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Maximum likelihood quantum state tomography yields estimators that are consistent, provided
that the likelihood model is correct, but the maximum likelihood estimators may have bias for any
finite data set. The bias of an estimator is the difference between the expected value of the estimate
and the true value of the parameter being estimated. This paper investigates bias in the widely used
maximum likelihood quantum state tomography. Our goal is to understand how the amount of bias
depends on factors such as the purity of the true state, the number of measurements performed,
and the number of different bases in which the system is measured. For that, we perform numerical
experiments that simulate optical homodyne tomography of squeezed thermal states under various
conditions, perform tomography, and estimate bias in the purity of the estimated state. We find
that estimates of higher purity states exhibit considerable bias, such that the estimates have lower
purity than the true states.

PACS numbers: 03.65.Wj, 03.67.-a, 42.50.Dv

I. INTRODUCTION

Quantum state tomography (QST) is the estimation of
an unknown quantum state from experimental measure-
ments performed on a collection of quantum systems all
prepared in the same unknown state. QST is an impor-
tant procedure for quantum computation and informa-
tion [1], being used, for example, to learn properties of
states prepared in experiments and for the validation of
quantum gates in quantum process tomography.
In QST many identical copies of the system are pre-

pared, each copy is independently measured, and the re-
sults of these measurements are used to estimate the sys-
tem’s quantum state ρtrue. A commonly used method to
make the estimate is maximum likelihood estimation, in
which one finds the state ρML with the maximum like-
lihood given the measurement results [2]. The estima-
tion is an optimization problem usually solved numeri-
cally using iterative algorithms, such as the expectation-
maximization based RρR [3] and gradient ascent algo-
rithms. This optimization problem becomes more diffi-
cult as the dimension of ρtrue increases.
In this paper, we examine idealized simulated exper-

iments with no systematic experimental errors, mean-
ing that they are correctly described by the likelihood
model. We analyze only the properties of the random
measurement error and bias in the maximum likelihood
estimator. Properties of this estimator have also been
examined in [4–6]. The difference between the estimate’s
expected value and the true value of the parameter be-
ing estimated is called “bias”. Given a correct likelihood
model and an informationally complete set of measure-
ments [2], maximum likelihood estimators are consistent
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and asymptotically unbiased [7], but they are typically
biased for finite samples. This bias is caused by nonlin-
earity of the estimation procedure.

We could be tempted to avoid the bias problem by us-
ing linear inversion estimators, which are unbiased. How-
ever, common linear inversion estimators do not confine
their estimates to physical state space[8], and linear es-
timators generally have larger mean squared error than
maximum likelihood estimators [7].

In [4], the behavior of estimation errors in one-qubit
state tomography was analyzed numerically using dis-
tances between the estimate and the true state. That
analysis showed that for the tomography of a single qubit,
the constraint that density matrices be positive semi-
definite creates bias that increases as the length of the
Bloch vector, a measure of distance from the state to the
boundary of state space, approaches 1. However, that
bias can be reduced if measurement operators are aligned
with the Bloch vector. In [9], Monte Carlo simulations
were used to study quantum state tomography of a few
qubits measured in the bases of the Pauli operators. [9]
showed that reconstruction schemes based on maximum
likelihood and least squares both suffer from bias. The
fidelity was systematically underestimated while the en-
tanglement was overestimated.

In this paper we are interested in the tomography
of continuous variable systems, whose bias has not yet
been systematically investigated. We use numerical ex-
periments to simulate optical homodyne tomography of
squeezed thermal states under various conditions and
perform maximum likelihood tomography on that data.
Because [4] showed a relationship between bias and the
length of a qubit’s Bloch vector, we extend those results
to higher dimensional systems by examining bias’s depen-
dence on purity, another measure of distance of a density
matrix from the boundary of state space. We also inves-
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tigate how the amount of bias depends on factors such
the number of measurements performed, the number of
different bases in which the system is measured, and the
dimension of the Hilbert space. In Section II we review
maximum likelihood estimation. In Section III we de-
scribe our numerical experiments and present our results.
In Section IV we discuss the interpretation of our results
and make some concluding remarks.

II. MAXIMUM LIKELIHOOD ESTIMATION

Continuous variable systems, such as a harmonic os-
cillator or a mode of light, live in infinite dimensional
Hilbert spaces. Tomography cannot estimate the in-
finitely many parameters required to represent states in
infinite dimensional spaces, so the standard approach in
this case is to limit the number of unknown parameters,
by truncating the Hilbert space at a maximum phonon
or photon number n.
Let us consider N quantum systems, each of them pre-

pared in a state described by a density matrix ρtrue. Each
copy i has an observable labeled by θi measured with re-
sult xi, for i = 1, ..., N . In each measurement the observ-
able is chosen by setting the phase θi of a local oscillator
(a reference system prepared in a high amplitude coher-
ent state). The outcome of the i-th measurement is de-
scribed by a positive-operator-valued measure (POVM)
element Π(xi|θi) = Πi. The likelihood of a candidate
density matrix ρ given the data set {(θi, xi) : i = 1, ..., N}
is given by

L(ρ) =

N
∏

i=1

Tr(Πiρ), (1)

where Tr(ρΠi) is the probability, according to ρ, to obtain
outcome xi when measuring with phase θi.
The goal of maximum likelihood QST is to find the

density matrix ρML that maximizes the likelihood. In
practice one usually maximizes the logarithm of the like-
lihood (the “log-likelihood”):

L(ρ) = lnL(ρ) =

N
∑

i=1

ln[Tr(Πiρ)], (2)

which is maximized at the same density matrix as the
likelihood. The log-likelihood function is concave, giving
us a well-behaved optimization problem, such that the
convergence to the unique solution will be achieved by
most iterative optimization methods.
Our algorithm for likelihood maximization begins with

several iterations of the RρR algorithm followed by iter-
ations of a regularized gradient ascent algorithm (RGA).
After an initial period of fast convergence, we have ob-
served significant slow-down in the RρR algorithm after
around (n + 1)2/4 iterations. To alleviate this problem,
after (n + 1)2/4 RρR iterations, we switch to the RGA.
Let ρ(k) be the density matrix found after k iterations,

the first of which is provided by the last iteration of RρR.
In the RGA, ρ(k+1) is parametrized as

ρ(k+1) =

(

√

ρ(k) +A
)(

√

ρ(k) +A†
)

Tr
[(

√

ρ(k) +A
)(

√

ρ(k) +A†

)] , (3)

where A may be any complex matrix of the same di-
mensions as ρ. This construction ensures that ρ(k+1)

is a physical density matrix for any A. To choose A,
a quadratic approximation of the log-likelihood is per-
formed. A maximizes the quadratic approximation of the
log-likelihood subject to the constraint that Tr(AA†) ≤
u, where u is a positive number that the algorithm ad-
justs to ensure that the log-likelihood increases with each
iteration.
All iterations halt when the stopping criterion of [10]

signals that the L(ρML)−L(ρ(k)) ≤ 0.2, where L(ρML) is
the maximum of the log-likelihood. By bounding the log-
likelihood improvement that can be achieved with further
iterations, we ensure that the last iteration produces an
estimate that is “close” to ρML, where that closeness is
statistically relevant [10].

III. NUMERICAL EXPERIMENTS

Our numerical experiments simulated single mode op-
tical homodyne measurements [11] of a state created by
sending a squeezed vacuum state, with quadratures vari-
ances s/2 and 1/(2s), through a lossy medium with trans-
missivity t. These states are Gaussian states with zero
means, which can be parametrized by their covariance
matrices. Since we want to simulate states of different
purities, we will express purity as a function of squeezing
and transmissivity.
The covariance matrix of the state after the lossy

medium is given by

Σ = t

(

1
2s 0
0 s

2

)

+ (1− t)
I

2
, (4)

where I is the identity matrix. Purity is then given by [12]

p(s, t) =
1

2
√

Det(Σ)

=
1

2
√

(

1
2 − 1

4s − s

4

)

(t2 − t) + 1
4

. (5)

Our numerical experiments begin with the choosing of
a desired purity for the true state. We use Eq. (5) to ob-
tain an (s, t) pair that produces the desired purity. The
choice of (s, t) is not unique, so we use two strategies, de-
scribed below, that give states that are close to the vac-
uum and highly squeezed states. We represent the pure
squeezed state with squeezing s as ρpure, a density matrix
in the photon number basis, truncated at n photons. We
then simulate passage of the pure squeezed state through
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a medium with transmissivity t by a quantum opera-
tion that is equivalent to appending an ancillary mode
in the vacuum state, acting on the two modes with the
beam splitter transformation, and tracing-out the ancil-
lary mode. This quantum operation is expressed with the
set of Kraus operators {Ei(t)|i = 1 . . . n}, and transforms
ρpure into ρtrue =

∑n

i=1 Ei(t)ρpureEi(t)
†. This procedure

gives us the density matrix of a state with the desired
purity, represented in an n photon basis.

To compute the probability P (x|θ) = Tr(ρtrueΠ(x|θ))
to obtain homodyne measurement result x at phase θ
from state ρtrue, we derive a representation of Π(x|θ) also
in the n photon basis. Let |x〉 be the x-quadrature eigen-
state with eigenvalue x expressed in the photon number
basis, and let U(θ) be the phase evolution unitary opera-
tor. For an ideal homodyne measurement, we would com-
pute the probability as Tr[ρtrueU(θ)†|x〉〈x|U(θ)]. How-
ever, real homodyne detectors suffer from photon loss.
Because this loss is part of the measurement device, we
include it in the POVM elements by expressing them as
Π(x|θ) =

∑

n

i=1 Ei(η)
†U(θ)†|x〉〈x|U(θ)Ei(η) [13]. By in-

cluding the loss associated with the measurement device
in the POVM elements, we can estimate the state of the
system before that loss occurs. For all of our numerical
experiments, we use η = 0.9, which is typical for state-
of-the-art homodyne detectors. To produce random sam-
ples of homodyne measurement results, we use rejection
sampling [14] from the distribution given by P (x|θ).

We use two different methods for choosing the phases
at which the homodyne measurements are performed. In
the first method, for each quadrature measurement a ran-
dom phase is chosen. In the second method for a total
of N measurements, measured at m different phases, we
divide the upper-half-circle evenly among the m phases
between 0 and π and measure N/m times at each phase.
Measuring the quadrature only once for a very large num-
ber of phases is natural for experimental systems that
slowly scan the phase while sampling quadratures. For
other systems, it may be more convenient to fix the phase
and repeatedly measure the quadrature before chang-
ing the phase. We expect these two strategies to be-
have differently for three reasons. (1) When measuring
evenly spaced phases, we obtain a histogram of quadra-
ture measurements that allows us to directly reconstruct
the probability distribution of the quadrature at each
of the phases, but when measuring random phases, our
knowledge of the quadrature probability distribution at
each phase is quite poor, but we obtain samples at many
more phases. The statistics of the two strategies are quite
different, and one might expect that estimates produce
different biases. (2) [4] showed that bias is reduced if one
measures a qubit in the direction of its Bloch vector. By
increasing the number of phases at which we measure the
optical mode, we increase the probability that we mea-
sure in a direction that points toward the boundary of
state space, which might reduce bias. (3) To obtain a
single maximum of the likelihood function, we require an
informationally complete set of measurement operators.

If the number of phases is too small relative to the max-
imum number of photons n in the Hilbert space, we do
not have an informationally complete set of measurement
operators, and there will be a family of density matrices,
all of which maximize the likelihood. According to [15],
n+1 different phases are required to reconstruct a state
that contains at most n photons. The likelihood maxi-
mization algorithm identifies one of these density matri-
ces, and there may be systematic error introduced in the
process.
To calculate the mean purity, we reconstruct each state

50 times, each time obtaining the purity for the recon-
structed state. We then calculate the arithmetic mean
of the 50 purities to obtain the “mean reconstructed pu-
rity”. Our estimate of the purity bias is the difference
between the mean reconstructed purity and the purity
of the true state. The uncertainty in each bias estimate
(shown as error bars in the figures) is the standard devi-
ation of the mean of the reconstructed purity. The rel-
ative sizes of the magnitude of the bias (abs(bias)) and
the standard deviation of the 50 purities (std(purity)) are
also of interest, so we make some statements about them
in the figure captions.

A. Nearly vacuum state

Let us start with tomography of a nearly vacuum state
measured with randomly chosen phases. A state of a
given purity with the weakest squeezing is reached when
t = 1/2. To find the necessary squeezing, we solve Eq. (5)
for s. Fig. 1 shows purity bias as a function of the true
state purity for different numbers of measurements. An-
alyzing the graphs, we can see that, when fewer measure-
ments are made, the highest purity states’ mean recon-
structed purity is significantly lower than the true state
purity. This is clear evidence of bias in the tomogra-
phy algorithm. We can also see that as we increase the
number of measurements, the variance and bias of the
purity estimates decreases. For true state purities below
0.9, abs(bias) decreases with decreasing true state purity
(when other parameters are fixed).
Fig. 2 shows color maps of the purity bias as a function

of the number of measurements and the true state purity.
These give us a qualitative description of purity bias for
a larger parameter space than shown in Fig. 1. Fig. 3
shows the behavior of the purity bias as a function of the
number of measurements for two fixed values of purity:
0.9 and 1. As we increase the number of measurements,
the variance and bias of the purity estimates decreases,
becoming approximately unbiased asymptotically, as ex-
pected. In Fig. 4 we show bias/std(purity) as a function
of the number of measurements for the simulations shown
in Fig. 3.
In Fig. 5, we use a nearly vacuum state, but rather

than randomly choosing a phase for each measurement,
we used only six evenly spaced phases. In Fig. 6, we
plot the 8,000 measurement case for both measurement
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FIG. 1. Purity bias as a function of true state purity for a
nearly vacuum state and random phases. Number of measure-
ments: 40,000, 20,000, 10,000, and 1,000. Maximum photon
number: 10. In the 40,000, 20,000, and 10,000 measurement
cases, abs(bias) is considerably smaller than std(purity), ex-
cept they are approximately equal when purity=1 . In the
1,000 measurement case, abs(bias) and std(purity) are ap-
proximately equal at purity=0.99, and at purity=1 abs(bias)
is larger than std(purity).
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FIG. 2. Color map of the (a) purity bias and (b) purity bias
measured in number of standard deviations of the purity es-
timates: bias/std(purity) as functions of the number of mea-
surements and the true state purity for a nearly vacuum state
measured with random phases. Maximum photon number =
10.
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FIG. 3. Purity bias as a function of the number of measure-
ments for a nearly vacuum state and measured with random
phases. Maximum photon number: 10. Note that the hor-
izontal axis has been shortened between 50,000 and 500,000
measurements.
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FIG. 4. Relative error of purity bias, bias/std(purity), as a
function of the number of measurement for a nearly vacuum
state and random phases. Maximum photon number: 10.
Note that the horizontal axis has been shortened between
50,000 and 500,000 measurements.

schemes. Although only six phases is not informationally
complete for the 10 photon Hilbert space in which we are
performing the reconstruction, we see little effect on the
purity bias. This is likely because the number of photons
in the state is much smaller than 10.

To further explore the relationship between the num-
ber of phases and bias, in Fig. 7 we show the behavior of
purity bias as a function of the chosen number of evenly
spaced phases. Increasing the number of phases has very
little effect on bias.

So far, we have presented results of density matrices re-
constructed in a 10 photon Hilbert space. We now argue
that 10 photons is sufficient to represent the nearly vac-
uum states that we have analyzed. A state will be well
represented in a truncated Hilbert space of n photons,
avoiding errors in the tomography, when the sum of prob-
abilities of having n photons in this state is close to 1. For
the nearly vacuum states, the number of photons in the
state increases with decreasing purity. The nearly vac-
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FIG. 5. Purity bias as a function of true state purity for a
nearly vacuum state and six evenly spaced phases. Number
of measurements: 8,000; 4,000; and 1,000. For 1,000 mea-
surements abs(bias) is larger than std(purity) for true state
purities 0.99 and 1.00. For all other cases shown abs(bias) is
less than std(purity), though several points are very close.
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FIG. 6. Purity bias as a function of true state purity for a
nearly vacuum state and both phase choosing methods: ran-
dom phases and six evenly spaced phases. Number of mea-
surements: 8,000. Maximum photon number: 10.

uum state with purity of 0.9 (the lowest that we report)
has a probability of 1.15× 10−5 to contain more than 10
photons, so a 10 photon Hilbert space should faithfully
represent all of the nearly vacuum states. In Fig. 8 we
show purity bias of density matrices reconstructed in 10
- 40 photon Hilbert spaces. We see that the use of larger
Hilbert spaces has no effect on the purity bias. Fig. 8 also
shows that when randomly choosing a phase for each of
8,000 measurements, more than sufficient phase informa-
tion is gained to estimate the state even in a 40 photon
Hilbert space. We explore the effect of measuring with
an insufficient number of phases in Fig. 9, where we use
only six evenly spaced phases to measure the nearly vac-
uum state. We reconstruct the density matrix in 10, 20,
30, and 40 photon Hilbert spaces, and we see that the re-
sults are very similar to those obtained when measuring
at random phases.
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FIG. 7. Purity bias for reconstruction of states whose purity
is 1 as a function of the number of evenly spaced phases at
which the state is measured. Bias for the vacuum state is
shown with blue circles, and bias for a squeezed state whose
squeezed quadrature variance is 1/2 of the vacuum variance is
shown with green squares. Number of measurements = 8000.
Maximum photon number = 10. The graph also shows the
bias obtained when measuring 8000 random phases with the
points just to the right of the 8000 evenly spaced phases point.
Unlike other graphs in this paper, which use 50 simulated
experiments to estimate bias, this graph uses 200 simulated
experiments.
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FIG. 8. Purity bias as a function of true state purity for a
nearly vacuum state measured with random phases. Number
of measurements: 8,000. Maximum photon number: 10, 20,
30 and 40. For all of these cases, we find abs(bias) larger than
std(purity) only when the true state purity=1.

B. Highly squeezed states

To test the robustness of some of our claims, we now
change the measured states from nearly vacuum states to
highly squeezed states. Each state is created by sending
a pure squeezed vacuum state, whose squeezed quadra-
ture has variance 1/4 of vacuum variance, through a
lossy medium with one of the following transmissivities:
t = [0.5, 0.8, 0.9, 0.95, 0.99, 1]. For each pair (s, t), the
purity is calculated using Eq. (5). The highly squeezed
states contain more photons, so we truncate the Hilbert
space at 20 photons. The highly squeezed state with the
most photons has purity of 1 (and t = 1). That state’s
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FIG. 9. Purity bias as a function of true state purity for a
nearly vacuum state and 6 evenly spaced phases. Number of
measurements: 8,000. Maximum photon number: 10, 20, 30
and 40.
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FIG. 10. Purity bias as a function of true state purity for
nearly maximal number of phases and both nearly vacuum
and highly squeezed states. A random phase is chosen for each
measurement. Number of measurements: 16,000 and 8,000.
Maximum photon number = 20. For reconstructing nearly
vacuum states from 8,000 or 16,000 measurements abs(bias)
is greater than std(purity) except when purity=1. The same is
true for reconstructing highly squeezed states from 8,000 mea-
surements. For reconstructing highly squeezed states from
16,000 measurements, abs(bias) is greater than std(purity) in
all cases shown, except they are approximately equal when
true state purity=0.95.

probability to contain more than 20 photons is 2.7×10−6.
The results for bias of highly squeezed states are similar
to those of the nearly vacuum states.

In Fig. 10 we compare the estimated purities when
measuring nearly vacuum and highly squeezed states,
finding similar behavior in the two cases. It appears that
bias is slightly higher for the highly squeezed states. Bias
is clearly not a function of the true state’s purity alone,
but depends on other features of the true state. This
dependence is not well understood. As more measure-
ments are taken the biases decrease, and the gap between
the bias of highly squeezed and nearly vacuum states de-
creases.

We also show the dependence of bias on the number of

evenly spaced phases used to measure a squeezed state
in Fig. 7, seeing little relationship between bias and the
number of phases, except there seems to be a slight in-
crease in abs(bias) when very few phases are used.

IV. CONCLUSION

We have used idealized numerical experiments to gen-
erate simulated data under various conditions, performed
tomography, and estimated bias in the purity of the re-
sults. The mean reconstructed purities of the highest
purity states are significantly lower than the correspond-
ing true state purities. This result shows clear evidence
of bias in the tomography algorithm, even when the like-
lihood model is correct. In our simulations we did not see
a strong relationship between purity bias and the number
of phases used to measure the state, though it is possible
that such a relationship for some combination of states
and measurement conditions. The abs(bias) appears to
be slightly larger for tomography performed on highly
squeezed states than in nearly vacuum states.

In this work we have focused on the influence of the
true state’s purity on bias of the estimated purity, finding
that more pure true states suffer from more bias toward
lower purity states. This agrees with the results of [9].
However, whether this is a general property for all states
is an open question. Our study has focused on bias in
estimates of squeezed thermal states, but other states,
especially non-Gaussian states, may have more or less
bias. More numerical experiments on a greater diversity
of states and using different measurement schemes would
be informative as would exploration of bias in other pa-
rameters.

In many of our numerical experiments, we find that
the bias in purity is significant compared to the standard
deviation of the estimates of purity. This is particularly
problematic if tools like the bootstrap are used to assign
uncertainties in quantum state tomography. If a non-
parametric bootstrap is used, every bootstrapped esti-
mate will be similarly biased. If a parametric bootstrap
is used, the original estimate is biased once and the boot-
strapped estimates will be biased a second time. Bias
correction methods exist for parametric bootstrap, but
they require the bias to be consistent for different states
[16]. This might be a reasonable approximation, but we
have seen that it is not strictly true. Because of the prob-
lems caused by bias, it maybe helpful to use confidence
intervals such as those described in [17–19] to assign un-
certainties to estimated parameters. Unfortunately those
methods produce confidence regions that are significantly
larger (and more conservative) than those produced by
bootstrap methods commonly used for quantum state to-
mography.
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