the entire spatial region 0<x<w should be 

able to create particles.  However, the data obtained from the ATP Hamiltonian suggests that this 
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is not necessarily true.  In Section 4.1 we examine first the time-dependence of the energy 

distribution of the emitted particles and in 4.2 we connect it to their spatial probability density.   

 

4.1 Time-dependence of energy distribution of the emitted electrons 

 In this section we will examine if the predictions based on the analytical expressions obtained 

for the step potential are also useful for understanding the pair creation for spatially extended 

electric fields.  The corresponding ATP Hamiltonian for the potential that grows linearly in space 

for 0<x<w and then remains constant V(x) = V0 for w<x is given by   

 

  HATP  =  (c2+p2/2) σ3 + V0 [x/w θ(x)θ(w-x) + θ(x-w)] σ0  

                                     + V0/(2wc) θ(x)θ(w-x) σ1  (4.1) 

 

 It describes a spatial region 0<x<w, where –at least in principle– the pair creation can occur at 

all times.  A comparison of the exact data obtained from a direct ab-initio simulation will permit 

us to examine if the specific functional dependence of the pair creation rate and the spatial 

probability density on the transmission coefficient can be generalized to spatially extended force 

fields.  To do so we have to compute first the corresponding transmission coefficient T(E) for the 

linear ramp potential for the ATP Hamiltonian.  This can be accomplished numerically by an 

iteration method that we detail in Appendix B.  

 

 
 
Figure 3.  Temporal growth of the energy spectra of the created electrons N(E,t) for a spatially 
extended force field obtained from ab-initio simulations of the pair-creation process based on the 
ATP Hamiltonian.  The chosen moments in time are tn=n Δt + 5×10-5 a.u., where Δt= 3×10-4 a.u. and 
n=1,2, …10.  The inset show the differences of two consecutive distributions for i=9 and 10. 
[V0=5c2, w=5/c]. 
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 In Figure 3 we display the energy spectra of the emitted electrons N(E,t) at various moments 

in time for the potential with V0=5c2.  Similarly to the case of the step potential, at early times the 

distribution falls of exponentially with energies covering a wide range.  The corresponding 

electrons were partly created due to the unavoidable time-dependence of the electric field during 

its rapid turn on.  At longer times the permanent and supercriticality-based creation mechanism 

dominates, leading also to a linear growth of the total number of particles, N(t) = ∫ dE N(E,t) = Γt 

+ α.  Here we measured the rate Γ=59.52 a.u., which agrees very well with the rate as predicted 

from the transmission coefficient, (2π)-1∫ dE T(E) = 59.79 a.u..  This confirms once again the 

relationship of Eq. (3.7) between T(E) and the rate Γ(E) for the ATP Hamiltonian for finite 

electric fields. 

 The electrons created by the steady-state mechanism take only energies in the smaller range 

c2<E<4c2.  To illustrate this, we have subtracted out the contributions from earlier times and 

graphed in the inset the difference N(E,ti)-N(E,ti-1) for two times corresponding to i=9 and i=10.  

The two differences are identical, as expected for the pair creation process in its steady state.  For 

very small time-increments, these differences (when divided by ti+1– ti) should match the energy 

dependence of the pair creation rate Γ(E). 

 

 
Figure 4.  The energy dependence of the pair creation rate dN(E,t)/dt per energy at time t  
for a spatially extended force field obtained from ab-initio simulations of the pair-creation process 
based on the ATP Hamiltonian.  The continuous data are the predictions for Γ(E) based on the 
transmission coefficient for this potential. 
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 To make this comparison more quantitative, we compare in Figure 4 the true pair creation rate 

obtained from the long time limit of the ab-initio simulation with the corresponding expression 

Γ(E) for the ATP equation.  We see that the agreement between the exact data and the long-time 

approximation based on the transmission coefficient is excellent also for a spatially extended 

force field.  In contrast to the rate for the potential step (Fig. 2) that was centered around a single 

maximum at energy V0/2, the rate for the extended electric field has now two maxima.  The 

magnitude of the rate Γ(E) is the result of the density of the states that is decreasing with the 

energy difference from E=c2 (for the electronic states) and from E=V0-c2 (for the positronic 

states).  It also depends on the scalar product between the elecronic and positronic states and 

therefore their penetration (tunneling) depth into the region 0<x<w. 

 In the next section we will argue that using the dressed (but uncoupled energy eigenstates) 

suggests that this narrow energy production range (c2 <E<V0-c2 ) correlates directly with a 

restricted spatial range inside the force region where particles can be created. 

 

4.2 Spatial dependence of the created electrons  

 In several prior works [9,10,20,28,29], the force-free energy eigenstates |u;p〉 and |d;p〉 were 

used to compute the spatial probability distribution ρ(x,t) of the created electrons as 

 

                  ρfree(x,t) ≡ ∫dE’ | ∫dE   〈u;E| exp(-i Ht) |d;E’〉 (2π |k|)–1 exp(ik x) |2   (4.2) 

 

However, we remark that there were also works that do not rely on these states and examined 

different projections in order to identify particles.  Gerry et. al. [30] have used dressed states but 

for a special case where the particles were created exclusively due to a time-dependent electric 

field.  A similar scenario was studied in 2010 by Mocken et al. [31].  During the same year, 

Hebenstreit et al [32] provided space-resolved information using a Wigner function formalism.  In 

2014 Dabrowski and Dunne [33] outlined a new scheme to overcome the ambiguity of defining 

vacua at finite times by using a superadiabatic particle number according to Berry's universal 

smoothing of the Stokes phenomenon. 

 The spatial distribution inside the pair creation zone cannot be accurately described by this 

expression (4.2), as the force-free states and |d;E〉 are not so easy to be interpreted in regions 

where the force does not vanish.  We therefore propose to examine an alternative definition for 
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ρ(x,t), where these states are replaced by the electronic energy eigenstates of the ATP 

Hamiltonian for λ=0, denoted by |Ψ(E;λ=0)〉.  Furthermore, we replace 〈x|u;E〉 = (2π |k|)–1 exp(ik 

x) by the dressed wave function Ψp(E;x,λ=0).  Similarly as in Eq. (3.1), we have introduced the 

coupling parameter λ to separate between the effects due to the dressing [associated with the 

diagonal potential in Eq. (4.1)] and the actual creation of particles with strength λ given by the 

last term in Eq. (4.1).  This state was obtained numerically by diagonalization of the ATP 

Hamiltonian for λ=0 on a spatial grid [34].  Their analytical structure for the potential step, [given 

by Eq. (3.4a) above] showed that electrons decaying exponentially in the energetically forbidden 

domain where E<V(x), which we also expect to be true for the extended force fields.  However 

for our extended field there is the additional interesting region 0<x<w, where the potential grows 

linearly.  Based on these states we can define 

 

                  ρATP(x,t) ≡ ∫dE’ | ∫dE   〈Ψe(E;λ=0)| exp(-i Ht) | d;E’〉 Ψe(E;x,λ=0) |2  (4.3) 

 

 

Figure 5.    The spatial probability density of the electrons in the steady state ρfree(x) and ρATP(x) 
based on the force-free and dressed states of Eqs. (4.2) and (4.3).  [Parameters as in Fig. 4] 

 

 We should note that while Eq. (4.2) assumed that the initially occupied Dirac sea consists of 

force-free states [negative energy eigenstates of (c2+p2/2) σ3], the modified definition Eq. (4.3) 

assumes that the initial quantum field theoretical state corresponds to the vacuum associated with 

the dressed (but uncoupled) Hamiltonian (c2+p2/2) σ3  + V0 [x/w θ(x)θ(w-x) + θ(x-w)]σ0.   

 In Figure 5 we compare the steady state distributions ρfree(x) and ρATP(x) for the same 
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dynamics as discussed in Section 4.1.  Quite remarkably, the two probabilities are graphically 

indistinguishable, which is unexpected at first as the underlying states |d;E’〉 and  |Ψp(E;λ=0)〉  

have entirely different structures for 0<x, especially inside the important force region 0<x<w.  In 

fact even at earlier times we found that the time dependence of the total particle yield, given by 

the spatial integral as N(t) = ∫ dx ρ(x,t), was identical.  This agreement is not so unexpected, as the 

two Hilbert spaces spanned by all initially occupied states |d;E〉 and  |Ψp(E;λ=0)〉 are identical.  In 

other words, both represent the same quantum field theoretical vacuum state.  It should be 

obvious that if we had used the exact vacuum state, corresponding to an ATP Dirac sea spanned 

by all occupied states  |Ψp(E;λ)〉, no particle pairs would be observed.  

 

 

Figure 6.    The spatial probability density of the electrons in the steady state ρfree(x) and ρATP(x) 
created from the force-free and dressed vacuum state.  However, in contrast to Figure 5, the energy 
range of the permitted states has been reduced to c2<E<4c2.  For comparison, the dashed line shows 
ρfree(x) (see Fig. 5) that was computed without any energy reduction.  The squares are the 
predictions based on the quasi-analytical approximation from Eq. (4.5) 
[Parameters as in Fig. 4]  

 

 In order to test if it is possible to identify spatial domains where the electrons are created 

inside the force region, we have truncated the energy integration interval in Eq. (4.2) and (4.3) to 

c2<E<4c2.  The resulting steady state distributions ρfree(x) and ρATP(x) are shown in Figure 6.  

While the two probabilities -when computed over the entire energy range- were identical (see Fig. 

5), there are now a significant differences between the two approaches used to compute ρ(x).  The 

force-free states based distribution ρfree(x) is overall lowered (compared to the untruncated 

dashed line of Fig. 5).  If ρfree(x) would describe true physical particles inside the field, this 
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would suggest that even in the steady state electrons can be created in the entire spatial range 

0<x<w.  However, this is not true at all as the modified spatial density ρATP(x) based on the 

dressed states shows.  Here the energy reduction to c2<E<4c2 clearly shows that the occupation of 

the spatial region 0.6w<x<w observed in ρfree(x) and ρATP(x) is entirely due to earlier times long 

before the steady state has developed.  In fact, by removing the contribution of energy states with 

E> 4c2 from ρATP(x), removes automatically also all electrons from 0.6w<x<w.  This observation 

is also fully consistent with the data N(E,t) shown in Figs. 3 and 4 that proved that energies E> 

4c2 cannot be created at longer times. 

 This means, that there is a spatial domain in the long-time (steady-state) limit where no 

particles can be created, even though the external force is non-zero in the entire region 0<z<w.  

The existence of the shorter pair creation region [0<x<w(1-2c2V0
-1)] suggests that the amount of 

the local force is not solely determining how many electrons are created there.  A nontrivial 

question, however, remains why these earlier created high-energy “electrons” did not accelerate 

out of the pair creation zone.  Here it is important to understand that a non-zero density ρfree(x) 

should not be directly associated with the existence of physical particles inside the force zone.  

Several prior works [30,35] have discussed this conceptual issue in more detail. 

 The advantage of the ATP-based basis states over the free states also permits us to examine an 

approximate but quasi-analytical approach to the steady state ρ(x).  It turns out that we can use 

this expression to approximate the long-time asymptotic distribution.  If we replace the states 

 |Ψe(E;λ=0)〉  with the corresponding true energy eigenstates |Ψe(E;λ)〉, the action of the time 

evolution operator can be applied    

 

                  ρ(x,t) ≡ ∫dE’ | ∫dE   〈Ψe(E;λ=0)| exp(-i Ht) |Ψp(E;λ=0)〉 Ψe(E;λ=0) |2 (4.4) 

 

In the limit of long times we can approximate this by ρ(x,t) ≈ ∫dE’ | ∫dE   exp(–iE t) 

〈Ψe(E;λ)|Ψp(E;λ=0)〉 Ψe(E;λ=0) |2.  We can use similar approximations as we used for the step 

potential, and obtain the proportionality  

 

                       ρ(x)  ~  ∫dE  Γ(E) |Ψe(E;x,λ=0) |2    (4.5) 
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 We obtain the interesting and rather intuitive result that the spatial steady state density is just 

the integral over the density of each electronic energy eigenstate with a weight factor that is 

proportional to the energy-dependent pair creation rate Γ(E). 

 In order to test this rather serious sequence of approximations, we have included the 

predictions of Eq. (4.5) in Figure 5 by the open squares.  It predicts correctly the constant density 

of outgoing particles for x<0.  In contrast to ρfree(x) and ρATP(x), which increase first inside the 

force-region, Eq. (4.5) suggests that inside the potential the density decays monotonically until it 

vanishes for 0.6w<x.  We believe that this unphysical increase is related to the same conceptual 

difficulty as the permanent occupation of the spatial region w(1-2c2V0
-1)<x<w.   

5.  Summary and brief outlook  

 We have introduced an approximate but illustrative model Hamiltonian that can predict the 

creation of electron-positron pairs.  Its main advantage compared to the more fundamental and 

accurate description in terms of the traditional Dirac Hamiltonian is the separation of the external 

force field into contributions that solely provide the spatial evolution of the particles and a second 

(off-diagonal) part that is solely responsible for their creation. 

 We have seen that the availability of the dressed particle states for (λ=0) can provide a much 

better basis to compute spatial densities than the usual force-free states.  For example, the spatial 

densities inside the pair creation zone characterized by a constant force revealed that there are 

spatial regions where particles cannot be created at all.  To improve the transparency of these 

spatial densities even more, one could project the electron field operator on the full energy 

eigenstates of the system.  However, in this case the densities are no longer time dependent.  

 There are several fascinating questions that can be addressed in future works.  It is very 

interesting to examine the relative importance of the diagonal and off-diagonal potential for the 

pair creation yield.  If we repeat the simulation of Sec. 4 but remove the diagonal-potential 

completely from the dynamics, the time-dependence of the number of created particles is 

oscillates around zero.  As the particles do not interact directly with each other and they are born 

basically at rest, they have no means of leaving the interaction zone.  As a result, we have 

repeated sequences of pair creation followed by complete annihilation and as a net result no 

permanent pair creation.  In this sense the diagonal part of the potential is crucially important for 

pair creation by facilitating the particles’ permanent separation. 
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 The ATP Hamiltonian was derived only in the lowest nonvanishing order of the momentum.  

It might be very interesting to calculate higher order term in the potential and examine if they 

have a similarly straightforward interpretation with regard to their role for the pair creation 

process.  It is presently not clear if these additional terms would contain higher spatial derivatives 

of the original potential or if they would contain also the momentum operator.  As similar higher-

order analysis might also be interesting in three-spatial dimensions, where the vector potential 

could describe effects due to an external magnetic field. 
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Appendix A  The normalization of the scattering states of the ATP Hamiltonian 

 In this appendix we compute the normalization coefficients such that the energy eigenstates of 

the ATP Hamiltonian are energy normalized, e.g. 〈Ψ(E1)|Ψ(E2)〉 = δ(E1–E2).  In the trivial case of 

the force-free states |d;E〉 = Nf exp(ikx) (0,1), this amounts to Nf = (2π |k|)–1/2 such that 

〈d;E1|d;E2〉 = δ(E1–E2).  Using the notation defined in the main text, we found the (non-

normalized) states of the full ATP Hamiltonian for the zero-range potential 

 

    〈x|Ψ(E)〉 =  exp(iku x) Lu(x) + Ae,u exp(–iku x) Lu(x)   + Be,u exp(–κu x) Ru(x)  

                                              + Ce,d exp(κd x) Ld(x)   + Ce,d exp(–ikd x) Rd(x)   (A1) 

 

 If we express the inner product 〈Ψ(E1)|Ψ(E2)〉 as an integral over the position space we obtain 

 

〈Ψ(E1)|Ψ(E2)〉  =  ∫–∞
0 dx {[exp(–iku1x) + A*

e,u1 exp(iku1x)] [exp(iku2 x)+Ae,u2 exp(–iku2x)] + 

                                                           + C*
e,d1 Ce,d2 exp(κd1x+ κd2x)} + 

           +  ∫0
∞dx {B*

e,u1 Be,u2 exp(–κu1x–κu2x) + C*
e,d1 Ce,d2 exp(ikd1x –ikd2 x)} 

 (A2) 

      

multiplying the factors we obtain the following seven integrals over the half-space.  Using the 

general equality ∫0
∞ dx exp(ikx) = πδ(k) + i/k, these integrals can be evaluated to the sum of the 

delta function and the principal part,  

 

〈Ψ(E1)|Ψ(E2)〉 =  ∫–∞
0 dx [exp(iku2x–iku1x) + A*

e,u1 Ae,u2 exp(iku1x–iku2x)] + 

            +  ∫–∞
0 dx [Ae,u2 exp(–iku1x–iku2x)+ A*

e,u2 exp(iku1x+iku2x)] + 

            +  ∫–∞
0 dx C*

e,d1 Ce,d2 exp(κd1x+ κd2x) +  

            +  ∫0
∞ dx  B*

e,u1 Be,u2 exp(–κu1x–κu2x) +  

            +  ∫0
∞  dx  C*

e,d1 Ce,d2 exp(ikd1x –ikd2 x)   

    =   [π δ(ku2–ku1) – i/(ku2–ku1)] + A*
e,u1 Ae,u2 [π δ(ku1–ku2) – i/(ku1–ku2)] + 
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       +   Ae,u2 [π δ(ku1+ku2) – i/(–ku1–ku1)] + A*
e,u2 [π δ(ku1+ku2)–i/(ku1+ku1)] + 

       +  C*
e,d1 Ce,d2 (κd1+ κd2)–1 +  

       +  B*
e,u1 Be,u2 (κu1+ κu2)–1 +  

       +  C*
e,d1 Ce,d2 [π δ(kd1–kd2) + i/(kd1–kd2)]  (A3) 

      

We need to introduce the normalization factor such that 〈Ψ(E1)|Ψ(E2)〉 = δ(E1–E2).  We can 

therefore drop the non-resonant delta functions, the principal parts and the constant terms  

 

〈Ψ(E1)|Ψ(E2)〉 =  π δ(ku2–ku1) + |Ae,u1|2 π δ(ku1–ku2) + |Ce,d1|2 π δ(kd1–kd2)   

           =  π δ(ku2–ku1) + |Ae,u1|2 π δ(ku1–ku2) + |Ce,d1|2 π |kd1/ku1| δ(ku1–ku2)   

           =  π |ku| δ(E2–E1) + |Ae,u1|2 π |ku| δ(E2–E1) + |Ce,d1|2 π |kd| δ(E2–E1)    (A4) 

 

We therefore find the normalization factor N = [ π |ku| (1+|Ae,u|2) + π |kd| |Ce,d|2 ]–1/2.  If we use 

the definition of the coefficients for Ae,u and Ce,d, this simplifies to N = [2π |ku|]–1/2. 
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Appendix B    Numerical determination of the transmission coefficient 

 As the transmission coefficient plays such a central role in this work, we summarize here the 

numerical method that was used to compute it for a Hamiltonian.  For simplicity of presentation, 

we illustrate the algorithm first for the Schrödinger equation with a brief test for a step potential 

and then provide the more complicated equations for the ATP Hamiltonian. 

 If we approximate the action of the spatial second derivative by a three-point finite difference 

formula, d2Ψ(xn-1)/dxn-1
2 = [Ψ(xn-2) – 2Ψ(xn-1) + Ψ(xn)]/Δx2 + O(Δx2), then the eigenvalue 

equation [p2/2 + V(x)]Ψ(x) = E Ψ(x) for a scattering state Ψ(x) of chosen energy E can be 

expressed on a spatial lattice grid as   

 

            Ψ(xn) = 2 Ψ(xn-1) – Ψ(xn-2)  + (2Δx2) [–E Ψ(xn-1) + V(xn-1) Ψ(xn-1)]  

                      ≡ An Ψ(xn-1) + Bn Ψ(xn-2)   (B1) 

 

where An ≡ 2 + (2Δx2) [V(xn-1) – E] and Bn ≡ –1.  In other words, it is an iterative scheme that 

permits us to derive consecutively the wave function on all grid points xn, once one has chosen Ψ 

at the starting locations at x1 and x2.  The basic idea of the algorithm is to choose these two values 

Ψ(x1) and Ψ(x2) in such a way, that [for grid points x1 and x2  on the left side of the potential 

(where it is zero)] they match exactly the well-known structure for a scattering state, given by the 

sum of an incoming and a reflected state of energy E = k2/2. 

 

   Ψ(x1) = exp(i k x1) + r(k) exp(-i k x1)  (B2a) 

   Ψ(x2) = exp(i k x2) + r(k) exp(-i k x2)  (B2b) 

 

Here r(k) denotes the momentum dependent reflection amplitude, whose determination is the 

ultimate goal of this algorithm.  Here it is important to note that due to the linear structure of the 

Schrödinger equation with regard to Ψ, the functional relationship between the state and the 

reflection amplitude r(k) maintains the general form Ψ(xn) = an + bn r(k) for any spatial grid point.  

This means we can keep the value of r(k) unspecified while the solution for Ψ(xn) is iteratively 

obtained by Eq. (B1).  Instead of iterating Ψ(xn) directly from grid point xn to xn+1, we iterate the 
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two coefficients an and bn with their two starting values a1 = exp(ikx1), a2 = exp(ikx2), b1 = exp(–

ikx1) and b2 = exp(–ikx1).  If we insert Ψ(xn) = an + bn r(k) into Eq. (B1), we obtain 

an + bn r(k) = An [an-1 + bn-1 r(k)] + Bn[an-2 + bn-2 r(k)], or equivalently 

 

   an = An an-1 + Bn an-2    (B3a) 

    bn = An bn-1 + Bn bn-2    (B3b) 

 

This iterative scheme permits us to obtain the coefficients an and bn (and therefore the 

eigenfunction) at all spatial grid points as a function of the (still unknown) reflection amplitude 

r(k).   

 If we assume that the potential V(x) takes a constant value at the final two grid points xN-1 and 

xN, V(xN-1)=V(xN)=V0, then our scattering state that we are computing must take the precise 

functional form 

 

   Ψ(xN-1) = t(k) exp(i κ xN-1)  (B4a) 

   Ψ(xN)   = t(k) exp(i κ xN)  (B4b) 

 

where the lowered momentum over the barrier is defined as κ≡[2(E-V0)]1/2 and t(k) is the 

momentum dependent transmission coefficient.  After the iteration is completed, this leaves us 

with enough degrees of freedom to determine uniquely r(k) and t(k).  We can therefore solve the 

two linear coupled equations  

 

     Ψ(xN-1) = aN-1 + bN-1 r(k) =  t(k) exp(i κ xN-1)  (B5a) 

   Ψ(xN)   = aN   +  bN   r(k)  =  t(k) exp(i κ xN)  (B5b) 

 

to obtain the desired transmission amplitude t(t) from the numerical values for aN-1,bN-1, aN and 

bN as 

                         t(k) = (aN-1bN  – aNbN-1) / [bN exp(i κ xN-1) – bN-1 exp(i κ xN)]  (B6) 
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and therefore the transmission coefficient T(E) = κ|t(k)|2/k.   

 In order to briefly demonstrate the accuracy of this scheme, we have applied it to simple 

potential step, given by V(x) = V0 θ(x) for which the analytical form of the transmission 

coefficient is known as T(E) = 4 κk/(k+κ)2.  Using just four grid points xn=(n-3/2)Δx for 

n=1,2,3,4 (corresponding to two iteration steps) we have tested the proposed interactive scheme.  

In Figure B1 we compare the numerical transmission coefficient with the exact form in the energy 

range 1<E/V0<1.5 for three choices of the grid spacing Δx.  We see that the method works 

superbly even for a discontinuous potential as long as Δx is chosen sufficiently small such that the 

three-point finite difference approximation is appropriate to describe the second derivative. 

 

 
Figure B1.  The transmission coefficient T(E) for the test Hamiltonian p2/2 + V0 θ(x) for three spacings 
Δx used in the numerical algorithm.  The continuous line is the exact analytical coefficient T(E) = 4 
κk/(k+κ)2.  [V0=2 a.u.] 
 

 

 Due to the inherent generality of the algorithm, it can be used to compute the required 

transmission coefficient for the ATP Hamiltonian for any potential, given by the 2×2 matrix 

operator H = (p2/2 +c2) σ3 + Vdiag(x) σ0 + Voff(x) σ1.  While the basic idea is the same, however, 

its concrete numerical implementation is more complicated as we have to iterate a two-component 

wave function in this case.  The iterative scheme from Eq. (B1) corresponding to the eigenvalue 

equation generalizes to  

 

  Ψ1(xn)  = A1,n Ψ1(xn-1) + B1,n Ψ1(xn-2) + C1,n Ψ2(xn-1)  (B7a) 

  Ψ2(xn)  = A2,n Ψ2(xn-1) + B2,n Ψ2(xn-2) + C2,n Ψ1(xn-1)  (B7b) 
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with the six coefficients 

 

  A1,n ≡ 2 + (2Δx2) [Vdiag(xn-1) + c2 – E]   (B8a) 

  B1,n ≡ –1   (B8b) 

  C1,n ≡ (2Δx2) Voff(xn-1)   (B8c) 

  A2,n ≡ 2 – (2Δx2) [Vdiag(xn-1) – c2 – E]   (B8d) 

  B2,n ≡ –1   (B8e) 

  C2,n ≡ – (2Δx2) Voff(xn-1)   (B8f) 

 

 Among the two degenerate solutions, we are interested in finding the specific two-component 

eigenfunction for the problem that takes the general form for x<0 where the potential is zero 

 

  Ψ1(x)  =  exp(i k x) + r1(k) exp(–i k x)   (B9a) 

  Ψ2(x)  =  r2(k) exp(κd x)     (B9b) 

 

where k ≡ [2(E-c2)]1/2 and κd ≡ [2(E+c2)]1/2 and r1(k) and r2(k) are unknown coeffcients that 

depend nontrivially on the energy as well as the potential.  We introduce again the corresponding 

six expansion coefficients 

 

  Ψ1(xn) = a1,n + b1,n r1(k) + c1,n r2(k)  (B10a) 

  Ψ2(xn) = a2,n + b2,n r2(k) + c2,n r1(k)  (B10b) 

  

If we insert them into Eq. (B7) we find the following six iterative equations  

 

  a1,n  = A1,n a1,n-1 + B1,n a1,n-2 + C1,n a2,n-1  (B11a) 

  b1,n  = A1,n b1,n-1 + B1,n b1,n-2 + C1,n b2,n-1  (B11b) 

  c1,n  = A1,n c1,n-1 + B1,n c1,n-2 + C1,n c2,n-1  (B11c) 

  a2,n  = A2,n a2,n-1 + B2,n a2,n-2 + C2,n a1,n-1  (B11d) 

  b2,n  = A2,n b2,n-1 + B2,n b2,n-2 + C2,n b1,n-1  (B11e) 
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  c2,n  = A2,n c2,n-1 + B2,n c2,n-2 + C2,n c1,n-1  (B11f) 

 

If our solution was iterated correctly, it must take the following form at the two right most grid 

points (where the diagonal part of the potential is constant V0 and the off-diagonals vanish). 

 

  Ψ1(xN-1)  = a1,N-1 + b1,N-1 r1(k) + c1,N-1 r2(k)  =  t1(k) exp(– κu xN-1)   

 (B12a) 

  Ψ2(xN-1)  = a2,N-1 + b2,N-1 r1(k) + c2,N-1 r2(k)  =  t2(k) exp(-i kd xN-1)  

 (B12b) 

  Ψ1(xN)    = a1,N + b1,N r1(k) + c1,N r2(k)         =  t1(k) exp(– κu xN)    (B12c) 

  Ψ2(xN)    = a2,N + b2,N r1(k) + c2,N r2(k)         =  t2(k) exp(-i kd xN)     (B12d) 

 

Where the two momenta under the barrier are defined as κu ≡ [2(Vdiag-E+c2)]1/2 and kd ≡ [2(Vdiag-

E-c2)]1/2.  So we are left with the task of solving the four linear equations for the unknown t2(k) as 

a function of the twelve calculated values for a1,N-1, b1,N-1, c1,N-1, a2,N-1, b2,N-1, c2,N-1, a1,N, b1,N, 

c1,N, a2,N, b2,N and c2,N.  We find as the final result the fraction 

 

   t2(k) = [Z1 exp(– κu xN-1) + Z2 exp(– κu xN) ] / [ Z3 exp(-i kd xN-1) + Z4 exp(-i kd xN) ] (B13) 

   

where the four auxiliary parameters Zi are given as 

 

Z1  =  – a2,N-1 b2,N c1,N  +  a2,N b2,N-1 c1,N  +  a2,N-1 b1,N c2,N  –  a1,N b2,N-1 c2,N  (B14a) 

             – a2,N b1,N c2,N-1  +  a1,N b2,N c2,N-1 

Z2  =   a2,N-1 b2,N c1,N-1 –  a2,N b2,N-1 c1,N-1  –  a2,N-1 b1,N-1 c2,N  +  a1,N-1 b2,N-1 c2,N 

 (B14b) 

             + a2,N b1,N-1 c2,N-1  –  a1,N-1 b2,N c2,N-1 

Z3  =   (– b2,N c1,N  +  b1,N c2,N ) exp(– κu xN-1)  + (b2,N c1,N-1  –  b1,N-1 c2,N) exp(– κu xN)   (B14c) 

Z4  = (b2,N-1 c1,N  –  b1,N c2,N-1 ) exp(– κu xN-1) + (–b2,N-1 c1,N-1 + b1,N-1 c2,N-1) exp(– κu xN)  

(B14d)
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