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It is shown that the single-particle spin-orbit coupling terms, which—in the cold atom context—
are associated with synthetic gauge fields, can significantly and non-trivially modify the phase

accumulation at small interparticle distances even if the length scale (kso)

~1 associated with the

spin-orbit coupling term is significantly larger than the van der Waals length r,qw that characterizes
the two-body interaction potential. A theoretical framework, which utilizes a generalized local frame
transformation and accounts for the phase accumulation analytically, is developed. Comparison with
numerical coupled-channels calculations demonstrates that the phase accumulation can, to a very
good approximation, be described over a wide range of energies by the free-space scattering phase
shifts—evaluated at a scattering energy that depends on ks,—and the spin-orbit coupling strength

kso.

PACS numbers:

The tunability of low-energy scattering parameters
such as the s-wave scattering length as and p-wave scat-
tering volume V,, by means of application of an external
magnetic field in the vicinity of a Feshbach resonance [1]
has transformed the field of ultracold atom physics, pro-
viding experimentalists with a knob to “dial in” the de-
sired Hamiltonian. This tunability has afforded the in-
vestigation of a host of new phenomena including the
BEC-BCS crossover [2, 3]. Most theoretical treatments
of these phenomena are formulated in terms of a few
scattering quantities such as as and V), which properly
describe the low-energy behavior of the two-body system.

The recent realization of spin-orbit coupled cold atom
systems [4] is considered another milestone, opening the
door for the observation of topological properties and
providing a new platform with which to study scenar-
ios typically encountered in condensed matter systems
with unprecedented control [5-7]. An assumption that
underlies most theoretical treatments of cold atom sys-
tems with synthetic gauge fields is that the spin-orbit
coupling term, i.e., the Raman laser that couples the dif-
ferent internal states or the shaking of the lattice that
couples different bands, leaves the atom-atom interac-
tions “untouched”. More specifically, mean-field treat-
ments “simply” add the single-particle spin-orbit cou-
pling term to the mean-field Hamiltonian and parame-
terize the atom-atom interactions via contact potentials
with coupling strengths that are calculated for the two-
body van der Waals potential without the spin-orbit cou-
pling terms [7, 8.

Consistent with such mean-field approaches, most two-
body scattering studies derive observables based on the
assumption that the two-body Bethe-Peierls boundary
condition, derived in the absence of single-particle spin-
orbit coupling terms, remains unaffected by the spin-
orbit coupling terms, provided an appropriate “basis
transformation” is accounted for [9-16]. The underlying
premise of these two-body and mean-field treatments is
rooted in scale separation, which suggests that the free-

space scattering length a, and scattering volume V), re-
main good quantities provided (ks,) ™! is larger than the
two-body van der Waals length r,qw. Indeed, model
calculations for a square-well potential in the presence
of three-dimensional isotropic spin-orbit coupling suggest
that the above reasoning holds, provided 1/a, and V,, are
small [17].

This work revisits the question of how to obtain and
parameterize two-body scattering observables in the pres-
ence of three-dimensional isotropic spin-orbit coupling.
Contrary to what has been reported in the literature,
our calculations for Lennard-Jones and square-well po-
tentials show that the three-dimensional isotropic spin-
orbit coupling terms can impact the phase accumulation
in the small interparticle distance region where the two-
body interaction potential cannot be neglected even if
(kso)_l is notably larger than r.qw. We observe non-
perturbative changes of the scattering observables when
kso changes by a small amount. An analytical treat-
ment, which reproduces the full coupled-channels results
such as the energy-dependent two-body cross sections for
the finite-range potentials with high accuracy, is devel-
oped. Our analytical treatment relies, as do previous
treatments [9-13, 15-17], on separating the short- and
large-distance regions. The short-distance Hamiltonian
is treated by applying a gauge transformation, followed
by a rotation, that “replaces” the p-dependent spin-orbit
coupling term by an r- and p-independent diagonal ma-
trix (r and p denote the relative position and momen-
tum vectors, respectively). The diagonal terms, which
can be interpreted as shifting the scattering energy in
each channel, can introduce non-perturbative changes in
the scattering observables for small changes in k., es-
pecially when V), is large. We note that our derivation
of the short-distance Hamiltonian, although similar in
spirit, differs in subtle but important ways from what is
presented in Ref. [10, 12].

Our analytical framework also paves the way for de-
signing energy-dependent zero-range or §-shell pseudo-



potentials applicable to systems with spin-orbit cou-
pling. While energy-dependent pseudo-potentials have
proven useful in describing systems without spin-orbit
coupling [18, 19], generalizations to systems with spin-
orbit coupling are non-trivial due to the more intricate
nature of the dispersion curves. Our results suggest a
paradigm shift in thinking about spin-orbit coupled sys-
tems with non-vanishing two-body interactions. While
the usual approach is to assume that the short-distance
behavior or the effective coupling strengths are not im-
pacted by the spin-orbit coupling terms, our results sug-
gest that they can be for specific parameter combina-
tions. Even though our analysis is carried out for the case
of three-dimensional isotropic spin-orbit coupling, our re-
sults point toward a more general conclusion, namely
that spin-orbit coupling terms may, in general, notably
modify the phase accumulation in the short-distance re-
gion.

We consider two particles with position vectors r; and
masses m; (j = 1 and 2) interacting through a spheri-
cally symmetric two-body potential Vi (r) (r = |r1—r3]).
Both particles feel the isotropic spin-orbit coupling term
with strength ke, Vo) = hksop; - 09) /mj, where p; de-
notes the canonical momentum operator of the jth parti-
cle and ¢%) the vector that contains the three Pauli ma-
trices agg ), 0'7(!) and ai for the jth particle. Through-
out, we assume that the expectation value of the total
momentum operator P of the two-body system vanishes.
In this case, the total angular momentum operator J,
J =1+S8S, of the two-particle system commutes with the
system Hamiltonian and the scattering solutions can be
labeled by the quantum numbers J and M ;; M ; denotes
the projection quantum number, 1 is the relative orbital
angular momentum operator, and S = fi(e™) + a(?))/2.

Separating off the center of mass degrees of freedom,
the relative Hamiltonian H for the reduced mass u par-
ticle with relative momentum operator p can be written
as a sum of the free-space Hamiltonian Hy, and the spin-
orbit coupling term Vi,, H = Hs + Vo, where
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and Vi, = hkoX - p/p with = (meoe™ @ I, — mi ) ®
o) /M. Here, I; denotes the 2 x 2 identity matrix that
spans the spin degrees of freedom of the jth particle and
M the total mass, M = my + mo. For each (J, M)
channel, the r-dependent eigen functions ¥(/*M7) are ex-
panded as [13, 15, 16]

YM) (p Zr—lul“s) ko), Myl S),  (2)
where the sum goes over ([,5) = (0,0) and (1,1) for
(J,My) = (0,0) and over (I, S) = (J,0), (J,1), (J—1,1),

and (J +1,1) for J > 0. In the |J, My;1,S) basis (us-
ing the order of the states just given), the scaled radial
set of differential equations for fixed J and M reads

2

Ay ) = Eul?) | where ) [20] denotes the scaled ra-
dial Hamiltonian for a given J (note that the Hamilto-
nian is independent of the M; quantum number). For
7 > Tmax, the interaction potential Vs can be neglected

and u(?) is matched to the analytic asymptotic Vipy = 0
solution [13, 15, 16]

u ——r ( TN N E”) , (3)
where J () and ) are matrices that contain the reg-

ular and irregular solutions for finite ks, (for J = 0 and
1, explicit expressions are given in Ref. [16]). Defin-
ing the logarithmic derivative matrix £7)(r) through
() (w)))~1, where the prime denotes the partial
derivative with respect to r, the K-matrix is given by

KO — {(rﬁm)’ D) (TM(J))/] "
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the S-matrix by S = L+ zK(‘]))(l — ZK(J))_l, where
I denotes the identity matrix, and the cross sections by
Oap = 27r|§§3‘2 — 8ap|?/k2, where v and 3 each take the
values 1,2,---.

In general, the K-matrix has to be determined numer-
ically via coupled-channels calculations. In what follows,
we address the question whether K can, at least approx-
imately, be described in terms of the logarithmic deriva-
tive matrix of the free-space Hamiltonian Hg. If the
spin-orbit coupling term V;, vanished in the small 7 limit,
one could straightforwardly apply a projection or frame
transformation approach [21-24] that would project the
inner small r solution, calculated assuming that V., van-
ishes in the inner region, onto the outer large r solution,
calculated assuming that Vi, vanishes in the outer re-
gion [25]. The fact that Vs, does not vanish in the small
r limit requires, as we show below, a generalization of the
frame transformation approach.

We start with the Hamiltonian H and define a new
Hamiltonian H through T—'H T, where T' is an operator
to be determined. The solution ¥ of the new Hamiltonian
is related to the solution ¥ of H through ¥ = T~1¥; here
and in what follows we drop the superscripts “(J, M)’
and “(J)” for notational convenience. The operator T
reads RU, where R = exp(—tksoX - r); the form of U is
introduced later. To calculate Hr = R~'HR, we use

(4)

R'HyR=Hy — Voo — Eo [ -1, 2 - V] +O(r) (5)

and

R YWeR =V +2E, [Z 1,2 - V] 4+ O(r), (6)

where —1hAV = p and Fs, = h%kZ /(2u) and where the
notation O(r) indicates that terms of order r and higher
are neglected (r “counts” as being of order r and p as
being of order r ). Adding Egs. (5) and (6) and neglect-
ing the O(r) terms, we find that the spin-orbit coupling



term V;, is replaced by a commutator that arises from
the fact that the operator 3 - p does not commute with
the exponent of R,

H}S%:Hfs‘i'Eso[z'rvz'v]' (7)

Here, the superscript “sr” indicates that this Hamiltonian
is only valid for small r [26].

Our goal is now to evaluate the second term on the
right hand side of Eq. (7). Defining the scaled short-
distance Hamiltonian h%; through rHIS{r_l and express-
ing A% in the |J, M;1, S) basis, we find

) —h2? 9?2
b = (Wﬁ—i—vmt(r)) L @L+Y+e, (8)

where )V is a diagonal matrix with diagonal elements
R21(1L + 1)/(2ur?). For J = 0, the matrix ¢ is diagonal
with diagonal elements —3Fs, and Fy,. For J > 0, in
contrast, the 11 and 22 elements are, in general, coupled:

-3 c/M? 0 0

_ c/M? —(AM/M)? 0 0
e=Fy 0 0 dl/M2 0 ) (9)

0 0 0  dy/M?

where AM = my — ma, ¢ = 2\/J(J +1)(m3 — m?),
dl = —JM2 - (J + 1)AM2, and d2 = 4m1m2 — dl.
Since the r-dependent 11 and 22 elements of V' are iden-
tical (recall [ = J for these two elements), the ma-

trix U, which is defined such that U~ teU is diagonal,
also diagonalizes h}, i.e., the short-range Hamiltonian
Efr =U 71Q%Q is diagonal. This implies that the scaled
radial short-distance Schrédinger equation ﬁSTry = FEv can
be solved using standard propagation schemes such as
the Johnson algorithm [27]. This Schrédinger equation

KZI‘ —

_ GS(kS) ki kik_ . Vp(kp)
ky —k_ | keko K2 ky —k_

where hky = +1/2u(E + Ey) — hkso.

To validate our analytical results, we perform numer-
ical coupled-channels calculations. Since the wave func-
tion in the J = 0 subspace is anti-symmetric under the
simultaneous exchange of the spatial and spin degrees
of freedom of the two particles, the solutions apply to
two identical fermions. The Schriodinger equation for the
Lennard-Jones potential Vi,5(r) = C12/r'? — Cg/r®, with
Cs and Ci2 denoting positive coefficients, is solved nu-
merically [28]. The solid lines in Figs. 1 and 2 show
the partial cross section o922 and the K-matrix element
Ksys as a function of kg, for vanishing scattering en-
ergy E for a two-body potential with large a4(0) and

ki(k, - k80)2
kyk (kJr - kso)(k, - kSO)

differs from the “normal” free-space Schrodinger equa-
tion by channel-specific energy shifts. These shifts in-
troduce a non-trivial modification of the phase accumu-
lation in the short-distance region and—if a zero-range
or d-shell pseudo-potential description was used—of the
boundary condition. While the energy shifts do, in
many cases, have a negligible effect, our analysis below
shows that they can introduce non-perturbative correc-
tions in experimentally relevant parameter regimes. The
channel-specific energy shifts are not taken into account
in Ref. [12].

To relate the logarithmic derivative matrix ésr(r) =
v'v~ ! of the scaled short-distance Hamiltonian E} to the
logarithmic derivative matrix L£(r), the “T-operation”
needs to be “undone”. Assuming that the short-distance
Hamiltonian provides a faithful description, i.e., assum-
ing that the higher-order correction terms can, indeed,
be neglected for r < ryax, We obtain

Llrme) ~ {TL" T~ (27}

(10)

T=Tmax

To illustrate the results, we focus on the J = 0 sub-
space. Denoting the usual free-space phase shifts at
scattering energy h%k?/(2u) for the interaction poten-
tial Viy for the s-wave and p-wave channels by d,(k) and
6, (k), respectively, the short-range K-matrix & * for the

Hamiltonian ﬁ; has the diagonal elements tan(ds(ks))
and tan(d,(k,)), where h%*k2/(2u) = E + 3Es and
W2k2/(2p) = E — Ego. If we now, motivated by the con-
cept of scale separation, make the assumption that the
phase shifts tan(ds(ks)) and tan(d,(k,)) are accumulated
at r = 0 and correspondingly take the ryax — 0 limit of
Eq. (4) with £) given by the right hand side of Eq. (10),
we obtain the following zero-range K-matrix,

kJrk* (:gr(;+ks_(3)k§ig2_ kso) , (11)

large V,,(0), respectively. The dashed lines show the re-
sults predicted by our zero-range model that accounts
for the spin-orbit coupling induced energy shifts. This
model provides an excellent description of the numeri-
cal results for the Lennard-Jones potential, provided the
length (ks)~! associated with the spin-orbit coupling
term is not too small compared to the van der Waals
length ryqw, where ryqw is given by (2uCs/h?)Y/* (in
Figs. 1 and 2, the largest ksorvqw considered corresponds
to 0.4913 and 0.4171, respectively).

The dash-dotted lines in Figs. 1 and 2 show o9 and
Ko for the zero-range model when we set the spin-orbit
coupling induced energy shifts artificially to zero. In this
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FIG. 1: (Color online) Large as(0) case. The black solid line
shows (a) the scaled partial cross section 2o (kso)?/(27) and
(b) the K-matrix element K22 for E = 0 as a function of
ksoas(0) for the Lennard-Jones potential with as(0)/rvaw =
24.42 and V,(0)/(rvaw)® = —0.2380 (this potential supports
two s-wave bound states in free space). The red dashed line
shows the result for the zero-range model developed in this
work [see Eq. (11)]; the numerical results for the Lennard-
Jones potential and the model are indistinguishable on the
scale shown. To illustrate the importance of the energy shifts,
the blue dash-dotted line shows the results for the zero-range
model that artificially neglects the energy shifts. The solid
line in (c¢) shows the scaled energy-dependent s-wave scatter-
ing length as(ks)/as(0), where h2k? = 61 Fso.

case, the divergence in the K35 matrix element at finite
kso is not reproduced. For large a,(0) [see Fig. 1(a)],
the model without energy shifts introduces deviations at
the few percent level in the cross section g95. For large
Vp(0) [see Fig. 2(a)], in contrast, the model without the
energy shifts provides a quantitatively and qualitatively
poor description of the cross section og2 even for rela-
tively small ks, (ksoas(0) = 0.05). Figures 1(c) and 2(c)
demonstrate that the divergence of the Kjo matrix ele-
ment occurs when the free-space scattering length a4 (ks ),
calculated at energy 3FE,,, or the free-space scattering
volume V,(kp), calculated at energy —FEs,, diverge. We
find that this occurs roughly when as(0)ks, =~ 10 and
(V(0))/3kso ~ 0.21; we checked that this holds quite
generally, i.e., not only for the parameters considered in
the figures. In Figs. 1(c) and 2(c), the “critical” kg
values correspond to ksorvaw = 0.1423 and kgorvaw =
0.1462, respectively. For comparison, using the kg, value
for the one-dimensional realization of Ref. [4] and as-
suming rvqw = 100ag, one finds kgorvaw ~ 0.03. This
suggests that the phenomena discussed in the context of
Figs. 1 and 2 should be relevant to future realizations
of three-dimensional isotropic spin-orbit coupling exper-
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FIG. 2: (Color online) Large V,(0) case. The black solid
line shows (a) the scaled partial cross section o22(kso)?/(27)
and (b) the K-matrix element Ki2 for F = 0 as a
function of ksoas(0) for the Lennard-Jones potential with
as(0)/rvaw = 0.9591 and V,,(0)/(rvaw)® = 26.61, correspond-
ing to as(0)/(V,(0))*? = 0.3213 (this potential supports 4
four s-wave bound states in free space). The red dashed
line shows the result for the zero-range model developed in
this work [see Eq. (11)]; the model reproduces the numer-
ical results excellently for ksoas(0) < 0.3. The blue dash-
dotted line shows the results for the zero-range model that
artificially neglects the energy shifts. The solid line in (c)
shows the scaled energy-dependent p-wave scattering volume
V, (kp)/Vp(0), where h’k2 = —2pFso. The green circles mark
three of the four ksoas(0) values considered in Fig. 4.

iments.

To further explore the two-particle scattering proper-
ties in the presence of spin-orbit coupling for short-range
potentials with large free-space scattering volume V,,(0),
Figs. 3(a) and 3(b) show the partial cross section oao
as a function of the scattering energy —Fy, < E < 0
and 0 < 0 < 400E,,, respectively, for a4(0)/(V,(0))}/3 =
0.3213 and as(0)ks, = 0.07673. The results for the
Lennard-Jones potential (dashed line) and square-well
potential (solid line) are essentially indistinguishable on
the scale shown. To assess the accuracy of our zero-
range model, we focus on the Lennard-Jones potential
and compare the numerically determined partial cross
section (092)®**" with the partial cross section (og2)%
predicted using Eq. (11). Solid lines in Figs. 3(c) and
3(d) show the normalized difference A, defined through
A = |(092)% — (022)%%3Y| /(022)®**t. The deviations are
smaller than 1.3% for the scattering energies considered.
Neglecting the spin-orbit coupling induced energy shifts
in our zero-range model and calculating the normalized
difference, we obtain the dashed lines in Figs. 3(c) and
3(d). Clearly, the zero-range model provides a faith-
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FIG. 3: (Color online) Large V,(0) case. (a) and (b): The
red dashed and black solid lines show the scaled partial cross
section 022 (kso)?/(27) for the Lennard-Jones and square-well
potential, respectively, as a function of the scattering energy
E. For both potentials, we have as(0)/(V,(0))'/® = 0.3213
[Vp(0) > 0] and ksoas(0) = 0.07673. The length scale associ-
ated with the spin-orbit coupling is notably larger than the
range of the potential (ksorvaw = 0.08 for the Lennard-Jones
potential and ksorsw = 0.07676 for the square-well potential).
(c) and (d): The solid and dashed lines show the normal-
ized difference A (see text) between the cross section for the
Lennard-Jones potential and the zero-range model, obtained
using Eq. (11), and between that for the Lennard-Jones po-
tential and the zero-range model that neglects the spin-orbit
coupling induced energy shifts, respectively. The zero-range
model derived in this work (solid line) provides an excellent
description (the deviations are smaller than 1.3 % for the
data shown) over the entire energy regime. Panels (a) and
(c) cover negative E (linear scale) while panels (b) and (d)
cover positive E (logarithmic scale)].

ful description of the full coupled-channels data for the
Lennard-Jones potential only if the spin-orbit coupling
induced energy shifts are included.

Figure 4 demonstrates that the non-quadratic single-
particle dispersion relations have a profound impact on
the low-energy scattering observables for a large free-
space scattering volume. Specifically, the lines in Fig. 4
show the numerically obtained partial cross section oa2 as
a function of the scattering energy for the same Lennard-
Jones potential as that used in Figs. 2 and 3 for four dif-
ferent spin-orbit coupling strengths, namely ksorvaw =
0.1, 0.12, 0.14 and 0.146 [Fig. 3 used ksorvaw = 0.08;
three of the four ks, values considered in Fig. 4 are
marked by circles in Fig. 2(c)]. Figure 4 shows that the
partial cross section depends sensitively on the spin-orbit
coupling strength ks,. This can be understood by real-
izing that a change in the spin-orbit coupling strength
leads to a significant change of the ks,-dependent scat-
tering volume V,(k,).

This paper revisited two-body scattering in the pres-
ence of single-particle interaction terms that lead, in
the absence of two-body interactions, to non-quadratic

Orolke) /(210

FIG. 4: Scaled partial cross sec-
Lennard-Jones potential
with as(0)/(Vp(0)*? = 03213 (V,(0) > 0) and
as(0)/rvaw = 0.9591 for four different kso [the green dotted,
blue dash-dotted, black solid, and red dashed lines corre-
spond to ksoTvaw = 0.1, ksorvaw = 0.12, ksorvaw = 0.14, and
ksorvaw = 0.146, respectively] as a function of the scattering
energy F [panel (a) covers negative E (linear scale) while
panel (b) covers positive E (logarithmic scale)].

(Color
tion ooa(kso)?/(2m) for the

online)

dispersion relations.  Restricting ourselves to three-
dimensional isotropic spin-orbit coupling terms and spin-
independent central two-body interactions, we developed
an analytical coupled-channels theory that connects the
short- and large-distance eigenfunctions using a gener-
alized frame transformation. A key, previously over-
looked result of our treatment is that the gauge trans-
formation that converts the short-distance Hamiltonian
to the “usual form” (i.e., a form without linear momen-
tum dependence) introduces channel-dependent energy
shifts. These energy shifts were then shown to apprecia-
bly alter the low-energy scattering observables, especially
in the regime where the free-space scattering volume is
large. To illustrate this, the (J,M;) = (0,0) channel
was considered. Our framework provides the first com-
plete analytical description that consistently accounts for
all partial wave channels. Moreover, the first numeri-
cal coupled-channels results for two-particle Hamiltonian
with realistic Lennard-Jones potentials in the presence of
spin-orbit coupling terms were presented. The influence
of the revised zero-range formulation put forward in this
paper on two- and few-body bound states and on mean-
field and beyond mean-field studies will be the topic of
future publications.
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