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We introduce multi-pulse quantum noise spectroscopy protocols for spectral estimation of the noise affecting
multiple qubits coupled to Gaussian dephasing environments including both classical and quantum sources. Our
protocols are capable of reconstructing all the noise auto- and cross-correlation spectra entering the multiqubit
dynamics, providing access, in particular, to the asymmetric spectra associated with non-classical environments.
Our result relies on (i) an exact analytic solution for the reduced multiqubit dynamics that holds in the presence
of an arbitrary Gaussian environment and dephasing-preserving control; (ii) the use of specific timing symme-
tries, which allow for a frequency comb to be engineered for all filter functions of interest, and for the spectra to
be related to experimentally accessible observables. We show that quantum spectra have distinctive dynamical
signatures, which we explore in two paradigmatic open-system models describing spin and charge qubits cou-
pled to bosonic environments. Complete noise spectroscopy is demonstrated numerically in a realistic setting
consisting of two-exciton qubits coupled to a phonon bath. The estimated spectra allow us to accurately predict
the exciton dynamics as well as extract the temperature and spectral density of the quantum environment.

I. INTRODUCTION

A. Context and motivation

Quantum systems are naturally susceptible to interactions
with external, classical or quantum, degrees of freedom. To
the extent that such “environment” (or “bath”) degrees of free-
dom are typically largely unknown and not directly accessi-
ble, these unwanted interactions pose a major challenge for
the implementation of coherence-enabled quantum technolo-
gies and scalable quantum information processing (QIP). A
number of techniques have been developed to address this
challenge, ranging from physical-layer dynamical error sup-
pression strategies to full-fledged fault-tolerant quantum error
correction [1]. While general-purpose error control protocols
may be constructed without making reference to a complete
specification of the underlying noise sources, this high degree
of robustness against “model uncertainty” tends to come at
the cost of inefficient scaling with the dimension of the sys-
tem one wants to protect [2, 3]. Likewise, no optimal per-
formance can be guaranteed, in terms of achievable fideli-
ties and required overheads. In fact, precise knowledge of
the open-system model describing the interaction of the target
system with its environment is a prerequisite for optimal con-
trol methods to be viable [4, 5]. Ideally, one would want that
the relevant noisy environment be fully characterized, so that
control design can be optimally tailored and error suppression
achieved as efficiently as possible.

On the plus side, the sensitivity of qubits to their surround-
ing environment is a boon that can be exploited for sensing
purposes, and is helping to unlock unprecedented opportuni-
ties in single- and multi-parameter quantum estimation and
metrology, see e.g. [6–13] for representative contributions. It
has long been appreciated that qubits can be used as “spec-
trometers of quantum noise” [14, 15]. Loosely speaking,
measuring a qubit’s response to the interaction with an en-
vironment of interest, information about the noise properties
may be inferred, much in the same way that light-matter in-

teractions are used in traditional spectroscopy. Also building
on foundational techniques developed in the context of high-
resolution nuclear magnetic resonance (NMR) [16], this idea
has been recently formalized into open-loop quantum noise
spectroscopy (QNS) protocols [17–20]: these leverage the fact
that the controlled dynamics of an open quantum system can
be characterized in the frequency domain through convolu-
tion integrals that involve control-dependent filter functions
(FFs) [21–23] and the noise power spectra – as determined by
the Fourier transform of the bath correlation functions [24].

In essence, a QNS protocol entails four main steps: (1) pre-
pare the probe qubits in a known state; (2) let the qubits evolve
under both bath-induced noise and external control sequences;
(3) measure a set of observables on the qubits that quantifies
their response to the bath and the applied control; (4) extract
information about the bath spectra from the measured value
of the observables. To date, single-qubit QNS protocols de-
signed to characterize a classical Gaussian noise source in the
dephasing regime have been successfully demonstrated in ex-
perimental platforms including solid-state NMR [18], super-
conducting and spin qubits [25–29] as well as nitrogen va-
cancy centers in diamond [30]. Characterization of discrete
non-Gaussian phase noise has, likewise, been implemented
in trapped ions [31], whereas general QNS protocols for re-
constructing high-order spectra of non-Gaussian classical and
quantum dephasing environments have been proposed in [19].
Central to QNS protocols is the idea that, by tailoring the
external control, and hence the FFs describing its action in
the frequency domain, one may engineer a frequency comb
which makes it possible to “deconvolve” the effect of the noise
and sample a desired spectrum at a set of control-dependent
harmonic frequencies. Notably, from a system-identification
standpoint, the resulting estimates are non-parametric in the
sense that no specific functional form is assumed [32].

Despite the above advances, QNS protocols that use a sin-
gle qubit as a probe face intrinsic limitations – even in the
simplest yet important scenario where noise may be taken to
be stationary and Gaussian. First, as also remarked in [19], al-
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though a general spectrum S(ω) is asymmetric about ω = 0,
only the even contribution S+

1,1(ω) ≡ S(ω) + S(−ω) en-
ters the dynamics (and can thus be reconstructed) in generic
single-qubit dephasing scenarios. Second, noise may ex-
hibit non-trivial spatial correlations, which may only man-
ifest in the coherence dynamics of multiple qubit probes at
different locations. Let S`,`′(ω) ≡ S+

`,`′(ω) + S−`,`′(ω) de-
note the spectrum of the noise affecting a pair of qubits `, `′,
where the “classical” (+) and the “quantum” (−) compo-
nents depend on Fourier-transformed commutators and anti-
commutators of bath operators, respectively. Since S−`,`(ω) =

S`,`′(ω) − S`′,`(−ω), any quantum contribution to the “self-
spectrum” (` = `′) is undetected, as noted, by single-qubit
QNS in a generic dephasing setting. While a protocol ca-
pable of accessing the classical “cross-correlation spectrum”,
S+
`,`′(ω), ` 6= `′, has been put forward in [20], the assumption

of classical noise cannot be expected to be a priori or univer-
sally valid. This motivates the search for QNS protocols able
to characterize arbitrary noise sources, quantum and classical,
that simultaneously influence multiple qubits.

Such a complete spectral estimation is crucial for a variety
of reasons. Most obviously, in the context of developing im-
proved techniques for characterizing QIP systems of increas-
ing scale and complexity, it would enable, as noted, appli-
cation of optimal control methods to multiqubit operations, as
well as validation of engineered noise environments – e.g., for
use in open-system quantum simulators [33, 34]. A number of
other implications may be envisioned; in particular:
• The environment as a resource. Several schemes have

been proposed for using quantum environments as a resource,
notably, for entangling two or more qubits via their interaction
with a common bath [35–42]. While no detailed knowledge
of the bath is necessary to generate entanglement, full knowl-
edge of the power spectra is instrumental to generate con-
trolled entanglement, i.e., to retrieve it on-demand or perform
a precise entangling gate. Along similar lines, it has recently
been shown that suitable noise can make a set of commuting
Hamiltonians universal for quantum computation [43]. While
knowledge of the noise process is assumed in this proposal,
use of a suitable QNS protocol would enable such informa-
tion to be directly extracted from measurable quantities.
• Correlations and quantum fault-tolerance. While initial

versions of the accuracy threshold theorem were derived un-
der restrictive noise assumptions [44], the types of noise under
which the theorem holds have expanded over the years [45].
In particular, it has been established that a threshold still exists
in the presence of quantum Gaussian correlated noise [46],
provided that the two-point correlations of the relevant bath
operators, say, 〈B`(t)B`′(t′))〉, decay sufficiently fast as a
function of the qubit spatial separation, |~r` − ~r`′ |. The slower
correlations decay with distance, the lower the threshold value
and the higher the necessary gate fidelity required to guaran-
tee fault-tolerance [47, 48]. Consequently, even if a physical
system supports high single-qubit gate fidelities, it will most
likely not be a good candidate for scalable QIP if the bath cor-
relations are insufficiently well-behaved. Similar arguments
can be made for the effect of bath correlations in quantum
metrology protocols that use multiple probes to achieve the

Heisenberg limit [49]. Thus, using multiqubit QNS to quan-
titatively characterize the spatial dependence of bath correla-
tions should be one of the first tests to determine the suitability
of a platform for a given quantum technology.
•Quantum metrology and thermometry. Metrology is a task

of fundamental significance for science and technology. The
simplest scenario is one where the response of a probe is used
to infer information about a physical degree of freedom. In a
typical magnetometry setting, the Hamiltonian ruling the evo-
lution of the probe qubit under the influence of a magnetic
field of unknown strength µ is given by H(t) = µZ. By suit-
ably preparing the probe, and tracking the expectation value
of a particular observable over time, it is possible to extract
the parameter µ [7, 13]. In essence, this is a limiting case
of a single-qubit QNS protocol, for a classical (deterministic)
signal β(t) whose mean is 〈β(t)〉 = µ and higher-order cu-
mulants vanish. More generally, QNS may be regarded as a
form of multi-parameter estimation, where the noise spectra
(rather than just the mean) grant access to information stored
in the correlations of the bath operators.

When the information about the noise spectra is augmented
with prior knowledge about the noise origin, it is possible to
further infer physical parameters of interest. A relevant ex-
ample is extracting the temperature, TB , of a bosonic degree
of freedom [50] or a bosonic bath [51, 52]. Taking the ratio
of the above-mentioned symmetric and antisymmetric spec-
tral components, S+

`,`′(ω)/S−`,`′(ω), for ω > 0, gives access to
coth(ωβ/2), from which one may extract β = ~/kBTB . In
turn, estimating S−`,`′(ω) gives one access to the spectral den-
sity function J`,`′(ω) describing the coupling of qubits `, `′

to the oscillator bath. It is interesting to contrast a single-
vs. multiple-qubit QNS setting in the dephasing regime. As
remarked, only a multiqubit QNS protocol can estimate both
S+
`,`′(ω) and S−`,`′(ω) for a generic system-bath coupling op-

erator. In contrast, with access to S+
`,`′(ω) alone, an estimate

of TB may be given only by assuming a functional form for
J`,`′(ω). Using two probes removes the need for these extra
assumptions, thus showcasing the power of multiqubit QNS.

B. Summary of main results

We introduce QNS protocols capable of fully characteriz-
ing classical and quantum Gaussian noise on N qubits in
the dephasing regime. We first lay out, in Sec. II, the nec-
essary open-quantum system and control background. In par-
ticular, we introduce the two classes of dephasing models we
focus attention on (II A), distinguished by the different na-
ture (generic, full-rank vs rank-one) of the system-bath cou-
pling – as well as the relevant control resources (II B). Two
settings of increasing complexity are examined, depending
on whether control operations are restricted to purely local
(single-qubit) π pulses, or, in addition, non-local (swap) gates
are allowed. Sec. II D contains a first contribution which may
be of independent interest, namely, an exact expression for the
time-dependent expectations of arbitrary N -qubit Pauli ob-
servables, and hence the controlled reduced dynamics – valid
under the sole assumptions that the noise has Gaussian statis-
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tics and the dephasing nature of the system-bath interaction
is preserved by the applied control. While the key technical
ingredient is the truncation of a suitable generalized cumulant
expansion enabled by Gaussianity [53], existing results have
either been limited to free (uncontrolled) dynamics or have in
any case explicitly relied on the special (bosonic) nature of the
environment to the best of our knowledge [41, 54].

Before delving into the construction of the QNS protocols,
we devote Sec. III to elucidate the physical significance of
both self- and cross- quantum spectra, S−`,`(ω) and S−`,`′(ω)

with `′ 6= `, respectively. We find that, for otherwise identi-
cal environments, the details of how the system couples to the
environment play an important role in determining different
spectral signatures in the reduced dynamics. Notably, even
in a single-qubit setting, S−1,1(ω) may result in observable
phase evolution if the coupling operator has rank-one. Re-
gardless, we show that the quantum self-spectra are crucial in
determining the steady-state behavior in relaxation dynamics,
and argue that two-qubit QNS provides a minimal setting for
reconstructing these spectra in an exactly solvable dephasing
regime. We further show how quantum spectra are responsible
for the ability of the environment to mediate entangling inter-
actions between uncoupled qubits and, more generally, gen-
erate quantum correlations. In the process, at variance with
existing approaches where a common bath is assumed, we il-
lustrate how entanglement generation may be possible also
for qubits coupled to independent baths – as long as suitable
swap-based (non-entangling) control is applied.

Sec. IV is the core section of the paper, presenting in de-
tail both the design principles and implementation steps of
the proposed multiqubit QNS protocols. Special emphasis is
given to introducing the key symmetry requirements (IV B),
and to detail the protocol in the simplest yet practically rele-
vant two-qubit setting (IV C). In the process, we show how it
is possible to construct dynamical decoupling (DD) sequences
which combine local and non-local (swap) gates and achieve
arbitrarily high cancellation order through concatenation, in
principle – a result that may be of independent interest. We
stress that even in their most general form, our QNS protocols
do not assume entangling unitary gates nor initially entangled
qubit states. Remarkably, by employing only local pulses, all
spectra except S−`,`(ω) can be reconstructed – the latter, how-
ever, becoming also accessible if prior knowledge about the
nature (e.g. bosonic) of the environment is available.

The proposed protocols are numerically implemented in a
realistic setting of two-exciton qubits coupled to an equilib-
rium phonon bath in Sec. V, by assuming access to local
qubit-selective control alone. The numerical reconstructions
of the spectra are used, in particular, to implement quantum
thermometry of the phonon bath, as outlined above. Further to
that, we also use the obtained spectral estimates to predict the
qubit dynamics under both free evolution and representative
DD control, by specifically tracking the influence of quantum
vs. classical spectral signatures. Our results demonstrate the
need to properly account for the quantum spectra in order to
accurately predict dynamical behavior in general.

II. QUANTUM NOISE SPECTROSCOPY FRAMEWORK

A. Open-system model

We consider an open quantum system S, consisting of N
qubits, coupled to an uncontrollable environment (bath) B.
The joint system is described byH = HS+HB+HSB , where
HS andHB are the internal Hamiltonians of S andB, respec-
tively, andHSB is the interaction between the two. We restrict
ourselves to dephasing noise models, i.e., [HS , HSB ] = 0.
While our analysis may be extended to more general dephas-
ing interactions, we assume for concreteness that H contains
at most two-body couplings between the qubits. In the inter-
action picture associated withHS andHB , we may thus write

HI(t) =

N∑
`=0

Z` ⊗B`(t) +

N∑
`,`′=1
` 6=`′

Z``′ ⊗B``′(t), (1)

where Z0 = 1, Z` (` 6= 0) is the Pauli Z operator acting on
qubit `, Z``′ ≡ Z` ⊗ Z`′ (`, `′ 6= 0), and

B`(t) = ζ`(t)1 + B̃`(t), B``′(t) = ζ``′(t)1. (2)

Here,B`(t) and B̃`(t) are time-dependent bath operators cou-
pled to qubit `, and ζ`(t), ζ``′(t) are classical stochastic pro-
cesses coupled to qubit ` and qubit pair ``′, respectively. In
this way, we allow for single-qubit combined noise sources of
both classical and quantum nature, along with classically fluc-
tuating inter-qubit couplings. For simplicity, we assume that
B̃`(t) is statistically independent of both ζ`(t) and ζ``′(t).

Two special cases of HI(t) frequently arise in physi-
cal systems. Most commonly, each qubit corresponds to a
(pseudo)spin-1/2 degree of freedom, which couples to the
bath by full-rank Pauli operators, such as Z` and Z``′ . Alter-
natively, for qubits described in terms of the presence/absence
of a (quasi)particle in one of two states, coupling to the bath
occurs via rank-1 projectors, say, |0〉〈0|` or |00〉〈00|``′ . We
formally account for these two scenarios by allowing for a
“pure-bath” term proportional to Z0 in Eq. (1) and letting
• B0(t) = 0 when coupling operators are full-rank (“M1

models” henceforth);
•B0(t) =

∑N
`=1B`(t) when coupling operators have rank-

one (“M2 models” henceforth).
A paradigmatic M1 model is the well-known purely de-

phasing linear spin-boson model [24] in which case, relative
to the interaction picture associated with the free oscillator-
bath Hamiltonian HB =

∑
k Ωka

†
kak, Ω ≥ 0, the relevant

time-dependent bath operators are [41]

B`(t) =
∑
k

(eiΩktg`ka
†
k + e−iΩktg`∗k ak), (3)

with g`k ∈ C quantifying the strength of the coupling between
qubit ` and the kth bosonic mode. Likewise, the recent work
on cross-correlation QNS in [20] corresponds to a M1 model
where noise is purely classical and single-qubit: specifically,
ζ``′(t) ≡ 0 and ζ`(t) models a Gaussian random telegraph
noise process, as relevant to superconducting systems.
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M2 models are characteristic, in particular, of excitonic
qubit systems [55, 56] in which case, for the same HB

given above and by associating the computational-basis state
|0〉〈0|` = (Z` + 1`)/2 to the presence of an exciton, the rele-
vant interaction Hamiltonian may be written as

HI(t)=

N∑
`=1

|0〉〈0|` ⊗B`(t) +

N∑
`,`′ 6=`=1

|00〉〈00|``′ B``′(t), (4)

with B``′(t), B`(t) having the form given in Eqs. (2)-(3).
In order to treat single- and two-qubit terms on similar foot-

ing, we will often write Eq. (1) in the more compact form

HI(t) =
∑
a∈IN

Za ⊗Ba(t), (5)

where IN ≡
{

0, `, ``′| `, `′ ∈ {1, . . . , N}, ` 6= `′
}

, and
each Za has its associated bath operator Ba(t), as per Eq. (1).
Occasionally, we will use the notation ¯̀ to automatically im-
ply ¯̀ 6= ` and, if necessary to distinguish between the indices
` and `¯̀, it will be understood that `, ¯̀∈ {1, · · · , N}.

B. Control resources

Beside interacting with the bath, the N qubits are subject
to external control generated by a Hamiltonian Hctrl(t). We
restrict ourselves to control that preserves the dephasing char-
acter of the noise in the interaction picture associated with
Hctrl(t) (aka the “toggling frame”). Upon introducing the con-
trol propagator Uctrl(t) ≡ T+[exp(−i

∫ t
0
dsHctrl(s))], Eq. (5)

can be written in the toggling frame as

H̃(t)=U†ctrl(t)HI(t)Uctrl(t)=
∑

a,a′∈IN

ya,a′(t)Za ⊗Ba′(t),

(6)
where the assumed dephasing property implies that all system
operators in H̃(t) still commute, as in Eq. (1). The ya,a′(t) are
“switching functions” induced by the control, the exact form
of which depends on Hctrl(t), as we now specify.

While we work in the idealized limit where control op-
erations are perfect, we consider two types of dephasing-
preserving control of increasing complexity. The first is se-
quences of instantaneous π-pulses, which are built as prod-
ucts of operators X` and Y` and act locally on the qubits.
This family of control includes single-qubit (“bang-bang”)
DD sequences. Each π-pulse, denoted ΠA, has the action
Π†AZaΠA = −Za for a ∈ A ⊆ IN − {0}. For N = 3,
for example, X1X2 = Π{1,2,13,23} since

(X1X2)Z`(X1X2)† = −Z`, ` = 1, 2

(X1X2)Z`Z3(X1X2)† = −Z`Z3.

A control sequence of total duration T , composed of n instan-
taneous π-pulses, takes the form

Uctrl(T ) = Uf (tn+1, tn)

n∏
i=1

ΠAiUf (ti, ti−1),

where t0 = 0, tn+1 = T , and Uf (ti, tj) denotes free evo-
lution under HI(t) from time tj to ti. Transforming HI(t)
into the toggling frame implies that the switching functions
ya,a′(t) for a 6= 0 in Eq. (6) are nonzero only when a = a′,
as the π-pulses act locally on the qubits. We thus refer to con-
trol schemes involving only instantaneous π-pulses as diago-
nal control. The ya,a(t), assume values of ±1, changing sign
with the application of a pulse ΠA such that a ∈ A. Clearly,
since Z0 = 1, y0,0(t) = 1 for all t, with no sign changes.

The second form of dephasing-preserving control we con-
sider are instantaneous swap gates between any pair of qubits.
The gate SWAP`,`′ acts non-locally on qubits ` and `′, ef-
fecting the transformation SWAP†`,`′ Z` SWAP`,`′ = Z`′ . A
sequence consisting of both instantaneous π-pulses and swap
gates has a control propagator of the form

Uctrl(T ) = Uf (tn+1, tn)

n∏
i=1

PiUf (ti, ti−1),

where Pi is either ΠAi or SWAP`i,`′i . The inclusion of swap
gates makes the switching functions in Eq. (6) non-diagonal,
that is, there exist a, a′ ∈ IN with a 6= a′ such that ya,a′(t) 6=
0 for some t. Additionally, the switching functions now take
values of ±1 and 0. For illustration, consider N = 2, and
suppose we apply the control sequence described by the prop-
agator Uctrl(T ) = Uf (T, T/2)Π{1,12} SWAP1,2Uf (T/2, 0).
The toggling-frame Hamiltonian becomes

H̃(t)=

{
B0(t)+Z1B1(t)+Z2B2(t)+Z12B12(t), t∈

[
0,T2

)
,

B0(t)−Z1B2(t)+Z2B1(t)−Z12B12(t), t∈
[
T
2 , T

)
.

By comparison with Eq. (6), it is straightforward to see that

y`,`(t) =

{
+1 t ∈ [0, T/2) ,

0 t ∈ [T/2, T ) ,

y1,2(t) =

{
0 t ∈ [0, T/2) ,

−1 t ∈ [T/2, T ) ,

y2,1(t) =

{
0 t ∈ [0, T/2) ,

+1 t ∈ [T/2, T ) ,

y12,12(t) =

{
+1 t ∈ [0, T/2) ,

−1 t ∈ [T/2, T ) .

A compact way to represent a non-diagonal control sequence
is via a corresponding “switching matrix” with elements
[y(t)]a,a′ = ya,a′(t). For example, the switching matrix cor-
responding to the above two-qubit sequence is

[y(t)] =




+1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1

 , t ∈ [0, T/2) ,


+1 0 0 0

0 0 −1 0

0 +1 0 0

0 0 0 −1

 , t ∈ [T/2, T ) ,

(7)
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where the rows and columns are ordered by 0, 1, 2, and 12.
From an experimental standpoint, non-local control via

swap gates is clearly more taxing than purely local control
via π-pulses. As we will show in Sec. IV, complete spectral
characterization of dephasing models requires both π-pulses
and swap gates in general. Under prior knowledge that the
bath is bosonic and thermal, however, local protocols employ-
ing π-pulses alone suffice to reconstruct all classical spectra as
well as the quantum cross-spectra, making it possible to also
infer the quantum self-spectra in a way to be made more pre-
cise later. As expected, without prior knowledge of the bath
or noise model, there is a trade-off between the complexity
of the available control and the spectral quantities of the bath
that can be directly accessed and reconstructed.

In the frequency domain, the effects of the applied control
are described by transfer FFs, which are related to the Fourier
transforms of the switching functions. Using the general for-
malism developed in [23, 41], all relevant FFs can be written
in terms of a set of easily computable fundamental FFs. The
fundamental FFs for the controlled dephasing setting of inter-
est are the first- and second- order, given by

F
(1)
a,a′(ω, t) =

∫ t

0

ds ya,a′(s)e
iωs and (8)

F
(2)
a,a′;b,b′(ω, t) =

∫ t

0

ds

∫ s

0

ds′ ya,a′(s)yb,b′(s
′)eiω(s−s′). (9)

Note that the first-order fundamental FF, F (1)
a,a′(ω, t), is simply

the finite Fourier transform of the switching function ya,a′(t).

C. Noise assumptions and spectra

Statistical features of the noise are compactly described by
the cumulants of the bath variables [41, 53, 57]. For the zero-
mean Gaussian noise we consider1, the only non-vanishing
cumulants are the second-order cumulants, equivalent to two-
point connected correlation functions. For a bath operator
Ba(t) = B̃a(t) + ζa(t), containing statistically independent
quantum and classical noise sources as in Eq. (2), the second
cumulant reduces to

C(2)(Ba(t1)Bb(t2))

= 〈B̃a(t1)B̃b(t2)〉q + 〈ζa(t1)ζb(t2)〉c
= C(2)(B̃a(t1)B̃b(t2)) + C(2)(ζa(t1)ζb(t2)).

Here, 〈·〉q ≡ TrB [·ρB ] indicates a quantum expectation value
with respect to the initial bath state ρB , while 〈·〉c indicates
a classical ensemble average. Stationarity of the bath implies
time-translational invariance, in that a second-order cumulant
at times t1 and t2 is fully specified by the lag time τ = t1−t2,
hence 〈Ba(t1)Bb(t2)〉c,q = 〈Ba(τ)Bb(0)〉c,q .

1 The notion of statistical Gaussianity is not to be confused with a Gaussian
functional form of the power spectra, i.e., the power spectra of a Gaussian
noise process can have an arbitrary (non-Gaussian) functional form.

The aim of QNS is characterizing the spectral properties of
noise affecting a quantum system. Our QNS protocols esti-
mate the power spectra, defined as the Fourier transforms of
the second-order cumulants with respect to the lag time τ ,

Sa,b(ω) =

∫ ∞
−∞

dτe−iωτC(2)(Ba(τ), Bb(0)). (10)

Distinctions between classical and quantum noise emerge
when we consider the “quantum spectra”

S−a,b(ω) ≡
∫ ∞
−∞

dτe−iωτ 〈[Ba(τ), Bb(0)]〉q (11)

= Sa,b(ω)− Sb,a(−ω). (12)

Because the commutator above vanishes for classical noise,
S−a,b(ω) is non-zero only when the bath is quantum. In con-
trast, the “classical spectra”

S+
a,b(ω) ≡

∫ ∞
−∞

dτe−iωτ 〈{Ba(τ), Bb(0)}〉c,q (13)

= Sa,b(ω) + Sb,a(−ω). (14)

can be non-zero for both classical and quantum baths. We
refer to S±a,b(ω) as “self-spectra” when a = b and as “cross-
spectra” when a 6= b. Physically, these spectra describe, in
the frequency domain, the “auto-correlation” of a noise oper-
ator with itself – or, respectively, its “cross-correlation” with
another one – at two points in time. Mathematically, the self-
spectra are real, whereas the cross-spectra are in general com-
plex. All spectra satisfy the following symmetry properties:

(S±a,b(ω))∗ = ± (S±a,b(−ω)) = S±b,a(ω). (15)

For bosonic baths, considered as an example of M1-M2
models in Eqs. (3)-(4), Gaussianity conditions are satisfied
when the the bath is initially at thermal equilibrium. In the
continuum limit, a thermal bath at temperature TB has spectra

S`,`′(ω) = πJ`,`′(ω)

{
coth(βω/2) + 1, ω ≥ 0
coth(−βω/2)− 1, ω < 0

, (16)

where β ≡ ~/kBTB denotes inverse temperature and

J`,`′(ω)=
∑
k

[δ(ω + Ωk)g`kg
`′∗
k + δ(ω − Ωk)g`

′

k g
`∗
k ] (17)

is the spectral density function for qubits `, `′. From S`,`′(ω),
the quantum and classical spectra can be determined from
Eqs. (12) and (14), yielding

S+
`,`′(ω) = 2πJ`,`′(ω) coth(β|ω|/2), (18)

S−`,`′(ω) = 2πJ`,`′(ω)sign(ω). (19)

D. Reduced qubit dynamics

Our QNS protocols obtain information about the bath spec-
tra by using the N qubits as probes of their environment. Ex-
tracting this information requires knowledge of how the bath
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spectra enter the reduced qubit dynamics. For Gaussian de-
phasing, this hinges on an exact analytic expression which re-
lates expectation values of a relevant class of observables to
generalized bath cumulants [53]. While in hindsight this re-
sult may be seen as a natural consequence of the Gaussianity
assumption, making the claim precise in the general scenario
where control pulses are applied and no reference is made to
the specific nature (bosonic or not) of the bath is not entirely
straightforward. Since this result may be of independent in-
terest to the broader open-quantum systems community, we
state it in a relatively formal way in what follows, and include
a proof in Appendix A.

Assume a factorizable joint state at time t = 0, say,
ρSB(0) = ρS(0)⊗ρB ≡ ρ0⊗ρB . Then the expectation value
of any invertible operatorO resulting from evolution under an
arbitrary joint Hamiltonian H̃(t) may be expressed as

Eρ0(O(t)) ≡ 〈TrS [ρS(t)O]〉c = 〈TrSB [ρSB(t)O]〉c
= 〈TrS [TrB(O−1Ũ(t)†OŨ(t)ρB)ρ0O]〉c
≡ TrS [〈T+e

−i
∫ t
−t H̃O(s)ds〉c,q ρ0O], (20)

where Ũ(t) ≡ T+exp[−i
∫ t

0
H̃(s)ds] and in the last line we

have introduced an operator-dependent (not necessarily Her-
mitian) effective Hamiltonian given by

H̃O(s) ≡

{
−O−1H̃(t− s)O for 0 < s ≤ t,

H̃(t+ s) for − t ≤ s < 0.
(21)

The calculation in Eq. (20) can be carried out exactly if O
is, additionally, dephasing-preserving in a sense we will now
specify. The relevant result may be stated as follows:

Theorem. Let a N -qubit system evolve under a controlled
open-system dephasing dynamics specified by a joint system-
bath Hamiltonian of the form

H̃(t)=
∑

a,a′∈IN

ya,a′(t)Za ⊗Ba′(t),

and let O be an invertible, dephasing-preserving operator on

the system, satisfying the condition

O−1ZaO =
∑
b

VabZb, ∀a, b ∈ IN , Vab ∈ C.

Then the time-dependent expectation value of O is given by

Eρ0
(O(t)) = Tr

[
e−iC

(1)
O (t)−

C(2)
O

(t)

2! ρ0O
]
, (22)

where the time-dependent generalized cumulants are

C(1)
O (t) =

∫ t

−t
ds〈H̃O(s)〉c,q, (23)

C(2)
O (t) = 2

∫ t

−t
ds1

∫ s1

−t
ds2〈H̃O(s1)H̃O(s2)〉c,q (24)

−
∫ t

−t
ds1〈H̃O(s1)〉c,q

∫ t

−t
ds2〈H̃O(s2)〉c,q,

in terms of the effective Hamiltonian H̃O(t) associated to
H̃(t) [Eq. (21)].

Remarkably, the above result relies solely on the dephasing
character of the effective time-dependent Hamiltonian and the
Gaussianity of the noise, independently of the details of the
bath. In fact, the theorem applies more generally (see Ap-
pendix A) to controlled quantum systems of arbitrary dimen-
sion coupled to Gaussian baths, as long as the dephasing re-
quirement is preserved. In this sense, it generalizes existing
results for free (uncontrolled) Gaussian models [54, 57], as
well as DD-controlled one- and two-qubit Gaussian models
[23] (supplement), [41], where truncation of the cumulant ex-
pansion is achieved by also leveraging the fact that the com-
mutator [H̃(t), H̃(t′)] ≡ f(t − t′)1 thanks to the assumed
bosonic statistics.

Returning to the QNS setting of interest, the zero-mean as-
sumption, 〈H̃O(t)〉c,q = 0, implies that C(1)

O (t) ≡ 0. The N -
qubit reduced qubit dynamics are, thus, governed by C(2)

O (t)
which, using Eq. (6), takes the following form:

C(2)
O (t)

2!
=

∑
a,b,a′,b′∈IN

[
ZaZb

∫ t

0

ds1

∫ s1

0

ds2 ya,a′(s1)yb,b′(s2)〈Ba′(s1)Bb′(s2)〉c,q

+O−1ZaZbO

∫ t

0

ds1

∫ s1

0

ds2 ya,a′(s2)yb,b′(s1)〈Ba′(s2)Bb′(s1)〉c,q

−O−1ZaOZb

∫ t

0

ds1

∫ t

0

ds2 ya,a′(s1)yb,b′(s2)〈Ba′(s1)Bb′(s2)〉c,q
]
. (25)

Since the dephasing-preserving property is automatically
obeyed by observables that are in the N -qubit Pauli group
(that is, up to an irrelevant phase, are a product of Pauli opera-
tors on the qubits), it also follows thatO−1ZaZbO = ±ZaZb

for all a, b ∈ IN . Let sign(O, a, b) be a function defined as

sign(O, a, b) ≡
{

+ if O−1ZaZbO = +ZaZb
− if O−1ZaZbO = −ZaZb

. (26)
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In order to make contact with the bath spectra of interest, we
transform Eq. (25) into the frequency domain which, after
straightforward algebraic manipulations, yields

C(2)
O (t)

2!
= −

∑
a,b,a′,b′∈IN

ZaZb
2

∫ ∞
−∞

dω

2π
S

sign(O,a,b)
a′,b′ (ω)

×
[
sign(O, a, 0)G+

a,a′;b,b′(ω, t)−G
sign(O,a,b)
a,a′;b,b′ (ω, t)

]
. (27)

Here, G±a,a′;b,b′(ω, t) are FFs that capture effects of the exter-
nal control. in the frequency domain. In terms of the funda-
mental FFs given in Eqs. (8)-(9), they read

G+
a,a′;b,b′(ω, t) = F

(2)
a,a′;b,b′(ω, t) + F

(2)
b,b′;a,a′(−ω, t)

= F
(1)
a,a′(ω, t)F

(1)
b,b′(−ω, t),

G−a,a′;b,b′(ω, t) = F
(2)
a,a′;b,b′(ω, t)− F

(2)
b,b′;a,a′(−ω, t).

Eq. (27) makes it explicit that the reduced qubit dynamics are
determined by convolutions between the power spectra of the
bath and the FFs generated by external control.

III. PHYSICAL SIGNIFICANCE OF QUANTUM SPECTRA

A central feature of our QNS protocols is the ability to re-
construct spectra associated with quantum baths in a dephas-
ing setting. Section IV will explain how using multiple qubits
as probes makes this possible. Before delving into the details
of the protocols, we further motivate interest in the quantum
spectra by examining their unique dynamical signatures.

As discussed in Sec. II A, the quantum spectra are nonzero
only when the bath operators Ba(t) do not commute at all
times. The quantum spectra have physical significance be-
yond vanishing in the classical case, however. Physical insight
may be gained by considering a Hamiltonian that interpolates
between models M1 and M2. In the toggling frame, we let

H̃(t) =

N∑
`,`′=1

[y`,`′(t)Z` + c I`]B`′(t). (28)

where c ∈ [0, 1] and, in order to offer a clearer picture of
the quantum dynamics, we assume no classical noise contri-
bution, ζa(t) ≡ 0. Recall that in the M1 model (c = 0), the
pure-bath termB0(t) = 0, whereasB0(t) =

∑N
`=1B`(t) 6= 0

for the M2 model (c = 1). Despite commonalities and the
seemingly minor distinction between M1 and M2, their dy-
namics under H̃(t) in Eq. (28) display striking differences.

A. Dynamical influence of the quantum self-spectra

Even at the level of single-qubit dephasing, signatures of
the quantum bath as well as differences between the M1 and
M2 models are evident. For N = 1, the dynamical effects of
dephasing are encapsulated in the qubit’s coherence element

〈1|ρS(t)|0〉 ≡ 〈1|ρS(0)|0〉 e−χ(t)+iφ(t),

where the decay rate depends on the classical self-spectrum,

χ(t) =
1

2π

∫ ∞
−∞

dωG+
1,1;1,1(ω, t)S+

1,1(ω), (29)

and the phase angle depends on the quantum self-spectrum,

iφ(t) =
c

2π

∫ ∞
−∞

dω (G−1,1;01(ω, t) +G+
1,1;0,1(ω, t))S−1,1(ω).

(30)

Because φ(t) is proportional to c, the quantum self-spectrum
is entirely absent from the coherence element of the qubit in
the M1 model. The quantumness of the bath, thus, has no
dynamical implications. For M2, on the contrary, quantum
noise exerts a substantial influence, in that the presence of the
quantum self-spectrum in Eq. (30) causes observable rotation
of the qubit about Z1. Interestingly, similar phase evolution
is observed in a classical non-Gaussian or non-stationary de-
phasing on a single qubit [19]. In a regime where bath statis-
tics are stationary and Gaussian as we assume here, the pres-
ence of non-trivial phase evolution is a signature of quantum
noise. Accounting for this phase evolution in an experimental
setting requires knowledge of the quantum spectrum.

The absence of the quantum self-spectrum from the reduced
single-qubit dephasing dynamics of M1 may lead one to con-
clude that a quantum bath has no observable effect on this
model. This is far from the case, however. “Tilting” the quan-
tization axis by adding a driving term in a direction orthogonal
to z reveals signatures of quantum noise in both the M1 and
M2 models. Consider a single-qubit Hamiltonian of the form
in Eq. (28), with the addition of a continuous driving term
with amplitude g and no other external control,

Hg(t) = (Z1 + cI1)B1(t) +
g

2
X1. (31)

The presence of the continuous drive sets a new quantization
axis for the qubit along x. While the bath induces pure de-
phasing when the qubit is quantized along z absent the drive,
the bath causes both dephasing and relaxation with respect to
the qubit’s new quantization axis [28]. Let ρ̃S(t) and H̃g(t)
denote the state of the system and the Hamiltonian in the in-
teraction picture with respect to the drive term. In the limit
of weak coupling, ||B1(t)||t � 1, the relaxation dynamics
are evident in the qubit master equation obtained through the
second-order time-convolutionless projection method [24],

dρ̃S(t)

dt
= −

∫ t

0

dt′TrB
(

[H̃g(t), [H̃g(t
′), ρ̃S(t)⊗ ρB ]]

)
.

Letting |±〉 denote the eigenstates of X1 and returning to the
frame of Eq. (31), where ρij ≡ 〈i|ρS(t)|j〉, i, j ∈ {+,−}
denotes the state of the qubit, we have

ρ̇++ =
1

2π

∫ ∞
−∞

{
− 2sin[t(ω + g)]

ω + g
S1,1(ω)ρ++ (32)

+
2sin[t(ω − g)]

ω − g
S1,1(ω)ρ−−

+ ic
eitω − 1

ω
S−1,1(ω)(ρ−+ − ρ+−)

}
,

ρ̇−− =− ρ̇++, (33)
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ρ̇+− =
i

2π

∫ ∞
−∞

{
− 1− eit(ω+g)

ω + g
S+

1,1(ω)ρ+− (34)

+
1− eit(ω−g)

ω − g
S+

1,1(ω)ρ−+

+ c
eitω − 1

ω
S−1,1(ω)(ρ−− − ρ++)

}
− igρ+−,

ρ̇−+ =− ρ̇+− + ig(ρ−+ − ρ+−). (35)

From these equations, we see that the evolution of popula-
tions and coherences are coupled by terms proportional to
c S−1,1(ω). As these terms vanish for a classical bath or for
a M1 model, the dynamical signatures of the quantum bath
are more prominent in the M2 model, similar to the case of
dephasing-preserving dynamics discussed above.

For both M1 and M2, however, the quantum nature of the
bath enters in determining the steady-state populations. In
the steady-state limit of Eqs. (32)-(35), letting sin(tΩ)/Ω ≈
πδ(Ω) for large t, we obtain ρss

+−/ρ
ss
−+ = 1 and ρss

++/ρ
ss
−− =

S1,1(g)/S1,1(−g) for both M1 and M2. While the steady-
state populations are always equal for a classical, spectrally
symmetric bath, this is generally not true when the bath is
quantum, as dictated by the requirement of detailed balance at
equilibrium [53]. In particular, for the thermal bosonic spectra
given in Eq. (16), ρss

++/ρ
ss
−− = S1,1(g)/S1,1(−g) = eβg ,

which exceeds 1, for every finite temperature.
Given the extent to which the quantum self-spectrum in-

fluences the qubit dynamics during driven evolution, it is
not surprising that off-axis driving can be used to perform
spectroscopy on quantum noise sources. In a variety of
QIP platforms, including NMR and superconducting qubits,
interaction-frame Hamiltonians of the form in Eq. (31) arise in
“spin-locking” or “T1ρ” experiments [58]. Approaches based
on spin-locking and T1ρ have in fact been employed to char-
acterize classical noise sources [25, 28]. These strategies can
also be extended to quantum noise sources, as we describe in
Appendix B and as recently experimentally implemented in
a superconducting flux qubit [59]. We emphasize, however,
that the non-commuting nature of Eq. (31) prohibits exact so-
lutions for the reduced qubit dynamics. Performing QNS in
this setting, therefore, inevitably entails approximations (such
as weak coupling and, in practice, weak driving [28]), which
need not be well-controlled or whose range of validity may
be unclear a priori. In contrast, at the cost of an additional
qubit, working in the dephasing setting affords an exact ana-
lytic description of the reduced dynamics, allowing for QNS
to be carried out beyond the regime of validity of the weak-
coupling or similar assumptions.

B. Quantum spectra and bath-induced entanglement

The dynamics of multiple qubits coupled to a quantum bath
are considerably more rich than those of a single qubit. No-
tably, interaction with a quantum bath can generate quan-
tum correlations and entangle the qubits, even in the ab-
sence of direct coupling between them, see e.g. [35–42].
The quantum spectra relate directly to the ability of a quan-

tum bath to mediate such entangling interaction. Consider
the Magnus expansion of the qubit-bath propagator, UI(t) =

T+{exp[−i
∫ t

0
dsHI(s)]} ≡ exp[

∑∞
α=1 Ωα(t)], where

Ω2(t) =− 1

2

N∑
`,m,`′,m′=1

∫ t

0

ds

∫ s

0

ds′(y`,`′(s)Z` + cI`) (36)

× (ym,m′(s
′)Zm + cIm)[B`′(s), Bm′(s

′)].

The above nonlinear term in Ω2(t), that is proportional toZ`⊗
Zm, serves to couple the pair of qubits ` and m. The quantity
〈Ω2(t)〉q arises in the reduced dynamics of the qubits given in
Eq. (27), producing bilinear (Ising) coupling terms which, in
the frequency domain, have the structure

Heff
2 ∼ Z` ⊗ Zm

∫ ∞
−∞

dωG−`,`′;m,m′(ω, t)S
−
`′,m′(ω). (37)

Being proportional to the quantum self- and cross-spectra,
such indirect coupling terms clearly vanish in the case of a
classical bath, in accordance with the expectation that cou-
pling to a classical bath cannot induce quantum correlations.

An interesting example of bath-induced entanglement
arises when each qubit is coupled to its own independent bath,
i.e., for `′,m′ ∈ {1, . . . , N}, [B`′(t), Bm′(t

′)] = 0, ∀`′ 6=
m′ ∀t, t′. To the best of our knowledge, bath-induced entan-
glement has been examined in the context of a common bath,
where there exists `′ 6= m′ such that [B`′(t), Bm′(t

′)] 6= 0
for at least one pair of t and t′. Yet, a common bath is not
required to mediate entanglement between the qubits. This
can be seen from Eq. (37), where all quantum cross-spectra
vanish in the case of independent baths, leaving only terms
containing quantum self-spectra, of the form

Heff
2 ∼ Z` ⊗ Zm

∫ ∞
−∞

dωG−`,m′;m,m′(ω, t)S
−
m′,m′(ω). (38)

With access to only diagonal control, the FF G−`,m′;m,m′(ω, t)
is zero whenever ` 6= m. Consequently, no entanglement is
generated between qubits ` andm. Remarkably, non-diagonal
control via non-entangling swap gates can produce a non-zero
FF when ` 6= m, which does allow for bath-induced entan-
glement, starting from initial product states. Qualitatively,
through a swap gate, both qubits ` and m can couple to the
same bath degrees of freedom m′ at different times. As long
as the time correlations of the bath decay sufficiently slowly,
information about qubit ` orm “imprinted” inm′ persists even
after qubits ` and m are “swapped”. This mechanism, remi-
niscent of generation of collective decoherence via repeated
swaps [60], explains how independent baths can mediate en-
tanglement in principle. While this illustrates most strikingly,
from a conceptual standpoint, the link between quantum spec-
tra and indirect entanglement generation, one might envision
possible applications in trapped-ion settings, where fast swap-
ping may be achieved through physical qubit shuttling [61].

As an extreme example, considerN = 2 qubits but imagine
that only qubit 1 is interacting with the bosonic bath, so that in
Eq. (28) B1(t) has the standard form [Eq. (3)], while B2(t) ≡
0. Suppose we allow the qubits to freely evolve for a time
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T/2, then apply a SWAP to qubits 1 and 2, and let them freely
evolve again for another T/2 duration. The overall evolution
is fully specified by the two switching functions

y1,1(t) =

{
1, t ∈ [0, T/2]
0, t ∈ [T/2, T ]

, y2,1(t) =

{
0, t ∈ [0, T/2]
1, t ∈ [T/2, T ]

,

and, correspondingly, the coupling term in Eq. (37) becomes

Heff
2 ∼ 4Z1 ⊗ Z2

∫ ∞
−∞
dω

cos(ωT/2) sin2(ωT/4)

ω2
S−1,1(ω).

This term allows qubits 1 and 2 to interact with a strength that
depends on the overlap between the free-evolution FF and the
quantum self-spectrum of qubit 1. Although qubits 1 and 2
never interact with a common bath at the same time, they can
nonetheless become non-trivially entangled.

IV. MULTIQUBIT NOISE SPECTROSCOPY PROTOCOLS

From a theoretical standpoint, the most challenging step
that our QNS protocols entail is associated to extracting infor-
mation about the bath spectra from the measured value of the
observables. Sec. II D demonstrated that expectation values of
qubit observables depend on the spectra of the bath. This de-
pendence, however, takes the form of a convolution between
the bath spectra and FFs, as seen in Eq. (27). Obtaining an es-
timate of the spectra requires that we invert or “deconvolve”
this convolution, which is non-trivial in general. In our spec-
troscopy protocols, the FFs are instrumental in accomplishing
this. Specific timing symmetries of the control sequences en-
able us to engineer frequency combs in all the relevant FFs.
As we shall show, this reduces the problem of obtaining the
spectra to solving a system of linear equations.

A. The deconvolution problem

It is instructive to first revisit the case of a single qubit. Let
|±〉 denote the eigenstates of X . Suppose we prepare a qubit
in the initial state |ψ1〉 = |+〉1 and allow it to evolve under
bath-induced noise and control for a time T . We repeat this
process, each time measuring either X1 or Y1 at time T . Af-
ter collecting a large number of measurements, we compute
X

2

1 + Y
2

1, where O denotes the average measured value of
observable O. The expected value of this quantity is

E[X1(T )]2 + E[Y1(T )]2 = e−2χ(T ). (39)

As discussed in Sec. III, the decay constant χ(T ) is given by

χ(T ) =
1

2π

∫ ∞
−∞

dωG+
1,1;1,1(ω, T )S+

1,1(ω). (40)

Through repeated measurements of X1 and Y1, we can obtain
χ(T ), which depends on the classical self-spectrum S+

1,1(ω).
However, this spectral dependence is buried in a convolu-
tion between the FF G+

1,1;1,1(ω, T ) and S+
1,1(ω). Extracting

S+
1,1(ω) requires that we deconvolve the integral in Eq. (40).

In Ref. [18], Alvarez and Suter devised a solution to
this problem for a single qubit subject to classical dephas-
ing, based on repetition of fixed control sequences. Consider
a “base” sequence of duration T . Repeating this sequence
M � 1 times creates a frequency comb in the associated FF:

G+
1,1;1,1(ω,MT ) =

sin2(MωT
2 )

sin2(ωT2 )
G+

1,1;1,1(ω, T )

' 2πM

T

∞∑
k=−∞

δ(ω−kω0)G+
1,1;1,1(ω, T ),

where the “teeth” are centered at the harmonic frequencies,
integer multiples of ω0 = 2π/T . The comb effectively dis-
cretizes the integral in Eq. (40), producing a linear equation

χ(MT ) ' M

T

∞∑
k=−∞

G+
1,1;1,1(kω0, T )S+

1,1(kω0)

≈ M

T

∑
k∈K

G+
1,1;1,1(kω0, T )S+

1,1(kω0),

where in the second line the summation has been restricted to
a finite set of harmonics, {kω0|k ∈ K}. This truncation is jus-
tified by the decay of the spectrum and FFs at high frequen-
cies. In this expression, both χ(MT ) and G+

1,1;1,1(kω0, T )
are known, the former from measurement and the latter from
the control sequence. Repeating this procedure for Nc ≥ |K|
distinct control sequences generates a set of linear equations,
which we can invert to obtain {S+

1,1(kω0)|k ∈ K}. The fre-
quency comb technique transforms the deconvolution of the
integral in Eq. (40) to an inverse problem. 2

Generalizing this method to multiple qubits and to quan-
tum noise sources entails significant challenges. First, the
number of relevant spectra grows considerably as the num-
ber of qubits increases. The cross-spectra, furthermore, can
have both real and imaginary components. To reconstruct the
expanded number of spectral quantitites, we must measure an
expanded number of observables, whose expectation values
are sums of convolutions involving all of the different filters
and spectra. Terms containing the FF G+

a,a′;b,b′(ω, t) for ar-
bitrary a, a′, b, b′ ∈ IN can be deconvolved via frequency
comb in a mannner similar to χ(T ). With the exception of
certain non-generic cases, which are examined in the follow-
ing section,M repetitions of a base control sequence produces

G+
a,a′;b,b′(ω,MT )' 2πM

T

∞∑
k=−∞

δ(ω−kω0)G+
a,a′;b,b′(ω, T ).

In addition to G+
a,a′;b,b′(ω, t), the multiqubit dynamics de-

pend on the second-order FFs G−a,a′;b,b′(ω, t). Because
G−a,a′;b,b′(ω, t) involves nested time integrals, repetition of an
arbitrary control sequence is not sufficient to generate a comb.
We next identify timing symmetries in the control sequences
that enable us to generate combs in all FFs, as needed.

2 It should be highlighted that the comb approximation holds only if the spec-
trum appearing in the convolution does not diverge at any point, implying
that only sufficiently smooth power spectra can be reconstructed [19].
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FIG. 1. (Color online) Sample pulse patterns of pairs of switch-
ing functions y`,`′(t) and y¯̀,`′(t), obeying mirror and displace-
ment (anti)symmetry in an interval [0, T ]. For each symmetry (dis-
placement or mirror), y`,`′(t) has been chosen to be symmetric and
y¯̀,`′(t) antisymmetric, so that that their product is antisymmetric.

B. Control timing symmetries

For multiple qubits, timing symmetries in the applied con-
trol sequences will not only be essential to overcome the de-
convolution problem, but they will also enable us to alter the
real and imaginary character of the FFs, and thereby selec-
tively extract the real and imaginary components of the cross-
spectra. Building on our work in [41], we introduce below the
concepts of displacement symmetry and mirror symmetry.

1. Displacement (anti)symmetry

Consider a control sequence with cycle time T and an asso-
ciated switching function ya,a′(t). We will say that the switch-
ing function is displacement symmetric (antisymmetric), cor-
responding to the + (−) cases below, if

ya,a′(t) = ±ya,a′(T/2 + t) for t ∈ [0, T/2]. (41)

Switching functions with displacement symmetry or an-
tisymmetry are easily manufactured from arbitrary con-
trol sequences. Consider a sequence Q(T/2) of duration
T/2. Repeating this sequence twice forms Uctrl(T ) =
Q(T/2)Q(T/2), whose switching functions naturally satisfy
yaa′(t) = yaa′(T/2 + t) for all a, a′ ∈ IN . Suppose we
conjugate the second repetition by a π-pulse, ΠA, creating
Uctrl(T ) = Π†AQ(T/2)ΠAQ(T/2). The switching function
associated with this sequence takes the form

yaa′(t) =

{
−yaa′(T/2 + t) if a ∈ A
+yaa′(T/2 + t) if a 6∈ A .

Because displacement symmetry or antisymmetry of yaa′(t)
depends on A, i.e., the local operations that comprise the π-
pulse, we can selectively control the symmetry characteristics
of multiple switching functions associated with the same con-
trol sequence. Consider e.g. two switching functions yaa′(t)

and ybb′(t) with a, a′, b, b′ ∈ IN and a 6= b, which are asso-
ciated with the sequence Uctrl(T ) = Π†AQ(T/2)ΠAQ(T/2).
By choosing ΠA such that a ∈ A and b 6∈ A, yaa′(t) is dis-
placement antisymmetric and ybb′(t) is displacement symmet-
ric. Because the switching functions associated with a single
control sequence can possess different symmetries, the tim-
ing symmetries are best viewed as properties of the switching
functions and not the control sequence per se.

The notions of displacement symmetry and antisymme-
try can be extended to products of switching functions.
The switching functions ya,a′(t) and yb,b′(t) are product-
displacement symmetric (antisymmetric) on the interval [0, T ],
corresponding to the + (−) cases below, if

ya,a′(t)yb,b′(t
′) = ±ya,a′(T/2 + t)yb,b′(T/2 + t′), (42)

for t, t′ ∈ [0, T/2]. The joint symmetry of a pair of switching
functions depends on the symmetries of the individual switch-
ing functions. For example, ya,a′(t) and yb,b′(t) are prod-
uct displacement symmetric when both switching functions
are individually displacement symmetric or displacement an-
tisymmetric, i.e., when

ya,a′(t) = ±ya,a′(T/2 + t) and (43)
yb,b′(t) = ±yb,b′(T/2 + t)

hold simultaneously. We refer to the ± cases above
as product-displacement ±-symmetry. Similarly, ya,a′(t)
and yb,b′(t) are product-displacement antisymmetric when
ya,a′(t) is individually displacement symmetric and yb,b′(t)
is individually displacement antisymmetric or vice versa, i.e.,

ya,a′(t) = ±ya,a′(T/2 + t) and (44)
yb,b′(t) = ∓yb,b′(T/2 + t).

We refer to the ± cases above as product-displacement ±-
antisymmetry. We see that controlling whether individual
switching functions are displacement symmetric or antisym-
metric can create pairs of switching functions that are jointly
displacement-product symmetric or antisymmetric.

2. Mirror (anti)symmetry

A switching function in [0, T ] is mirror symmetric (anti-
symmetric), corresponding to the +(−) cases below, if

ya,a′(T/2− t) = ±ya,a′(T/2 + t).

Like displacement (anti) symmetry, switching functions with
mirror symmetry or antisymmetry are easy to engineer from
arbitrary subsequences. Let Q(T/2) be a sequence of
π-pulses and/or swap gates. The sequence Uctrl(T ) =
Q(T/2)†Q(T/2) has mirror symmetric switching functions
satisfying ya,a′(T/2− t) = ya,a′(T/2 + t) for all a, a′ ∈ IN .
Mirror antisymmetric switching functions can be generated by
conjugating the second half of the evolution with a π-pulse,
forming Uctrl(T ) = Π†AQ(T/2)†ΠAQ(T/2). The switching



11

function associated with this sequence is

yaa′(T/2− t) =

{
−yaa′(T/2 + t) if a ∈ A
+yaa′(T/2 + t) if a 6∈ A .

Similar to the case of displacement symmetry and antisym-
metry, conjugation by π-pulses enables us to control whether
individual switching functions associated with the same con-
trol sequence are mirror symmetric or antisymmetric.

3. Symmetry-enhanced control design

As mentioned, repetition of an arbitrary control sequence
does not generate a frequency comb in G−a,a′;b,b′(ω, t). Rep-
etition of a control sequence with FFs that are product-
displacement antisymmetric, however, does generate a comb3.
To see this, suppose a control sequence has associated
switching functions, ya,a′(t) and yb,b′(t), which are product-
displacement antisymmetric in [0, T ]. ApplyingM repetitions
of the sequence produces the FF

G−a,a′;b,b′(ω,MT )

= ± sin(MωT )

sin(ωT/2)
F

(1)
a,a′

(
ω,
T

2

)
F

(1)
b,b′

(
−ω, T

2

)
' ±2π

T

∞∑
k=−∞

(−1)kδ(ω−kω0)G+
a,a′;b,b′

(
ω,
T

2

)
,

where the sign ± depends on whether ya,a′(t) and yb,b′(t) are
product-displacement ±-antisymmetric. This FF contains the
alternating frequency comb,

sin(MωT )

sin(ωT/2)
' 2π

T

∞∑
k=−∞

(−1)kδ(ω−kω0), M � 1.

Thus, through product-displacement antisymmetry, we can
deconvolve integrals containing G−a,a′;b,b′(ω,MT ).

A word of caution is in order. While product-displacement
antisymmetry generates a comb in G−a,a′;b,b′(ω,MT ), it does
not forG+

a,a′;b,b′(ω,MT ). ForG+
a,a′;b,b′(ω, T ), the comb fails

to emerge under sequence repetition for certain non-generic
cases in which G+

a,a′;b,b′(ω, T ) ∼ O((ω − 2πk/T )p>0), for
k ∈ Z. If switching functions ya,a′(t) and yb,b′(t) are product-
displacement ±-antisymmetric on [0, T ], then

G+
a,a′;b,b′(ω, T ) = ±2i sin

(
ωT

2

)
G+
a,a′;b,b′(ω, T/2),

which is necessarily O(ω − 2kπ/T ). As a consequence,
it is impossible to generate combs in G−a,a′;b,b′(ω,MT ) and
G+
a,a′;b,b′(ω,MT ) simultaneously in these cases.

3 Note that +-antisymmetry in [0, T ] also generates a comb, but it does not
lend itself to be easily combined with other types of symmetries in [0, T/2]
or [0, T/4], that we need to execute our protocol.

Timing symmetries can also control the real or imaginary
character of the FFs, a technique that allows us to efficiently
extract the real and imaginary components of the spectra.
Suppose the switching functions ya,a′(t) and yb,b′(t) have-
product displacement ±-symmetry on the intervals [0, T ] and
[0, T/2]. These switching functions generate the FF

G+
a,a′;b,b′(ω, T ) = 4

[
1± cos

(
ωT

2

)]
×[

1± cos

(
ωT

4

)]
F

(1)
a,a′

(
ω,
T

4

)
F

(1)
b,b′

(
−ω, T

4

)
. (45)

This FF is real provided F (1)
a,a′(ω, T/4)F

(1)
b,b′(−ω, T/4) is real,

a condition easily satisfied with the appropriate choice of sub-
sequence. For example, consider a subsequence Q(T/4) of
duration T/4 with switching functions ya,a′(t) and yb,b′(t)
satisfying ya,a′(t) = yb,b′(t) on the interval [0, T/4]. Note
that F (1)

a,a′(ω, T/4)F
(1)
b,b′(−ω, T/4) is real for such a sequence.

Consequently, the sequence Uctrl(T ) = Q(T/4)4, which is
product-displacement +-symmetric on [0, T ] and [0, T/2],
produces a real FF G+

a,a′;b,b′(ω, T ). Likewise, the sequence

Uctrl(T )=Q(T/4)Π†{a,b}Q(T/4)Q(T/4)Π{a,b}Q(T/4),

is product-displacement −-symmetric on [0, T ] and [0, T/2],
also generating a real filter.

Suppose instead that the switching functions ya,a′(t) and
yb,b′(t) have product-displacement −-symmetry on [0, T ] and
±-antisymmetry on [0, T/2]. This produces the filter

G+
a,a′;b,b′(ω, T ) = 4i

[
1− cos

(
ωT

2

)]
×[

± sin

(
ωT

4

)]
F

(1)
a,a′

(
ω,
T

4

)
F

(1)
b,b′

(
−ω, T

4

)
, (46)

which is imaginary provided F (1)
a,a′(ω, T/4)F

(1)
b,b′(−ω, T/4) is

real. A sequence satisfying these conditions can be con-
structed from Q(T/4) in a manner similar to the case above.

Real and imaginary filters can also be generated from
switching functions that are individually mirror symmetric or
antisymmetric. If ya,a′(t) is mirror symmetric in an interval
[0, T ], the associated first-order fundamental FF is

F
(1)
a,a′(ω, T ) = 2ei

ωT
2 Re

[
e−i

ωT
2 F

(1)
a,a′

(
ω,
T

2

)]
. (47)

On the other hand, if ya,a′(t) is mirror antisymmetric in [0, T ],
the first-order fundamental FF is

F
(1)
a,a′(ω, T ) = 2iei

ωT
2 Im

[
e−i

ωT
2 F

(1)
a,a′

(
ω,
T

2

)]
. (48)

Thus, G+
a,a′;b,b′(ω, T ) = F

(1)
a,a′(ω, T )F

(1)
b,b′(−ω, T ) is real if

both ya,a′(t) and yb,b′(t) are mirror symmetric or antisymmet-
ric on [0, T ]. If ya,a′(t) is mirror symmetric and yb,b′(t) is mir-
ror antisymmetric on [0, T ] or vice versa, G+

a,a′;b,b′(ω, T ) is
imaginary. Designing mirror symmetry or antisymmetry into
switching functions on [0, T/4] can also be used to set the real
or imaginary character of F (1)

a,a′(ω, T/4)F
(1)
b,b′(−ω, T/4) =

G+
a,a′;b,b′(ω, T/4) in Eqs. (45) and (46).
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Initial two-qubit state Two-qubit observables

|ψ±1 〉 = |+〉1 ⊗ | ± z〉2 X1, Y1

|ψ±2 〉 = | ± z〉1 ⊗ |+〉2 X2, Y2

|ψ12〉 = |+〉1 ⊗ |+〉2 X1X2, Y1Y2, Y1X2, X1Y2

TABLE I. State preparations and observables for noise spectroscopy
on two qubits. Here, |±〉 denote the eigenstates of X , while |+z〉 ≡
|0〉 and |−z〉 ≡ |1〉 denote eigenstates of Z.

C. Two-qubit noise spectroscopy setting

1. Qubit initialization and observables

In the single-qubit example in Sec. IV A, the decay constant
χ(t) depends on a convolution between the spectrum S+

1,1(ω)

and the FF G+
1,1;1,1(ω, t). Measuring χ(MT ) after repetition

of multiple control sequences allows the spectrum to be re-
constructed through linear inversion. In the multiqubit case,
the integral terms of Eq. (27) take the place of χ(t). Here,
we demonstrate how the integral terms can be determined in
the two-qubit case through state preparation of the qubits and
measurement of particular observables.

To more clearly differentiate the integral terms, it is useful
to formally expand Eq. (27) linearly in the operators Za,

C(2)
O (t)

2!
=
∑
a∈IN

CO,a(t)Za , (49)

where the expansion coefficient for observable O along a is

CO,a(t) =
1

2N
Tr
[ C(2)

O (t)

2!
Za

]
. (50)

Note from Eq. (27) that C(2)
O (t) = C(2)

O′ (t) for any two observ-
ables O and O′ satisfying sign(O, a, b) = sign(O′, a, b) for
all a, b ∈ IN . Hence, C(2)

O (t) is identical when O ∈ {X`, Y`}
or when O ∈ {X`X¯̀, X`Y¯̀, Y`X¯̀, Y`Y¯̀} (recall that the bar
signifies ¯̀ 6= `). The expansion coefficients in Eq. (50) are
likewise identical when

C`,a(t) ≡ CX`,a(t) = CY`,a(t),

C`¯̀,a(t)≡CX`X¯̀,a(t)=CY`Y¯̀,a(t)=CX`Y¯̀,a(t)=CY`X¯̀,a(t).

We refer to the expansion coefficients by this shorthand nota-
tion for the remainder of the text.

In the two-qubit case, the expansion coefficients C`,a(t) and
C
`¯̀,a

(t) for `, ¯̀∈ {1, 2} and a ∈ I2 serve as the analogues to
χ(t) for a single qubit. These coefficients can be obtained ex-
perimentally by preparing the qubits in the initial states and
measuring the corresponding observables given in Table I.
This choice of states and observables is not unique and can
be refined with prior knowledge of the system. If the initial
qubit state is |ψ〉, the expectation value of observable O at
time t is given by Eψ(O(t)) = Tr[Ũ(t)|ψ〉〈ψ| ⊗ ρBŨ†(t)O].

Let us introduce the quantities

A±` (t) ≡ −1

4
log{Eψ±` [X`(t)]

2 + Eψ±`
[Y`(t)]

2}, ` = 1, 2,

B±` (t) ≡ 1

2
tanh−1

(
i
Eψ±`

[Y`(t)]

Eψ±`
[X`(t)]

)
, ` = 1, 2,

D±(t) ≡ −1

4
log
(
{Eψ12

[X1Y2(t)]± Eψ12
[Y1X2(t)]}2+

{Eψ12 [X1X2(t)]∓ Eψ12 [Y1Y2(t)]}2
)
.

From Eq. (27), we find

C`,¯̀(t) = A+
` (t)+A−` (t), (51)

C`,0(t) = A+
` (t)−A−` (t), (52)

C`,`¯̀(t) = B+
` (t)+B−` (t), (53)

C`,`(t) = B+
` (t)−B−` (t), (54)

C12,0(t) = D+(t)+D−(t), (55)

C12,12(t) = D+(t)−D−(t), (56)

where `, ¯̀ ∈ {1, 2} with ` 6= ¯̀. The expectation values of
the observables in Table I are, thus, sufficient to determine all
expansion coefficients.

2. Base sequences for repetition

The introduction of appropriate control timing symme-
tries generates frequency combs in all the relevant filters,
transforming the expansion coefficients into linear equations,
rather than sums of convolutions. To proceed, we need a large
number of sequences with the required symmetries in order to
create a system of linear equations that can be inverted to ob-
tain the spectra. Here, we provide criteria for selecting these
sequences under both local and non-local control.

Generating the frequency combs requires repetition of base
control sequences, Uctrl(T ), which can be built as composi-
tions of shorter subsequences, Q(ti+1, ti). An important fac-
tor to consider is the presence of experimentally motivated
constraints. Following our work in [19], we consider two: the
minimum switching time τ0 and the time resolution δ. The
former captures the fact that there is a finite pulse bandwidth,
resulting in a minimal waiting time between the application of
two pulses. The latter is a constraint on our ability to apply a
pulse at an arbitrary time. These constraints establish that the
time separation between any two pulses, τ , must satisfy

kδ = τ ≥ τ0 > 0, k ∈ N.

As discussed in detail in Ref. [19], the above condition implies
the existence of a natural upper bound to the frequencies we
can sample via the comb, namely ω ≤ π/δ.

Another important factor is the spectral profile of the FFs
associated with the base control sequences. Consider a spec-
trum s(ω) ∈ {S±a,b(ω)|a, b ∈ IN}. Each base sequence
generates a different FF that couples to s(ω) in its convolu-
tion term. In order to reconstruct s(ω) at a set of harmonics,
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{kω0|k ∈ K}, at least one member of this FF set must nonzero
at each harmonic kω0. This ensures that s(kω0) contributes to
the dynamics, allowing it to be sampled. While the set of FFs
must have spectral weight at each of the harmonics, we would
like to minimize the spectral overlap between the individual
FFs. In other words, if G(1)

a,a′;b,b′(ω, t) and G
(2)
c,c′;d,d′(ω, t)

are two filters associated with base sequences (1) and (2),
the quantity

∫∞
−∞ dωG

(1)
a,a′;b,b′(ω, t)G

(2)
c,c′;d,d′(ω, t) should be

as small as possible. This ensures a well-conditioned linear
inversion. The approach taken in Ref. [18] to reduce spectral
overlap was employing base sequences of different durations,
{T/n, . . . , T/2, T} for n ∈ Z+. A base sequence of duration
T/n produces a comb that is non-zero at every nth harmonic.
Another approach is using base sequences whose FFs have
different values of their filtering order (FO) and cancellation
order (CO) [23]. Generally, FFs with larger values of FO and
CO have more support at higher frequencies, while those with
smaller values of FO and CO have support at lower frequen-
cies. A key ingredient to characterize the spectra is a FF with
vanishing FO, which is nonzero at ω = 0, allowing the DC
component of the spectra to be reconstructed. This may be
achieved by using subsequences of free evolution [19].

For local control by instantaneous π-pulses, we can choose
base sequences from an extensive library of single- and multi-
qubit DD sequences [2, 41, 62]. Although low-order non-local
control sequences have been considered (e.g., in the context of
open-loop pointer-state engineering [63]), their filtering and
cancellation properties have not been studied, to our knowl-
edge. Here, we demonstrate that it is possible to create FFs
with arbitrarily high CO through concatenation [2, 41]. Con-
sider the following two-qubit non-local DD sequence:

U1(T )=Π{2,12}SWAP1,2Uf

(
T

4

)
SWAP1,2Π{1,12}Uf

(
T

4

)
×Π{2,12}SWAP1,2Uf

(
T

4

)
SWAP1,2Π{1,12}Uf

(
T

4

)
,

where Uf (T/4) denotes free evolution for duration T/4. Us-
ing the formalism developed in Ref. [23], the FO and CO are
completely determined by the fundamental FFs that compose
a given FF. Direct calculation shows that

F
(1)
a,a′(ω, T ) ∼ O(ω1T 2), F

(k≥2)
a,a′;b,b′(ω, T ) ∼ O(ω0T k).

That is, the proposed non-local DD sequence has CO = 1 for
the error basis {Z1, Z2, Z1Z2} relevant to our problem. Con-
catenating this sequence a total of k times via the recursion

Uk(T ) = X2 SWAP12 Uk−1

(
T

4

)
SWAP12X1 Uk−1

(
T

4

)
×X2 SWAP12 Uk−1

(
T

4

)
SWAP12X1 Uk−1

(
T

4

)
achieves CO = k, as desired.

3. Spectroscopy protocols

We are now poised for presenting a detailed QNS protocol
to reconstruct all quantum, classical, cross- and self-spectra.

The accessible spectra depend on the level of control complex-
ity, i.e. diagonal (purely local) vs. non-diagonal (non-local)
control. Before delving into specifics, we outline the essential
procedure. All expansion coefficients take the general form

Ca,b(t) =

∫ ∞
−∞
dω

∑
gi(ω,t)∈Gi
s(ω)∈S2

ka,b(gi, s)gi(ω, t)s(ω), (57)

where Gi is the set of all FFs for a control sequence i, S2 is
the set of all spectra for N = 2, and the constants ka,b(gi, s)
are specific to Ca,b(t). Most of the expansion coefficients con-
tain either G+

a,a′;b,b′(ω, t) or G−a,a′;b,b′(ω, t), but not both. In
the case where Ca,b(t) depends only on G+

a,a′;b,b′(ω, t) FFs,
a comb can be generated through repetition provided that the
non-generic cases are avoided for the gi(ω, T ) involved,

Ca,b(MT )i'
2πM

T

∑
k∈K

gi(kω0,T )∈Gi
s(kω0)∈S2

ka,b(gi, s)gi(kω0, T )s(kω0). (58)

Here, we have replaced Ca,b(t) with Ca,b(MT )i, its measured
value after M repetitions of i, and we have truncated the sum-
mation to a finite set of harmonics. In Eq. (58), every quantity
is known except for the s(kω0): Ca,b(MT )i through measure-
ment, ka,b(gi, s) through the explicit form of the expansion
coefficient, and gi(kω0, T ) through the control sequence i.
Obtaining Ca,b(MT )i for a set of sequences i ∈ {1, . . . , Nc},
with Nc greater or equal to the number of unique s(kω0) in
Eq. (58), thus creates a system of linear equations that can be
solved for the desired estimates, s(kω0).

For expansion coefficients containing G−a,a′;b,b′(ω, t) fil-
ters, product-displacement antisymmetry generates a comb
through repetition, forming

Ca,b(MT )i'
2π

T

∑
k∈K

gi(kω0,T )∈Gi
s(kω0)∈S2

(−1)kka,b(gi, s)gi(kω0, T )s(kω0).

In this case, we can solve for for the spectra just as above.
Determining Ca,b(MT )i for a sufficient number of control se-
quences creates a system of linear equations, inverting which
returns the s(kω0). Finally, some expansion coefficients con-
tain both G±a,a′;b,b′(ω, t). Because it is impossible to generate
combs in these FFs simultaneously, we take linear combina-
tions of the expansion coefficients to isolate the terms con-
taining either G+

a,a′;b,b′(ω, t) or G−a,a′;b,b′(ω, t). We will now
describe in detail this procedure, by focusing on the simplest
and practically most relevant scenario of diagonal (purely lo-
cal) control, while deferring to Appendix C a discussion of the
more general non-diagonal (non-local) control setting.

Recall that diagonal control consists of π-pulses, which are
products of the Pauli operators {X`, Y`} on the individual
qubits ` ∈ {1, 2}. The expansion coefficients then take the
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explicit form

C`,12(t)= i

∞∫
−∞

dω

2π
Im{S−1,2(ω)[G−1,1;2,2(ω, t)

− (−1)`G+
1,1;2,2(ω, t)]}, (59)

C`,`(t)= i

∞∫
−∞

dω

2π
Im{S−`,0(ω)[G−`,`;0,0(ω, t)

+G+
`,`;0,0(ω, T )]}, (60)

C`,0(t)=

∞∫
−∞

dω

2π

∑
a∈{`,12}

Re[S+
a,a(ω)G+

a,a;a,a(ω, T )], (61)

C1,2(t)= 2

∞∫
−∞

dω

2π
Re[S+

1,12(ω)G+
1,1;12,12(ω, T )], (62)

C2,1(t)= 2

∞∫
−∞

dω

2π
Re[S+

2,12(ω)G+
2,2;12,12(ω, T )], (63)

C12,0(t)=

∞∫
−∞

dω

2π

2∑
`=1

Re[S+
`,`(ω)G+

`,`;`,`(ω, T )], (64)

C12,12(t)= 2

∞∫
−∞

dω

2π
Re[S+

1,2(ω)G+
1,1;2,2(ω, T )]. (65)

Note that another distinction between the M1 and M2 noise
models is evident in the above expansion coefficients. Be-
cause B0(t) = 0 in the M1 model, S−1,0(ω) = 0 = S−2,0(ω),
implying the expansions coefficients C1,1(t) and C2,2(t) van-
ish. For the M2 model, where B0(t) = B1(t) +B2(t),

S−`,0(ω) =

∫ ∞
−∞

dτe−iωτ 〈[B`(τ), B0(0)]〉c,q

= S−`,1(ω) + S−`,2(ω).

The quantum self-spectra S−1,1(ω) and S−2,2(ω), thus, enter the
qubit dynamics through C1,1(t) and C2,2(t) in the M2 model.
In contrast, the quantum self-spectra have no dynamical
influence in the M1 model, as anticipated. This is reminiscent
of the single-qubit example in Sec. III, where the qubit in
the M2 model experiences phase rotation due to S−1,1(ω), an
effect absent in the M1 model. The presence of the quantum
self-spectra in the qubit dynamics of the M2 model has
implications for the development of our QNS protocol, as
we shall show later. We now examine how the spectra can
be extracted from the expansion coefficients in Eqs. (59)-(65).

Step 1: Consider C`,0(t), C1,2(t), C2,1(t), C12,0(t) and
C12,12(t), which contain the spectra S+

`,`(ω), S+
12,12(ω),

S+
`,12(ω) and S+

1,2(ω). Because these coefficients only depend
on G+

a,a′;b,b′(ω, t) FFs, they can be deconvolved using control
repetition, provided that the non-generic cases are avoided.
Extracting S+

`,`(ω), S+
12,12(ω), Re[S+

`,12(ω)] and Re[S+
1,2(ω)]

requires a real FF. We can insure G+
a,a′;b,b′(ω, T ) is real by

using a control sequence with ya,a′(t) and yb,b′(t) that are
both mirror symmetric or antisymmetric on [0, T/4] and sat-
isfy product-displacement±-symmetry on [0, T ] and [0, T/2].
Through a set of sequences with these symmetries, we obtain
a system of linear equations of the form in Eq. (58), which can
be inverted to obtain the real components of the spectra. To
extract Im[S+

`,12(ω)] and Im[S+
1,2(ω)] from C1,2(t), C2,1(t) and

C12,12(t), respectively, we repeat the same procedure, except
we use control sequences where G+

a,a′;b,b′(ω, T ) is imaginary.
This can be accomplished when ya,a′(t) and yb,b′(t) are both
mirror symmetric or antisymmetric on the interval [0, T/4]
and satisfy product-displacement−-symmetry on [0, T ] along
with with product-displacement antisymmetry on [0, T/2].

It should be noted that when an expansion coefficient is the
sum of multiple convolutions, such as C`,0(t) or C12,0(t), the
individual spectra can still be isolated. Consider C1,0(t), for
example. After M repetitions of a base sequence, we have

C1,0(MT )=
M

T

∑
k∈K

Re[S+
1,1(ω0)G+

1,1;1,1(kω0, T )]

+
M

T

∑
k∈K

Re[S+
12,12(kω0)G+

12,12;12,12(kω0, T )].

The base sequences can be chosen so that G+
1,1;1,1(kω0, T ) 6=

G+
12,12;12,12(kω0, T ) for all k ∈ K. As long as the number of

base sequences is Nc ≥ 2|K|, this creates a Nc × 2|K| linear
system that can be inverted to obtain both {S+

12,12(kω0)}
and {S+

1,1(kω0)} for all k ∈ K. An alternative is taking
the difference of two C1,0(MT ) obtained with control
sequences that produce identical G+

1,1;1,1(kω0, T ) and dif-
ferent G+

12,12;12,12(kω0, T ) or vice-versa, which cancels
the terms containing G+

1,1;1,1(kω0, T ) or those containing
G+

12,12;12,12(kω0, T ). When repeated for Nc ≥ |K| pairs of
control sequences, this creates a Nc × |K| linear system that
can be inverted to obtain {S+

12,12(kω0)} or S+
1,1(kω0)}. This

procedure is illustrated in detail in Appendix D.

Step 2: One can access S−1,2(ω) by deconvolving the integrals
in C`,12(t), which contain both G±1,1;2,2(ω, t). To carry this
out, we isolate the terms containing G+

1,1;2,2(ω, t) by taking

C1,12(t)− C2,12(t) = 2i

∞∫
−∞

dω

2π
Im[S−1,2(ω)G+

1,1;2,2(ω, t)].

We can then use repetition of sequences with real
G+

1,1;2,2(ω, T ) to extract Im[S−1,2(ω)] and repetition se-
quences with imaginaryG+

1,1;2,2(ω, T ) to extract Re[S−1,2(ω)].

Step 3: The remaining contribution is C`,`(t), which con-
tains the only power spectrum in Eqs. (59)-(65) that we miss,
S−`,0(ω). This needs to be treated in a case-by-case basis:

• In M1, S−`,0(ω) = 0 and C`,`(t) trivially vanishes. Thus,
we can access all the power spectra relevant to the dynamics
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generated by local control for M1. Note that, as was already
seen in Eqs. (59)-(65), the quantum self-spectra S−`,`(ω) do
not influence local-control dynamics in a M1 model, which
implies that they are not accessible via local control only.
• In M2, the situation is more complicated. In the previous

step, we obtained {S−1,2(kω0)}. If we assume that this spec-
trum is sufficiently smooth so that it is well approximated by
an interpolation of {S−1,2(kω0)}, we can use the latter to de-
termine S−`,0(ω). Let S−,I1,2 (ω) denote such an interpolation.
Recall that for M2, S−`,0(ω) = S−`,1(ω) + S−`,2(ω). Consider

C`,`(t)− 2i

∞∫
−∞

dω

2π
Im[S−,I1,2 (ω)(G+

`,`;0,0(ω, t) +G−`,`;0,0(ω, t))]

≈ 2i

∞∫
−∞

dω

2π
Re[S−`,`(ω)]Im[(G+

`,`;0,0(ω, t) +G−`,`;0,0(ω, t))].

Note that all quantities on the left hand-side are known. We
can, thus, obtain S−`,`(ω) by deconvolving the righthand side.
To do so, let us first note that control repetition and displace-
ment antisymmetry in [0, T ] lead to

G+
`,`;0,0(ω, T )=−2i

sin2(ωTM2 )

sin(ωT2 )
F

(1)
`,`

(
ω,
T

2

)
F

(1)
0,0

(
− ω, T

2

)
,

G−`,`;0,0(ω, T )=− sin(ωTM)

sin(ωT2 )
F

(1)
`,`

(
ω,
T

2

)
F

(1)
0,0

(
− ω, T

2

)
.

It follows then that, if y`,`(s) is chosen to be a mirror antisym-
metric sequence in [0, T/2], then F (1)

`,` (ω, T2 )F
(1)
0,0 (−ω, T2 ) is

purely imaginary. Consequently, G+
`,`;0,0(ω, T ) is real, while

G−`,`;0,0(ω, T ) is imaginary, which implies

2i

∫
dω

2π
Re[S−`,`(ω)]Im[(G+

`,`;0,0(ω, T ) +G−`,`;0,0(ω, T ))]

= 2i

∫
dω

2π
Re[S−`,`(ω)]Im[G−`,`;0,0(ω, T )].

As shown earlier, this generates a frequency comb. Unlike
M1, local control suffices to characterize all spectra for M2.

D. Noise spectroscopy beyond two qubits

The above procedure may be extended to N qubits, where
the goal is characterizing the full set of spectra SN ≡
{S±a,b(ω)|a, b ∈ IN}. Without describing the protocol to
the level of detail given in the two-qubit case, we show how,
through proper application of control symmetries and mea-
surement of qubit observables, it is still possible in principle
to access all the spectra governing the N -qubit dynamics.

To obtain the spectra in SN , we consider a tripartite setting:
the two-party setting we treated thus far (consisting, say, of
qubits ` and ¯̀) plus a third party, R`,¯̀≡ {1, . . . , N}−{`, ¯̀},
which contains the remaining N − 2 qubits. Once again, we
use the convention ` 6= ¯̀. Let I`,¯̀≡ {`, ¯̀, `¯̀} be the set of in-
dices relevant to qubits ` and ¯̀alone and B`,¯̀ ≡ {` r, ¯̀r|r ∈

Initial multiqubit states Observables

|ψ~s
` 〉 = |+〉`

⊗
j 6=` |sjz〉j X`, Y`

|ψ~s
¯̀ 〉 = |+〉¯̀

⊗
j 6=¯̀ |sjz〉j X¯̀, Y¯̀

|ψ~s
`,¯̀〉 = |+〉` |+〉¯̀

⊗
j 6=`,¯̀ |sjz〉j

X`X¯̀, Y`Y¯̀

Y`X¯̀, X`Y¯̀

TABLE II. State preparations and observables for noise spectroscopy
on N qubits. As in Table I, |±〉 denote the eigenstates of X , while
|+z〉 ≡ |0〉 and |−z〉 ≡ |1〉 denote eigenstates of Z.

R`,¯̀}. By adapting the two-qubit protocol, we can recon-
struct {S±a,b(ω), S+

a,c(ω), S+
c,d(ω)|a, b ∈ I`,¯̀, c, d ∈ B`,¯̀} for

a fixed pair of qubits ` and ¯̀. By repeating this procedure for
every pair ` and ¯̀, all spectra in SN can be characterized.

We start by modifying the two-qubit approach introduced
in the last section so that it is possible to access the spectra
affecting qubits ` and ¯̀in the presence of the remainingN−2
qubits. Let ~s be a vector of length N with entries that are
either + or −. The first column of Table II describes initial
states of the N -qubit ensemble in which qubit ` and/or qubit
¯̀ are prepared in |+〉` and/or |+〉¯̀ with the remaining qubits
prepared in |sjz〉j , where sj ∈ {+,−} is the jth component
of ~s. The second column contains observables on qubits `
and ¯̀. These are the N -qubit analogues to the two-qubit state
preparations and observables presented in Table I. Preparing
the qubits in the states specified in Table II and measuring the
corresponding observables allows one to obtain the expansion
coefficients {Ca,b(t)|a ∈ I`,¯̀, b ∈ IN}. For a ∈ {`, ¯̀} and
Ra = {1, . . . , N} − {a}, these coefficients read

Ca,0(t) +
∑
j∈Ra

sj Ca,j(t)=
−log{Eψ~sa [Xa(t)]2+Eψ~sa [Ya(t)]2}

2

Ca,a(t)+
∑
j∈Ra

sj Ca,aj(t) = tanh−1

{
i
Eψ~sa [Ya(t)]

Eψ~sa [Xa(t)]

}

C`¯̀,0(t)∓C`¯̀,`¯̀(t)=
1

2
log
(
{Eψ~s

`¯̀
[X`Y¯̀(t)]±Eψ~s

`¯̀
[Y`X¯̀(t)]}2

+ {Eψ~s
`¯̀

[X`X¯̀(t)]∓Eψ~s
`¯̀

[Y`Y¯̀(t)]}2
)

C`¯̀,¯̀(t)± C`¯̀,`(t) +
∑
j∈R`,¯̀

sj [C`¯̀,¯̀j(t)±C`¯̀,`j(t)] =

tanh−1

{
i
Eψ~s

`¯̀
[X`Y¯̀(t)]± Eψ~s

`¯̀
[Y`X¯̀(t)]

Eψ~s
`¯̀

[X`X¯̀(t)]∓ Eψ~s
`¯̀

[Y`Y¯̀(t)]

}
.

Determining the expectation values of the observables in Ta-
ble II for all possible state preparations forms systems of lin-
ear equations, which can be solved to obtain the Ca,b(t).

As in the two-qubit case, we deconvolve the expansion co-
efficients by generating frequency combs in the FFs. To ac-
complish this, we apply selective control to two qubits, say
` and ¯̀, and homogeneous control to the remaining N − 2
qubits. Consider first the M1 model in the diagonal con-
trol scenario. For a fixed pair `, ¯̀, the expansion coefficients
Ca,b(t) for a, b ∈ I`,¯̀ depend on convolutions involving the
spectra S±a,b(t) for a, b ∈ I`,¯̀, as if one were dealing with
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the two-qubit case, plus additional classical spectra that arise
due to the other N − 2 qubits: S+

`r,`r(ω), S+
¯̀r,¯̀r

(ω), S+
`r,¯̀r

(ω),
S+

¯̀r,`r
(ω) for r ∈ R`,¯̀4. Note the absence of quantum spectra

involving the indices `r or ¯̀r, due to the fact that these spec-
tra depend on commutators of classical noise operators and
thus vanish. Quantum cross-spectra of the form S−`,r(ω) do
not enter the convolutions present in Ca,b(t) for a, b ∈ I`,¯̀.
The additional classical spectra involving r pose a complica-
tion in that they are always filtered by the same non-vanishing
function. For example, consider the expansion coefficient

C`¯̀,`¯̀(t) =
1

π

∞∫
−∞

dω Re[S+
`,¯̀

(ω)G+
`,`;¯̀,¯̀

(ω, t)]

+
1

π

∞∫
−∞

dω
∑
r∈R`,¯̀

Re[S+
`r,¯̀r

(ω)G+
`r,`r;¯̀r,¯̀r

(ω, t)].

Generating a frequency comb in all convolutions is not a prob-
lem, since C`¯̀,`¯̀(t) only involves G+

a,a′;b,b′(ω, t) FFs. Be-
cause of the homogeneous control on all r ∈ R`,¯̀, however,
the FF G+

`r,`r;¯̀r,¯̀r
(ω, t) is the same for all r, implying that

the power spectra S+
`r,¯̀r

(ω) are not distinguishable. We can
break this symmetry using the C`¯̀,`¯̀(t) for all other pairs `
and ¯̀. For each ` and ¯̀, we measure C`¯̀,`¯̀(t) ensuring that
unique sequences are applied to each of the three parties `,
¯̀ and r ∈ R`,¯̀, i.e., none of the base sequences applied to
the three parties should be the same. Recall that the remain-
ing N − 2 qubits in R`,¯̀ are subjected to homogeneous con-
trol at each iteration. As long as these conditions are met,
the C`¯̀,`¯̀(MT )∀ `, ¯̀ ∈ {1, . . . , N} form a system of non-
degenerate linear equations under repetition, which can be
inverted to obtain all classical spectra S+

`,¯̀
(ω) and S+

`r,¯̀r
(ω)

for r ∈ R`,¯̀. As in the two qubit case, the real and imagi-
nary character of the FFs can be controlled using timing sym-
metries, enabling us to extract both the real and imaginary
components. Using a similar procedure for the expansion co-
efficients C`¯̀,0(t), C ¯̀̀ ,0(t), C`,0(t) and C¯̀,0(t) enables us to
access the spectra S+

`,`(ω), S+
¯̀,¯̀

(ω), S+
`¯̀,`¯̀

(ω), S+
`r,`r(ω) and

S+
¯̀r,¯̀r

(ω) for r ∈ R`,¯̀. The remaining expansion coefficients
C¯̀,`(t), C`,¯̀(t), C¯̀,`¯̀(t) and C`,`¯̀(t) pose no additional compli-
cations in the N -qubit case, since spectra involving r ∈ R`,¯̀
do not appear in the convolutions. From these expansion co-
efficients, therefore, we can obtain S−

`,¯̀
(ω), S−¯̀,`(ω), S+

`,`¯̀
(ω)

and S+
¯̀,`¯̀

(ω) for all pairs `, ¯̀using the two-qubit protocol. Di-
agonal control, thus, gives us access to all spectra relevant to
N -qubits except for the quantum self-spectra.

Like the two qubit case, accessing the quantum self-spectra
for M1 requires non-local control, whose detailed discus-
sion we defer to Appendix C. The M2 model is similar to

4 The classical spectra S+
`r,r(ω) and S+

¯̀r,r
(ω), which would contribute to

C¯̀,` and C`,¯̀, do not appear as they are filtered by (G+
·r,·r;r,r(ω, T ) −

G+
·r,·r;r,r(ω, T )) = 0, where · stands for an index in {`, ¯̀}; see Eq. (26).

the M1 model, but with the addition of the terms B0(t) =∑N
`=1B`(t). If we apply the same strategy using diagonal

control to M2 as we did for M1, we can, also in this case,
obtain all spectra except for the quantum self-spectra. Unlike
M1 and similar to the two-qubit case, however, the coefficients
C`,`(t) enable us to determine the quantum self spectra using
purely local control. Using C`,`(t) and interpolations of the
previously reconstructed quantum cross-spectra, we obtain

C`,`(t)−
∑
`′ 6=`

i

π

∞∫
−∞

dωIm[S−,I`,`′ (ω)(G+
`,`;0,0(ω, t)+G−`,`;0,0(ω, t))]

≈ i

π

∞∫
−∞

dωRe[S−`,`(ω)]Im[(G+
`,`;0,0(ω, t) +G−`,`;0,0(ω, t))].

As in the two-qubit case, we can apply repetitions of a
displacement antisymmetric base sequence with imaginary
G−`,`;0,0(ω, T ) and real G+

`,`;0,0(ω, T ) in order to deconvolve
this expression and solve for S−`,`(ω). By repeating this pro-
cedure for every `, we obtain all quantum self-spectra.

V. QUANTUM NOISE SPECTROSCOPY ON TWO
EXCITON QUBITS

We demonstrate the use and power of the proposed QNS
protocols by focusing on the reconstruction of self- and cross-
spectra of two exciton qubits in self-assembled quantum dots,
coupled to a common phonon bath. Physically, the interaction
between the excitons and the vibrational modes of the host
crystal lattice is known to be the dominant source of decoher-
ence for typical operating regimes [42, 55, 56].

The relevant open-system interaction-picture Hamiltonian
is given in Eq. (4), with N = 2 and vanishing inter-qubit
coupling, B12(t) ≡ 0. The complex coupling constants may
now be taken to be of the form g`k = |gk|ei

~k·~r` , where ~k is
the wave-vector of phonon mode k and ~r` is the position of
qubit `. Assuming linear dispersion, the wave-vector satis-
fies ~k · (~r` − ~r′`) = ω t`,`′ , where t`,`′ is referred to as the
“transit time” [41]. If vs is the speed of sound in the bath,
|t`,`′ | = |~r` − ~r`′ |/vs. In order to make contact with ex-
perimentally accessible control resources, we shall assume
access only to local (diagonal) control, in which case the
applied H`

ctrl(t) generates sequences consisting of (nearly-
instantaneous) π-pulses about an axis orthogonal to z. For
exciton qubits, such control sequences can be implemented
with femtosecond optical pulses. In the toggling frame, the
Hamiltonian has the form given in Eq. (28) with c = 1, i.e.,

H̃(t) = ~
∑
`=1,2

(y`,`(t)Z` + I`)⊗B`(t),

whereB`(t) is given in Eq. (3) and the the switching functions
toggle between ±1 with each applied π-pulse. For a phonon
bath initially in a thermal state, the operators B`(t) exhibit
Gaussian statistics and the relevant spectra are obtained from
Eqs. (16)-(17) by letting J`,`′(ω) ≡ e−iωt`,`′J(ω), where
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J(ω) =
∑
k |gk|2[δ(ω − Ωk) + δ(ω + Ωk)] = J(−ω) is the

bath spectral density. Thus, the spectra to be reconstructed are

S`,`′(ω)=πe−iω|~r`−~r`′ |/vsJ(ω)

{
coth

(
βω
2

)
+1, ω ≥ 0

coth
(
− βω

2

)
−1, ω < 0

.

(66)

Explicitly, dephasing dynamics of the exciton qubits de-
scribed by the following set of real spectra:

S ={S±1,1(ω), S±2,2(ω),Re[S±1,2(ω)], Im[S±1,2(ω)]}. (67)

A. Spectral reconstruction procedure

Reconstructing the desired spectra requires that we obtain
the coefficients Ca,b(t), which depend on the convolutions be-
tween the spectra and FFs given in Eqs. (60)-(65) in the case
of diagonal control. Recall that these coefficients are related to
expectation values of observables on the two qubits, as given
in Eqs. (51)-(56). In an experimental implementation, average
measured values of the observables replace the expectation
values. With this in mind, the procedure for reconstructing a
particular spectrum s(ω) ∈ S entails the following steps:

Step 1: Identify an expansion coefficient, Ca,b(t), that de-
pends on s(ω).

Step 2: Initialize the two qubits in states that allows one to
access Ca,b(t).

Step 3: Apply repetitions of a control sequence that has the
appropriate symmetries to create a frequency comb for a FF
entering the integral for Ca,b(t). Symmetries can also be uti-
lized to control whether the FF is real or imaginary, allowing
for the real or imaginary components of s(ω) to be isolated.

Step 4: Determine Ca,b(t) by measuring observables on one
or both qubits.

Step 5: In order to sample s(ω) at a set of harmonic fre-
quencies {ωk ≡ kω0|k ∈ K}, steps (2)-(5) must be repeated
for Nc ≥ |K| control sequences with the desired symmetries.
Each set of sequences can have identical cycle times, say T ,
or different cycle times of the form {T, T/2, . . . , T/Nc}.

Step 6: Determining the Ca,b(t) for each control sequence
produces a set of linear equations relating Ca,b(t) to the spec-
trum s(ω) evaluated at {ωk}. In order to isolate the contribu-
tion of s(ω), it may be necessary to take linear combinations
of the Nc measured Ca,b(t). The resulting system of linear
equations is inverted to obtain the reconstructed (R) spectrum
sR(ωk), an estimate of {s(ωk)|k ∈ K}.

B. Spectral reconstruction results

In our simulations, we used parameters relevant to exciton
quantum dots interacting with phonons in one-dimensional
(1D) geometries, such as nano-wires or carbon nanotubes

[56, 64, 65]. As is characteristic of 1D geometries, the spec-
tral density of the bath was Ohmic,

J(ω) = ξ|ω|e−ω
2/ωc

2

,

with a dimensionless coupling parameter ξ = 0.001 and a
Gaussian rolloff at high frequencies, with a cutoff ωc = 1.5
THz. The separation distance between the excitons and the
speed of sound in the bath were taken to be |~r1−~r2| = 10 nm
and vs = 7 km/s, respectively, corresponding to a transit time
t1,2 ≈ 1.4 ps. Unless otherwise stated, the temperature of the
bath was TB = 5K. For the reconstructions, we used a range
of control sequences with maximum cycle time T = 60 ps and
minimum switching time τ0 = 0.2 ps. From the FFs of these
control sequences and the spectra in Eq. (66), we use Eq. (22)
to compute the exact expectation values of qubit observables.
These serve as proxies for the average measured values that
would be used to determine the expansion coefficients in an
experimental setting. The spectra are reconstructed at the har-
monic frequencies by making the frequency comb approxima-
tion and inverting the approximate set of linear equations re-
lating the expansion coefficients to the spectra. A detailed de-
scription of this procedure, along with the control sequences
used, is included in Appendix D. Note that while this anal-
ysis includes errors stemming from the frequency comb ap-
proximation, it does not account for other (system-dependent)
errors that would be present in an experimental setting.

Because we are limited to diagonal control, we cannot di-
rectly reconstruct the quantum self-spectra. However, we can
still indirectly infer the quantum self-spectra from reconstruc-
tions of S+

1,1(ω), S+
2,2(ω), Re[S±1,2(ω)] and Im[S±1,2(ω)], as

described below. Numerical reconstructions of the spectra
S+

1,1(ω), S+
2,2(ω), Re[S±1,2(ω)] and Im[S±1,2(ω)] at |K| = 33

harmonic frequencies for an initially thermal bath at TB = 5K
are plotted in Fig. 2(a), demonstrating excellent agreement
with the actual spectra. With prior knowledge that the bath is
bosonic and at equilibrium, we can estimate the temperature
by means of Eqs. (18)-(19): that is,

S+,R
12 (ω)

S−,R12 (ω)
≈ coth(βω/2), ω > 0. (68)

By linearly fitting coth−1[S+,R
12 (ω)/S−,R12 (ω)], we obtain the

temperature from β. This estimate, TB ≈ 5.02 K, again in-
dicates excellent agreement with the actual temperature. The
spectral density of the bath can also be inferred by using

J(ω) ≈ S+,R
11 (ω)

2πcoth(βω/2)
, ω > 0, (69)

where we replaced coth(βω/2) with its estimate. The inset
of Fig. 2(a) shows the actual and estimated values of J(ω)
and coth(βω/2). Figure 2(b) depicts reconstructed contours
of |S12(ω)| obtained from Re[S±,R12 (ω)] and Im[S±,R12 (ω)], for
a range of temperatures and harmonic frequencies. The spec-
tral asymmetry of positive vs. negative frequencies, which
becomes more pronounced as the temperature decreases, is
clearly evidenced in the contours. With prior knowledge of
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FIG. 2. (Color online) Spectral reconstructions and estimates of bath parameters for two exciton qubits coupled to a common 1D phonon
bath. (a) Spectral reconstructions and actual spectra for an initially thermal bath at TB = 5 K. The reconstructed spectra S+,R

11 (ω) (black
dots), Re[S+,R

12 (ω)] (green squares), Im[S+,R
12 (ω)] (blue diamonds), Re[S−,R

12 (ω)] (red up arrows) and Im[S−,R
12 (ω)] (purple down arrows)

are plotted alongside the actual spectra (numbered solid lines). (Inset) Temperature dependence obtained by spectral reconstruction via
S+,R

12 (ω)/S−,R
12 (ω) (red dots) versus the actual temperature dependence, coth(β|ω|~/2), for TB = 5 K (red line). The bath temperature

estimated via Eq. (68) is 5.02 K. Spectral density J(ω) obtained from the spectral reconstructions, Eq. (69) (blue dots) and actual spectral
density (blue line). (b) Contours of the magnitude of the reconstructed cross-correlation spectrum |SR

12(ω)| = |S+,R
12 (ω) + S−,R

12 (ω)|/2 vs.
angular frequency and temperature (white dash line corresponding to the estimated bath temperature). Note how the spectral asymmetry about
ω = 0, a signature of the quantum bath, becomes more pronounced as the temperature decreases.

ɸ
(t)

(ra
d)

t (ps)

t (ps)

ex
p[
-χ
(t)
]

FIG. 3. (Color online) Qubit dynamics under free evolution for the
initial product state |ψ−1 〉 = |+〉1 ⊗ |− z〉2. (a) Phase evolution
φ(t) = C1,12(t) − C1,1(t) of qubit 1. Because φ(t) depends exclu-
sively on the quantum spectra S−12(ω) and S−11(ω), it is a signature
of the quantum nature of the bath. The actual phase evolution under
free evolution (solid line) is plotted along with the phase evolution
predicted using: (1) all reconstructed spectra, S (asterisks); (2) all
reconstructed spectra except the quantum self-spectra (dots), Sr; and
(3) only the classical reconstructed spectra, Sc (large dashes). (Inset)
Dephasing of qubit 1. Unlike phase evolution, the decay of coher-
ences depends exclusively on the classical spectra. Actual dephasing
(solid line) and dephasing predicted by spectral reconstructions (as-
terisks) show excellent agreement.

the bosonic nature of the bath, we can also obtain the quantum
self-spectra S−`,`(ω) from reconstructions of S+

1,1(ω), S+
2,2(ω),

Re[S±1,2(ω)] and Im[S±1,2(ω)]. From Eq. (18),

S−1,1(ω) = S−2,2(ω) = 2πJ(ω)sign(ω). (70)

This full set of spectra in S can be used to predict the evolu-
tion of the qubits – specifically, to target particular dynamics

stemming from the quantum or classical nature of the bath. An
example of this is demonstrated in Fig. 3, where the two exci-
ton qubits are initially prepared in state |ψ−1 〉 = |+〉1⊗|−z〉2
and undergo free evolution. The coherence element,

〈0|Tr2[ρ(t)]|1〉 = e−C1,0(t)+i[C1,12(t)−C1,1(t)],

indicates that qubit 1 undergoes both decay and phase evo-
lution, similar to the single-qubit dephasing in Sec. III A.
The decay of the coherence is given by C1,0(t), which de-
pends entirely on the classical self-spectrum S+

1,1(ω), as seen
in Eq. (62). The expansion coefficients C1,12(t) and C1,1(t),
which determine the phase evolution, depend instead on the
quantum spectra S−1,1(ω) and S−1,2(ω), as seen in Eqs. (60)
and (61). The phase evolution is a signature of quantum noise.
Specifically, Fig. 3 depicts the actual phase evolution and the
phase evolution predicted using three different sets of spectra:

(1) all reconstructed spectra, S, in Eq. (67);
(2) all reconstructed spectra except the quantum self-

spectra, Sr = {S+
1,1(ω), S+

2,2(ω),Re[S±1,2(ω)], Im[S±1,2(ω)]};
(3) only the classical reconstructed spectra, Sc =
{S+

1,1(ω), S+
1,1(ω),Re[S+

1,2(ω)], Im[S+
1,2(ω)]}.

The phase evolution predicted using all of the reconstructed
spectra in S shows excellent agreement with the actual dy-
namics. The prediction based on Sr, which ignores the quan-
tum self-spectra, deviates markedly from the actual phase evo-
lution and, unsurprisingly, the prediction made from Sc fails
entirely to capture the phase evolution. This shows how ac-
curately modeling the system’s reduced dynamics clearly re-
quires knowledge of the quantum spectra.

To get an idea of how the quantum bath influences the exci-
ton qubits under more general circumstances, Fig. 4 tracks the
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FIG. 4. (Color online) Two-qubit fidelity decay under free and con-
trolled evolution. The latter consists of repetitions of the product-
mirror antisymmetric concatenated sequence CDD3×CDD2, with
cycle time T = 2.7 ps. (a) Estimated average fidelity, F̄ (t), ob-
tained by averaging 1000 Haar-random initial pure states of the two
qubits. Under free evolution, the actual F̄ (t) (blue solid line) and
the F̄ (t) predicted using all spectral reconstructions in S (blue aster-
isks) demonstrate excellent agreement. Predictions produced with Sc
(small blue dashes) and Sr (blue dots) significantly overestimate the
fidelity. The classical prediction made with Sc and the actual dynam-
ics differ by over 6%. For the controlled evolution, the actual F̄ (t)
(red solid line), the predicted F̄ (t) using S (red diamonds), the F̄ (t)
predicted using Sr (large red dashes) and the F̄ (t) predicted using
Sc (red dot-dashed line) are in closer agreement, as the control par-
tially suppresses the contributions of the quantum spectra. However,
the classical prediction and the actual F̄ (t) still differ by 1% (Inset).
(b) Actual and predicted fidelity for the subset of initial states, out of
the total sampled 1000 random states, which demonstrate the greatest
discrepancies between the classical predictions using Sc and the ac-
tual dynamics. For free evolution, the actual fidelity and the classical
prediction differ by as much as 11%. For the controlled evolution,
the maximum difference is about 2% (Inset).

average and worst-case fidelity of the qubits versus time for
both free evolution and a representative controlled evolution.
Specifically, the controlled evolution consists of stroboscopic
repetitions of a product-mirror antisymmetric concatenated
DD sequence, CDD3×CDD2 [41], with cycle time T = 2.7
ps. As a measure of the fidelity, we use F (t) = Tr(ρ(t)ρ0),
quantifying the extent to which the qubits have decohered at
time t from their initial state. Both the average and worst-case
fidelities were determined from 1000 Haar-random initial pure

states. Similar to Fig. 3, the actual fidelities are plotted along
with predicted fidelities based on S, Sr and Sc. Figure 4(a)
shows excellent agreement between the actual average fidelity
and the average fidelity predicted using S for both free and
controlled evolution. For free evolution, the average fidelity
predicted with Sr and Sc, in which some or all quantum spec-
tra are ignored, deviates from the actual by as much as 6%.
The applied DD sequence suppresses the contributions of both
the classical and the quantum spectra. Consequently, the de-
viation between the actual and predicted average fidelities for
Sr and Sc is considerably less, at about 1%.

Figure 4(b) shows the worst-case fidelity obtained from the
sample of 1000 Haar-random initial pure states. Again, the
predictions made using S are in excellent agreement with the
actual worst-case fidelities. Under free evolution, the max-
imum deviation between the actual worst-case fidelity and
those predicted using Sr and Sc is considerable, about 11%.
Under controlled evolution, the maximum deviation is less,
at about 2%. These plots show that the relative contributions
of the quantum and classical spectra can change considerably
depending on external control. Ultimately, however, accurate
quantitative modeling of both controlled and free dynamics
requires properly accounting for the quantum spectra.

VI. CONCLUSION AND OUTLOOK

We presented a multiqubit quantum noise spectroscopy pro-
tocol that utilizes the response in the dynamics of set of qubits
to different control symmetries in order to extract information
about the bath affecting them. We further discuss how quan-
tum vs. classical baths lead to distinctive spectral features
and dynamical signatures in the qubits being used as probes.
The proposed protocols are implemented in a realistic two-
exciton system subject to phonon-induced dephasing, and ma-
nipulated using only experimentally accessible sequences of
single-qubit π pulses. Complete reconstruction of all the rel-
evant classical and quantum self- and cross-spectra is demon-
strated, allowing in particular for quantum thermometry and
quantitative prediction of free and controlled qubit dynamics.
Our findings reinforce the central role that the quantum spec-
tra play in influencing the dynamics of the qubits, their accu-
rate characterization being necessary for quantitatively mod-
eling unique dynamical signatures and ultimately for meeting
the requirements of high-fidelity quantum control.

It is important to appreciate that, while valid in many sit-
uations of practical relevance, the assumption of Gaussianity
under which the present protocols have been developed need
not be universally valid nevertheless. In a situation where
the actual noise is sufficiently non-Gaussian, the Gaussian
approximation to the spectra that the present protocols can
access may fail to be quantitatively accurate – especially at
longer time scales, as we explicitly showed in the single-
qubit setting [19]. Ultimately, this calls for an extension
of the present protocols to non-Gaussian sources, which for
classical or bosonic dephasing noise is achievable in a rela-
tively straightforward manner in principle, by building on our
above-mentioned work. Likewise, while in most qubit imple-
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mentations environment-induced dephasing is indeed a dom-
inant source of error, ultimately one would like to design a
complete noise spectroscopy protocol that permits characteri-
zation of a general decoherence process for an arbitrary bath
– simultaneously allowing for both environmental and control
noise. This is a much more complex problem that we leave
for future work. We expect that incorporating more general
symmetries will remain a key ingredient for control design.

Finally, it would be interesting to explore the extent to
which the quantum noise spectroscopy protocols we devel-
oped for Gaussian as well as non-Gaussian noise may be
brought to bear on coherent multidimensional spectroscopy,
in which multidimensional spectra are obtained by Fourier-
transforming a multi-time non-linear signal created by suit-
ably designed sequences of “excitation” pulses on the target
system. First developed in NMR [16] and later extended in the
optical domain [66], multidimensional spectroscopy has gar-
nered increased attention in the last decade thanks to improved
acquisition and processing data capabilities, with a shift in
emphasis from developing the methods to using them as a

diagnostic tool for complex quantum dynamics – including
diagnosing underlying decoherence mechanisms [67]. While
we stress that quantum noise spectroscopy aims to a full char-
acterization of the noise spectra themselves, so that open-
system dynamics may then be predicted in arbitrary dynami-
cal settings of interest in principle, we expect that establishing
clear points of contact may allow for useful cross-fertilization,
in particular in term of pulse-sequence design and the ex-
ploitation of symmetry principles.
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Appendix A: Exact solution for time-evolved observables under Gaussian dephasing noise

We provide here a more general version of the theorem stated in the main text, applicable to an arbitrary open quantum system
S undergoing controlled dephasing dynamics. Specifically, in place of the N -qubit toggling-frame Hamiltonian given in Eq. (6),
our starting point is a time-dependent Hamiltonian of the form

H̃(t) =
∑
a,a′

ya,a′(t)Pa ⊗Ba,a′(t), (A1)

in a suitable frame where both the free bath Hamiltonian and the applied control Hamiltonian are explicitly removed. Here, {Pa}
is a set of Hermitian, mutually commuting operators on S, that is, [Pa, Pa′ ] = 0, P0 ≡ 1, Ba(t) are bath operators, and ya,a′(t)
arbitrary real functions, determined by the external control. We are interested in evaluating the time-dependent expectation value
Eρ0

(O(t)) of an operator O starting from an initial state ρ0 on S, under the assumption that O is invertible and preserves the
dephasing character of {Pa}. That is, we now require that O−1PaO =

∑
b VabPb, for all a and suitable (generally complex)

coefficients Vab. As in the main text, for fixed t > 0 we define an effective ( generally non-Hermitian) Hamiltonian given by

H̃O(s) ≡

{
−O−1H̃(t− s)O for 0 < s ≤ t

H̃(t+ s) for − t ≤ s < 0
. (A2)

Theorem. The time-dependent expectation value of a dephasing-preserving invertible operator O on an arbitrary open
quantum system under controlled Gaussian dephasing dynamics is given by

Eρ0
(O(t)) = Tr

[
e−iC

(1)
O (t)−

C(2)
O

(t)

2! ρ0O
]
, (A3)

where the time-dependent cumulants have formally the same expressions given in Eqs. (23)-(24) in the main text, namely:

C(1)
O (t) =

∫ t

−t
ds1C

(1)(H̃O(s1)) =

∫ t

−t
ds〈H̃O(s)〉c,q,

C(2)
O (t) = 2

∫ t

−t
ds1

∫ s1

−t
ds2C

(2)(H̃O(s1)H̃O(s2))

= 2

∫ t

−t
ds1

∫ s1

−t
ds2〈H̃O(s1)H̃O(s2)〉c,q −

∫ t

−t
ds1〈H̃O(s1)〉c,q

∫ t

−t
ds2〈H̃O(s2)〉c,q.

Proof. The desired expectation value Eρ0
(O(t)) is given by

Eρ0
(O(t)) = 〈Tr[ρSB(t)O]〉c = TrS [〈T+e

−i
∫ t
−t H̃O(s)ds〉c,q ρ0O]. (A4)
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Under the dephasing-preserving assumption, we may write H̃O(s) =
∑
a,a′ ỹa,a′(s)Pa⊗B̂a′(s), with effective control functions

and bath operators given by

ỹa,a′(s) ≡

{
−
∑
a′′ ya′′,a′(t− s)Vaa′′ for 0 < s ≤ t
ya,a′(t+ s) for − t ≤ s < 0

, B̂a′(s) ≡

{
Ba′(t− s) for 0 < s ≤ t
Ba′(t+ s) for − t ≤ s < 0

.

With reference to Kubo’s generalized cumulant expansion approach [53], note that the time-ordered exponential entering in
Eq. (A4) is a valid generalized exponential function and, similarly, the operation 〈·〉c,q ≡ 〈TrB [·ρB ]〉c defines a valid normalized

“average”. Introducing the compact notation
t∫
−t
d~t[k] ≡

∫ t
−t dt1

∫ t1
−t dt2 · · ·

∫ tk−1

−t dtk, it then follows [from Theorem V and

Eq. (6.4) therein, or direct calculation] that

〈T+e
−i

∫ t
−t H̃O(s)ds〉c,q = e

∑∞
k=1(−i)k

t∫
−t
d~t[k]C

(k)(H̃O(t1),··· ,H̃O(tk))

, (A5)

where C(k)(H̃O(t1), · · · , H̃O(tk)) ≡ C(k)({H̃O(tu)}) is a generalized cumulant. Crucially, since the {Pa} commute, then

C(k)({H̃O(tu)}) =
∑
~a,~a′

( k∏
r=1

ỹar,a′r (tr)Par

)
C(k)(B̂a′1(t1), B̂a′2(t2), · · · , B̂a′k(tk)),

and one has that [C(rj)({H̃O(tj)}), C(rj′ )({H̃O(tj′)})] = 0. Notice that C(k)({H̃O(tu)}) depends explicitly on the kth-order
cumulants of bath operators B̂a′(s) and that the Gaussianity assumption, C(k)({Ba′j (tj)}) = 0 for k > 2, also implies that

C(k)({B̂a′j (tj)}) = 0 for k > 2. Then, it follows that C(k>2)({H̃O(tu)}) = 0 and truncating Eq. (A5) to k = 2 yields

Eρ0
(O(t)) = TrS [e−i

∫ t
−t ds1C

(1)(H̃O(s1))−
∫ t
−t ds1

∫ s1
−t ds2C

(2)(H̃O(s1),H̃O(s2)) ρ0O],

which, using the above definitions of C(k)
O (t) for k = 1, 2, is equivalent to Eq. (A3).

We stress that while the theorem applies only to dephasing-preserving invertible operators, any operator on S can always
be decomposed in terms of an orthogonal basis consisting of dephasing-preserving unitary operators, by making use of Weyl
operators X and Z that generalize those of the qubit case [H. Weyl, Zeitschr. Phys. 46, 1 (1927)]. That is, for a d-dimensional
(qudit) system with basis {|m〉} ≡ {|0〉, · · · , |d− 1〉}, let X and Z be defined by

X|m〉 ≡ |(m+ 1) mod d〉 and Z|m〉 = ζm|m〉, ζ ≡ ei 2π
d .

The desired operator basis may then be constructed by considering the set of generalized Pauli operators {σ(a,b)} ≡ {ZaXb},
with a, b ∈ {0, . . . , d − 1}, leading to ZaXb = ζabXbZa. In infinite dimension, Weyl operators may be similarly defined by
letting Z ≡ e

i
~ q̂ , X ≡ e−

i
~ p̂, where q̂ and p̂ are the canonical position and momentum operators ([q̂, p̂] = i~) and ζ = e

i
~ ,

respectively. Regardless of dimensionality, then, if {Pa} ≡ {Za} or {Xa} for example, each element of the basis is a dephasing-
preserving (invertible) operator, as claimed.

• Frequency domain. Fourier-transforming to the frequency domain, the generalized cumulants of the relevant Hamiltonian,
i.e., C(1)(H̃O(s1)) and C(1)(H̃O(s1)H̃O(s2)), can be written in terms of the FF formalism, specifically:

∫ t

−t
ds1C

(1)(H̃O(s1)) =

∫ t

−t
ds1〈H̃O(s1)〉c,q

=
∑
a,a′

Pa

∫ t

0

ds1

[
ya,a′(s1)−

∑
b

Va,a′′ya′′,a′(s1)
]
〈Ba′(s1)〉c,q

=
∑
a

Pa

∫ ∞
−∞

dω

2π

[
F

(1)
a,a′(ω, t)−

∑
b

Va,a′′F
(1)
a′′,a′(ω, t)

]
C(1)(Ba′(ω)),



22∫ t

−t
ds1

∫ s1

−t
ds2C

(2)(H̃O(s1)H̃O(s2)) =

∫ t

−t
ds1

∫ s1

−t
ds2

(
〈H̃O(s1)H̃O(s2)〉c,q − 〈H̃O(s1)〉c,q〈H̃O(s2)〉c,q

)
=

∑
a,b,a′,b′

PaPb

{∫ ∞
−∞

dω

2π

[
F

(2)
a,a′;b,b′(ω, T )

+
∑
a′′,b′′

Va,a′′Vb,b′′F
(2)
b′′,b′;a′′,a′(−ω, T )

−
∑
a′′

Va,a′′F
(1)
a′′,a′(ω, T )F

(1)
b,b′(−ω, T )

]
Sa′,b′(ω)

}
,

where the relevant FFs have expressions similar to Eqs. (8)-(9) in the main text. Specializing to the N -qubit setting considered
in the main text, for the case where {Pa} ≡ {Za}, operators O such that Va,a′′ = δa,a′′sign(O, a, 0), and Gaussian stationary
noise with C(1)(t) ≡ 0, leads directly to Eqs. (25) and (27) quoted therein.
• Expansion coefficients. Equations (59)-(65) of the main text gave explicit forms of the expansion coefficients in the

two-qubit case for diagonal control. Here we give the most general form of these expansion coefficients, valid for non-diagonal
control in the two-qubit case. Writing ¯̀= {1, 2} − {`} and using shorthand notation sign(O, a, 0) ≡ fOa ∈ {−1, 1}, we find

C0,O(t) = −1

2

∑
`,a′,b′

∫ ∞
−∞

dω

2π
S

(fO` f
O
` )

a′,b′ (ω)
(
fO` G

(1)
`,a′;`,b′(ω, t)−G

(2,+)
`,a′;`,b′(ω, t)

)
,

C`,O(t) = −1

2

∑
a′,b′

∫ ∞
−∞

dω

2π
S

(fO` )
a′,b′ (ω)

(
fO` G

(1)
`,a′;0,b′(ω, t)−G

(2,fO` )
`,a′;0,b′(ω, t) +G

(1)
0,a′;`,b′(ω, t)−G

(2,fO` )
0,a′;`,b′(ω, t)

)
− 1

2

∑
a′,b′

∫ ∞
−∞

dω

2π
S

(fO¯̀ f
O
12)

a′,b′ (ω)
(
fO¯̀ G

(1)
¯̀,a′;12,b′

(ω, t)−G(2,fO¯̀ f
O
12)

¯̀,a′;12,b′
(ω, t) + fO12G

(1)

12,a′;¯̀,b′
(ω, t)−G(2,fO¯̀ f

O
12)

12,a′;¯̀,b′
(ω, t)

)
,

C12,O(t) = −1

2

∑
a′,b′

∫ ∞
−∞

dω

2π
S

(fO1 f
O
2 )

a′,b′ (ω)
(
fO1 G

(1)
1,a′;2,b′(ω, t)−G

(2,fO1 f
O
2 )

1,a′;2,b′ (ω, t) + fO2 G
(1)
2,a′;1,b′(ω, t)−G

(2,fO1 f
O
2 )

2,a′;1,b′ (ω, t)
)

− 1

2

∑
a′,b′

∫ ∞
−∞

dω

2π
S

(fO12)
a′,b′ (ω)

(
fO12G

(1)
12,a′;0,b′(ω, t)−G

(2,fO12)
12,a′;0,b′(ω, t) +G

(1)
0,a′;12,b′(ω, t)−G

(2,fO12)
0,a′;12,b′(ω, t)

)
,

where we used fO0 = 1. These expressions can be simplified further, as we did to obtain Eqs. (59)-(65), by using the symmetry
properties obeyed by spectra [Eq. (15)] and by noting that

(G±a,a′;b,b′(ω, T ))∗ = ±G±b,b′;a,a′(ω, T ) = G±a,a′;b,b′(−ω, T )

G+
a,a′;b,b′(ω, T )±G+

a,a′;b,b′(ω, T ) = (1± 1)G+
a,a′;b,b′(ω, T ),

G+
a,a′;b,b′(ω, T )±G−a,a′;b,b′(ω, T ) = (1± 1)F

(2)
a,a′;b,b′(ω, T ) + (1∓ 1)F

(2)
a,a′;b,b′(−ω, T ).

Appendix B: Noise spectroscopy via continuous driving

In the steady-state solution of Eqs. (32) and (33) in the main text, the dependence of the populations on the bath spectrum
suggests the possibility of performing noise spectroscopy with an off-axis driving term. In fact, the Hamiltonian in Eq. (31)
with c = 0 is related to the spin-locking Hamiltonian utilized for spectroscopy and sensing applications in NMR and other
platforms [58]. Spin-locking techniques have also been employed for noise spectroscopy, though mainly on classical noise
sources [25, 28]. Reference [28], for example, uses spin locking to characterize the flux and tunnel-coupling noise affecting a
superconducting qubit in a temperature regime where the noise is effectively classical. Spin-locking approaches can be extended
to quantum noise sources, which we outline below. First note, however, that the qubit dynamics under equation Eq. (31) are not
exactly solvable. This necessitates the assumption of weak coupling or other approximations, which may not be applicable to
the system at hand. With one additional qubit, our protocols can characterize the quantum spectra in a pure dephasing setting,
without an off-axis driving term. The advantage of this setting is that we can solve for the reduced dynamics of the qubits exactly,
without relying on approximations that limit the portability of the protocol.

Consider a qubit with the internal HamiltonianH0 = ~ω0Z/2. In a spin-locking experiment, the qubit is subject to continuous
driving along an axis that rotates about Z with frequency ω0, resonant with the qubit’s internal energy splitting. When the qubit
is transformed into the interaction picture associated with H0, the traditional spin-locking setting is equivalent to Eq. (31) with
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c = 0. To make use of our previous results, we choose to work with Eq. (31), rather than the spin-locking Hamiltonian in the lab
frame. At long times, the equations of motion for the populations in Eqs. (32) and (33) become

ρ̇++ = −S1,1(−g)ρ++ + S1,1(g)ρ−−, (B1)
ρ̇−− = S1,1(−g)ρ++ − S1,1(g)ρ−−. (B2)

The spectral asymmetry dictates the difference between the rate of emission, Γ+− = S1,1(−g), and absorption, Γ−+ = S1,1(g).
If the qubit is initially prepared in |+〉, we can solve Eqs. (B1) and (B2) to obtain

ρ−−(t) =
−Γ+−exp[−(Γ+− + Γ−+)t] + Γ+−

Γ+− + Γ−+
, (B3)

ρ++(t) =
Γ+−exp[−(Γ+− + Γ−+)t] + Γ−+

Γ+− + Γ−+
. (B4)

Experimentally measuring the populations at different t and fitting the results to the population curves in Eqs. (B3) and (B4),
determines the rates of emission and absorption, producing estimates of S1,1(g) and S1,1(−g). Repeating this process for
different values of the drive amplitude g gives access to the spectrum at a range of frequencies.

Appendix C: Noise spectroscopy protocols with non-diagonal (non-local) control

In the case of non-local control, the dynamics are considerably richer. Consider N = 2 qubits first, as discussed in Sec. IV C.
It can be seen from Eq. (27) in the main text, that the expansion coefficients depend on additional power spectra that were absent
in the case of local control. This enables us to obtain the quantum self-spectra S−`,`(ω), which we could not access for M1.
For M2, non-diagonal control provides a means of accessing the quantum self-spectra without resorting to interpolation. Under
non-diagonal control, S−`,`(ω) enters the dynamics through the expansion coefficient C`,12(t), which takes the form

C`,12(t)= i

2∑
m,m′=1

∞∫
−∞

dω

2π
Im{S−m,m′(ω)[G−1,m;2,m′(ω, t)− (−1)`G+

1,m;2,m′(ω, t)]}.

Because the FFs cannot generate combs simultaneously, we isolate G−1,a;2,b(ω, t) and G+
1,a;2,b(ω, t) by

C1,12(t) + C2,12(t)= 2i

2∑
`=1

∞∫
−∞

dω

2π
S−`,`(ω)Im[G−1,`;2,`(ω, t)] +2i

∞∫
−∞

dω

2π
Im[S−1,2(ω)G−1,1;2,2(ω, t)+S−2,1(ω)G−1,2;2,1(ω, t)],

C1,12(t)− C2,12(t)= 2i

2∑
`=1

∞∫
−∞

dω

2π
S−`,`(ω)Im[G+

1,`;2,`(ω, t)] +2i

∞∫
−∞

dω

2π
Im[S−1,2(ω)G+

1,1;2,2(ω, t)+S−2,1(ω)G+
1,2;2,1(ω, t)].

The last lines in both of these expressions depend on the quantum cross-spectra, which we already obtained through diagonal
control. Under repetition of suitable sequences (a displacement antisymmetric sequence for the G−a,a′;b,b′(ω, t) FFs), we have

∆+(MT ) ≡ C1,12(MT ) + C2,12(MT )− I+(MT ) ≈ 2i

T

2∑
`=1

∑
k∈K

S−`,`(kω0)Im[G−1,`;2,`(kω0, T )], (C1)

∆−(MT ) ≡ C1,12(MT )− C2,12(MT )− I−(MT ) ≈ 2iM

T

2∑
`=1

∑
k∈K

S−`,`(kω0)Im[G+
1,`;2,`(kω0, T )], (C2)

where the terms I±(MT ) depend on the reconstruction of the quantum cross-spectrum,

I+(MT ) =
2i

T

∑
k∈K

Im[S−1,2(kω0)G−1,1;2,2(kω0, T ) +S−2,1(kω0)G−1,2;2,1(kω0, t)],

I−(MT ) =
2iM

T

∑
k∈K

Im[S−1,2(kω0)G+
1,1;2,2(kω0, T ) +S−2,1(kω0)G+

1,2;2,1(kω0, t)].
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Determining ∆±(MT ) for a set of sequences creates a system of linear equations that can be inverted to obtain S−1,1(ω) and
S−2,2(ω). We have, thus, obtained all dynamically relevant spectra for both the M1 and M2 models on N = 2 qubits.

In the N > 2 setting discussed in Sec. IV D, non-local control is needed to access the quantum self-spectra in the Ms
model. From the expansion coefficients C`,`¯̀(t) and C¯̀,`¯̀(t) and the previously reconstructed quantum cross-spectra S−

`,¯̀
(ω) and

S−¯̀,`(ω), we can determine the N -qubit analogues to Eqs. (C1) and (C2),

∆+(MT ) ≈ 2i

T

N∑
`′=1

∑
k∈K

S−`′,`′(kω0)Im[G−
`,`′;¯̀,`′

(kω0, T )],

∆−(MT ) ≈ 2iM

T

N∑
`′=1

∑
k∈K

S−`′,`′(kω0)Im[G+
`,`′;¯̀,`′

(kω0, T )].

Homogeneous control over all r ∈ R`,¯̀, implies that all S−r,r(ω) will be filtered by the same function and, hence, indistinguish-
able. However, if the non-locality of the control is restricted to just the qubits `, ¯̀, i.e., the only swap gate used in the base
sequences is SWAP`,¯̀, then G+

`,`′;¯̀,`′
(ω, T ) = 0 for `′ 6= `, ¯̀and the problematic contributions disappear. One can then recon-

struct all S−`,`(ω) using the two-qubit protocol. With the addition of the quantum self-spectra, we have shown how to reconstruct
all spectra for the N -qubit M1 model.

Appendix D: Protocol for noise spectroscopy of exciton qubits

The general spectroscopy procedure described in Sec. V A is readily adapted to exciton qubits coupled to a phonon bath. Be-
fore delving into details, however, it should be emphasized that there is substantial freedom in how the procedure is implemented.
The state preparation of the qubits, the control sequences to be applied, the number of repetitions and the measured observables
should be selected according to the system in consideration. In particular, the control sequences presented in this example are
not intended to be a “one size fits all” solution. In some platforms, for instance, the strength of the coupling between the qubits
and the bath may so large that higher-order control sequences are required. Ultimately, the specifics of the spectroscopy protocol
will vary from platform to platform.

Here, we show how our QNS protocol can be used to reconstruct the spectra S+
11(ω), S+

22(ω), Re[S+
12(ω)], Im[S+

12(ω)],
Re[S−12(ω)] and Im[S−12(ω)], using only local control. Recall from Sec. V B that the quantum self-spectra, S−1,1(ω) and S−2,2(ω),
can be estimated from reconstructions of the other spectra with prior knowledge that the bath is bosonic. In the first stage of the
procedure, we reconstruct the spectra at 32 non-zero harmonics, {ω0, . . . , 32ω0}, where ω0 = 2π/T . To accomplish this, we
apply repetitions of base control sequences with cycle times {T, T/2, . . . , T/32}, where the maximum cycle time is chosen to
be T = 60 ps. All sequences are constrained by the minimal switching time τ0 = 0.2 ps. The shorter the cycle time, the more
repetitions of the base sequence can be applied before the qubit significantly decoheres. We apply 7 repetitions for sequences
with the largest cycle time, T . For sequences with the cycle times T/2 and T/3, we apply 15 repetitions. For the remainder of
the cycle times, we apply 20 repetitions.

In the second stage of the procedure, we estimate the spectra at ω = 0. The spectra Im[S+
12(ω)], Re[S−12(ω)], S−1,1(ω) and

S−2,2(ω) are odd functions, necessarily zero at ω = 0. The remaining even spectra can be reconstructed at ω = 0 by using a base
sequence with zero filter order [23], which produces a FF that is non-zero at ω = 0. Measuring specific qubit observables after
repetitions of this base sequence combined with knowledge of the non-zero harmonics enables us infer the spectra at ω = 0.
• Consider first the classical self-spectra S+

11(ω) and S+
22(ω), which enter the qubit dynamics through

C12,0(t) =
1

2π

∫ ∞
−∞

dω
[
G+

1,1;1,1(ω, t)S+
11(ω) +G+

2,2;2,2(ω, t)S+
22(ω)

]
.

From Eq. (55) in the main text, this expansion coefficient can be obtained experimentally by preparing the qubits in the initial
state |ψ12〉=|+〉1 ⊗ |+〉2 and measuring the observables X1X2, Y1Y2, X1Y2 and Y1X2. After state preparation, the following
64 control sequences are applied:

(1) CPMG on qubit 1 and CPMG on qubit 2 with cycle times {T, T/2, . . . , T/32}

(2) CDD3 on qubit 1 and CPMG on qubit 2 with cycle times {T, T/2, . . . , T/32}.

Let C(i,n)
12,0 (t) denote the expansion coefficient C12,0(t) measured after Mn repetitions of the sequence i with cycle time

T/n. From this point forward, the superscript (i, n) will always denote an expansion coefficient measured after Mn repetitions
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of sequence i with cycle time T/n, i.e., at time t = MnT/n. By invoking the frequency comb approximation, we can write the
C(i,n)

12,0 (MnT/n) as linear equations

C(1,n)
12,0 (MnT/n)'nMn

T

32∑
k=1

[
|F (1)

CPMG(kω0, T/n)|2S+
1,1(kω0) + |F (1)

CPMG(kω0, Tp/n)|2S+
2,2(kω0)

]
,

C(2,n)
12,0 (MnT/n)'nMn

T

32∑
k=1

[
|F (1)

CDD3
(kω0, T/n)|2S+

1,1(kω0) + |F (1)
CPMG(kω0, T/n)|2S+

2,2(kω0)
]
.

The values of the C(i,n)
12,0 (MnT/n) for each of the 32 cycle times {T, T/2, . . . , T/32} form a system of linear equations. By

taking C(1,n)
12,0 (MnT/n) − C(2,n)

12,0 (MnT/n) and inverting, we can solve for S+
1,1(ω) at the 32 harmonics {ω0, . . . , 32ω0}. The

classical self-spectrum, S+
2,2(ω), is obtained either by repeating the procedure with sequence (2) replaced by CDD3 on qubit 2

and CPMG on qubit 1, or by substituting the reconstruction of S+
1,1(ω) into one of the equations above and solving for S+

2,2(ω).

• The classical cross-spectra Re[S+
1,2(ω)] and Im[S+

1,2(ω)] enter the dynamics through

C12,12(t) =
1

2π

∫ ∞
−∞

dω
[
G+

1,1;2,2(ω, t)S+
1,2(ω) +G+

2,2;1,1(ω, t)S+
2,1(ω)

]
.

Like C12,0(t), this expansion coefficient can also be obtained by preparing the qubits in the initial state |ψ〉12 and measuring the
observables X1X2, Y1Y2, X1Y2 and Y1X2. We use the control sequences:

(1) CDD3 on qubit 1 and CDD1 on qubit 2 with cycle times {T, T/2, . . . , T/32},

(2) CDD3 on qubit 1 and CPMG on qubit 2 with cycle times {T, T/2, . . . , T/32}.

Note that sequence (1) above is product-displacement −-symmetric in [0, T/n] but product-displacement −-antisymmetric in
[0, T/2n] for each n ∈ {1, . . . , 32}. Sequence 2, on the other hand, is product-displacement −-symmetric in both [0, T/n] and
[0, T/2n] for each n. As a consequence of Eqs. (45)-(46), the FF produced by (1) is purely real, while the FF produced by (2) is
purely imaginary, enabling us to obtain both the real and imaginary components of S+

1,2(ω). Determining C(1,n)
12,12(MnT/n) and

C(2,n)
12,12(MnT/n) for all n, and making the frequency comb approximation produces now the linear equations

C(1,n)
12,12(MnT/n) '2nMn

T

32∑
k=1

F
(1)
CDD3

(kω0, T/n)F
(1)
CDD1

(−kω0, T/n)Re[S+
1,2(kω0)],

C(2,n)
12,12(MnT/n) '2nMn

T

32∑
k=1

F
(1)
CDD3

(kω0, T/n)F
(1)
CPMG(−kω0, T/n)Im[S+

1,2(kω0)],

which are inverted to obtain Im[S+
1,2(ω)] and Re[S+

1,2(ω)] at the harmonics {ω0, . . . , 32ω0}.
• Next, we turn to the quantum cross-spectra, Re[S−1,2(ω)] and Im[S−1,2(ω)], which enter the dynamics through

C1,12(t) =
1

4π

∫ ∞
−∞

dω
[
G+

1,1;2,2(ω, t) +G−1,1;2,2(ω, t)
]
S−12(ω) +

1

4π

∫ ∞
−∞

dω
[
−G+

2,2;1,1(ω, t) +G−2,2;1,1(ω, t)
]
S−21(ω),

C2,12(t) =
1

4π

∫ ∞
−∞

dω
[
−G+

1,1;2,2(ω, t) +G−1,1;2,2(ω, t)
]
S−12(ω) +

1

4π

∫ ∞
−∞

dω
[
G+

2,2;1,1(ω, t) +G−2,2;1,1(ω, t)
]
S−21(ω)

From Eq. (53), the coefficient C1,12(t) can be obtained by preparing the qubits in |ψ±1 〉 = |+〉1 ⊗ | ± z〉2 and measuring X1.
Similarly, C2,12(t) can be extracted by preparing the qubits in |ψ±2 〉 = | ± z〉1 ⊗ |+〉2 and measuring X2. Alternatively, these
expansion coefficients can be accessed by preparing the qubits in |ψ12〉 = |+ +〉 and measuring Y1Z2, Z1Y2, X1 and X2, since

C1,12(t) = tan−1

[
E(Y1Z2)

E(X1)

]
and C2,12(t) = tan−1

[
E(Z1Y2)

E(X2)

]
. (D1)
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To reconstruct Im[S−1,2(ω)], we apply the control sequence

(1) CPMG on qubit 1 and CPMG on qubit 2 with cycle times {T, T/2, . . . , T/32}.

This sequence creates a frequency comb in the FF G+, producing the system of linear equations

C(1,n)
1,12 (MnT/n) '2nMn

T

32∑
k=1

|F (1)
CPMG(kω0, T/n)|2Im[S−1,2(kω0)] + C[G−],

C(1,n)
2,12 (MnT/n) '− 2nMn

T

32∑
k=1

|F (1)
CPMG(kω0, T/n)|2Im[S−1,2(kω0)] + C[G−],

where C[G−] denotes the contribution from the second-order FFs. By inverting the system of linear equations formed by
taking C(1,n)

1,12 (MnT/n)−C(1,n)
2,12 (MnT/n), we can solve for Im[S−1,2(ω)] at {ω0, . . . , 32ω0}. Next, we apply the control sequence

(2) Two repetitions of CDD1 (CDD1× 2) on qubit 1 and a single repetition of CDD1 on qubit 2 with cycle times
{T, T/2, . . . , T/32}.

This sequence, which is displacement-product +-antisymmetric in [0, T/n], creates a frequency comb in the G− FFs.
Through the comb, we obtain the system of linear equations

C(2,n)
1,12 (MnT/n) '2n

T

32∑
k=1

(−1)kF
(1)
CDD1×2(kω0, T/n)F

(1)
CDD1

(−kω0, Tp/n)Re[S−1,2(kω0)] + C[G+],

C(2,n)
2,12 (MnT/n) '2n

T

32∑
k=1

(−1)kF
(1)
CDD1×2(kω0, T/n)F

(1)
CDD1

(−kω0, Tp/n)Re[S−1,2(kω0)]− C[G+],

where C[G+] denotes the contribution from the first-order FFs. Taking C(1,n)
1,12 + C(1,n)

2,12 and inverting the resulting system of
linear equations determines Re[S−1,2(ω)] at {ω0, . . . , 32ω0}.
• Our final task is reconstructing S+

11(ω), S+
22(ω), Re[S+

12(ω]) and Im[S−12(ω)] at ω = 0. This requires a control sequence with
FO= 0, which produces a FF that is nonzero at ω = 0. This may be achieved by appending segments of free evolution to DD
sequences with non-zero FO, as in [19]. We use such a sequence, which we term “uneven-CDD1” or “6=CDD1”. This sequence
is described by the control propagator Uctrl(T ) = Uf (31T/32)X`Uf (T/32), where Uf denotes free evolution. Thus, 6=CDD1

is CDD1 with a time duration T/16 followed by free evolution for a time 15T/16.
To reconstruct S+

11(ω = 0), we again consider C12,0(t). We apply M = 35 repetitions of the sequences

(1) CPMG on qubit 1 and CPMG on qubit 2 with cycle time T/16.

(2) 6=CDD1 on qubit 1 and CPMG on qubit 2 with cycle time T/16.

The frequency comb approximation produces the linear equations

C(1,16)
12,0 (MnT/n)'16M

T

32∑
k=1

[
|F (1)

CPMG(kω0, T/16)|2S+
1,1(kω0) + |F (1)

CPMG(kω0, T/16)|2S+
2,2(kω0)

]
,

C(2,16)
12,0 (MnT/n)'16M

T

32∑
k=0

[
|F (1)
6=CDD1

(kω0, T/16)|2S+
1,1(kω0) + |F (1)

CPMG(kω0, T/16)|2S+
2,2(kω0)

]
.

By taking C(1,16)
12,0 (MnT/n) − C(2,16)

12,0 (MnT/n) and substituting the previously estimated values of S+
1,1(kω0) for 1 ≤ k ≤ 32,

we solve for S+
1,1(0). Similarly, by applying 6=CDD1 to qubit 2 and CPMG to qubit 1 in sequence (2), we can obtain S+

2,2(0).
Reconstructing Re[S+

12(ω = 0)] requires the coefficient C12,12(t). We use M = 35 repetitions of the control sequence

(1) 6=CDD1 on qubit 1 and 6=CDD1 on qubit 2 with cycle time T/16.



27

Through the frequency comb approximation, we obtain the linear equation

C(1,16)
12,12 (MnT/n) '32M

T

32∑
k=0

|F (1)
6=CDD1

(kω0, T/16)|2Re[S+
1,2(kω0)].

By substituting into this equation the previously estimated values of Re[S+
1,2(kω0)] for 1 ≤ k ≤ 32, we can solve for Re[S+

1,2(0)].
Lastly, we reconstruct Im[S−12(ω = 0)] through C1,12(t) and C2,12(t). We again apply M = 35 repetitions of the sequence

(1) 6=CDD1 on qubit 1 and 6=CDD1 on qubit 2 with cycle time T/16.

This produces the linear equations

C(1,16)
1,12 (MnT/n) '32M

T

32∑
k=0

|F (1)
6=CDD1

(kω0, T/16)|2Im[S−1,2(kω0)] + C[G−],

C(1,16)
2,12 (MnT/n) '− 32M

T

32∑
k=0

|F (1)
6=CDD1

(kω0, T/16)|2Im[S−1,2(kω0)] + C[G−],

By taking C(1,16)
1,12 (MnT/n) − C(1,16)

2,12 (MnT/n) and substituting the estimates for Im[S−1,2(kω0)] for 1 ≤ k ≤ 32 into this
expression, we obtain Im[S−1,2(0)].

[1] D. A. Lidar and E. T. A. Brun, Quantum Error Correction (Ox-
ford University Press, Oxford, 2013).

[2] K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. 95, 180501
(2005).

[3] K. Khodjasteh, D. A. Lidar, and L. Viola, Phys. Rev. Lett. 104,
090501 (2010).

[4] C. Brif, R. Chakrabarti, and H. Rabitz, New J. Phys. 12, 075008
(2010).

[5] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch,
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