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In a recent work [A. Metelmann and A. A. Clerk, Phys. Rev. X 5, 021025 (2015)], a general reservoir-
engineering approach for generating non-reciprocal quantum interactions and devices was described. We show
here how in many cases this general recipe can be viewed as an example of autonomous feed-forward: the
full dissipative evolution is identical to the unconditional evolution in a setup where an observer performs
an ideal quantum measurement of one system, and then uses the results to drive a second system. We also
extend the application of this approach to non-reciprocal quantum amplifiers, showing the added functionality
possible when using two engineered reservoirs. In particular, we demonstrate how to construct an ideal phase-
preserving cavity-based amplifier which is full non-reciprocal, quantum-limited and free of any fundamental
gain-bandwidth constraint.
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I. INTRODUCTION

Directional photonic devices such as isolators and circula-
tors play a crucial role in numerous settings, ranging from the
protection of lasers against spurious reflections, to the isola-
tion of superconducting qubits from noise at microwave fre-
quencies. More fundamentally, the possibility of having one-
way photonic interactions and transport could enable a vari-
ety of new kinds of quantum photonic states and phases (see,
e.g., [1]). Standard approaches for achieving non-reciprocity
make use of magneto-optical effects, which have the disad-
vantage of being bulky and requiring large static magnetic
fields; this makes on-chip integration difficult, especially in
superconducting circuits. There has thus been considerable
interest in finding alternate routes to non-reciprocity that al-
low greater flexibility. Many such works ultimately rely on
using the relative phases of various control drives applied to a
system to effectively break time-reversal symmetry [2–7]. As
such, there is a strong connection to work examining means
for creating synthetic gauge fields for neutral particles like
photons [8–11] .

Spurred by these motivations, we recently described in
Ref. 12 an extremely general method for constructing non-
reciprocal interactions and devices using the ideas of reservoir
engineering. By balancing a given Hamiltonian interaction
between two systems A and B with its dissipative counter-
part (i.e., an interaction mediated by a dissipative reservoir),
we demonstrated that almost any starting interaction could be
rendered directional (see Fig. 1(a)). This “recipe” provided
a unifying framework for understanding a variety of existing
proposals for achieving non-reciprocity. It also allowed us
to formulate a number of new kinds of devices, in particular
quantum-limited directional amplifiers based on coupled cav-
ity modes. The reservoir engineering approach to directional-
ity was recently implemented in optomechanics [13], and also
provides a useful way to understand the directional microwave
amplifier studied in Ref. 14 (see also [7]).

In this work, we extend the ideas in [12] on two distinct
fronts. The first extension concerns the intuitive underpin-
nings of our general dissipative scheme. While in Ref. 12 we
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FIG. 1: (a) Recipe for directionality: System A and B are coupled via
a coherent interaction (J) and via a dissipative interaction (Γ) medi-
ated by an engineered reservoir. By balancing these interactions the
system can be rendered uni-directional, e.g. for J ≡ iΓ/2 system
B is driven by system A but not vice versa. (b) Feed-forward ap-
proach to directionality: an observer continuously measures system
A and uses the measurement record to apply an appropriate feed-
forward force on system B. The resulting dynamics realizes an effec-
tive non-reciprocal interaction between the systems. k denotes the
rate at which the observer measures system A, while αFF describes
the strength of the feed-forward process.

described the scheme in terms of reservoir engineering, we
show here that in many (but not all) cases, one can understand
the scheme as effectively mimicking a perfect measurement
plus feed-forward setup, where an observer measures system
A, and then continuously uses the results of her measurement
to drive system B (cf. Fig.1(b)). We show that the standard
continuous quantum measurement theory description of such
a system (in the limit of a perfect measurement with vanishing
feedback delay) has the same unconditional dynamics as our
reservoir engineering protocol. Given recent work [15–21],
the fact that there is an intimate connection between our orig-
inal reservoir-engineering scheme and a measurement based
approach is not completely surprising; still, it provides a pow-
erful way to understand the relevant physics that is comple-
mentary to the discussion in Ref. 12.

The second new direction explored in this work are the new
kinds of behavior possible if one uses two engineered reser-
voirs to make a given Hamiltonian interaction between A and
B directional. In particular, we show that this allows one to
construct an “ideal” two-port, phase-preserving bosonic am-
plifier: an amplifier that is quantum limited, fully directional,
and free from any fundamental gain-bandwidth product limit.
It thus provides a recipe for using two discrete cavity modes
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plus two engineered reservoirs to mimic the kind of ideal am-
plification physics that would be exhibited by a perfectly ideal
extended traveling wave amplifier.

The remainder of this paper is organized as follows. We
start in Sec. II by quickly reviewing the reservoir-engineering
approach to non-reciprocity described in Ref. [12]. In
Sec. IIIA, we show that for an important class of systems,
this reservoir-engineering approach can be rigorously viewed
as autonomous feed-forward, with the engineered dissipative
reservoir playing the role of an ideal observer and controller.
Using standard continuous measurement theory, we recap the
derivation of the unconditional feed-forward master equation
for this situation, and show the mapping to our scheme. In
Sec. IIIB, we show that in cases where our directional recipe
cannot be viewed as equivalent to a feed-forward process, it
can instead be interpreted as being equivalent to a generalized
chiral transport process. Finally, in Sec. IV, we discuss how
the use of two engineered reservoirs allows one to construct
the “ideal” bosonic cavity-based amplifier described above.

II. RECAP: NON-RECIPROCITY VIA RESERVOIR
ENGINEERING

We start by providing a quick recap of the general approach
outlined in Ref. 12 for obtaining non-reciprocal interactions
between two systems (an approach which is intimately con-
nected to the theory of cascaded quantum systems [22–24]).
The starting point is two independent systems A and B which
interact coherently (and bi-directionally) via a Hamiltonian

Ĥint =
λ

2

(
ÂB̂ + h.c.

)
. (1)

Here, Â (B̂) is a system A (system B) operator; they need not
be Hermitian. We take [Â, B̂] = 0, which only imposes an
additional restriction in the fermionic case (i.e., in that case Â
and B̂ must be built up of even numbers of annihilation and
destruction operators). We also take the interaction strength λ
to be real without loss of generality.

To achieve non-reciprocity, we assume both systems have
also been jointly coupled to the same engineered Markovian
dissipative environment, in such a way that this reservoir me-
diates the “dissipative” version of the interaction Ĥint. More
concretely, the dissipation should be engineered so that the
full dissipative dynamics of the systems is described by the
Lindblad master equation (~ = 1):

d

dt
ρ̂ =− iλ

2

[
ÂB̂ + Â†B̂†, ρ̂

]
+ ΓL

[
Â+ eiϕηB̂†

]
, (2)

where the standard dissipative superoperator L[ô] is

L[ô]ρ̂ =ôρ̂ô† − 1

2
ô†ôρ̂− 1

2
ρ̂ô†ô. (3)

The second term in Eq. (2) describes the effects of the en-
gineered dissipation. The fact that the dissipation couples to
both subsystems implies that it mediates an effective interac-
tion between them (i.e., terms ∝ Γη in Eq. (2)). We refer

to this kind of induced interaction as a “dissipative interac-
tion”, as it cannot be described by a Hamiltonian which di-
rectly couples systems A and B. The effects of the dissipation
are parameterized by an overall rate Γ, a dimensionless pos-
itive parameter η which characterizes the asymmetry of the
bath’s coupling to the two systems, and a phase ϕ.

To show how the master equation (2) can be tuned to ren-
der directional behavior, we consider an arbitrary pair of ob-
servables (one for system A, one for system B), described by
Hermitian operators ÔA and ÔB respectively. From Eq. (2)
we derive the equations of motion for the expectation values:

d

dt

〈
ÔA

〉
=− i

2

[
λ+ iΓηe−iϕ

] 〈[
ÔA, Â

]
B̂ρ̂
〉

− i

2

[
λ− iΓηe+iϕ

] 〈[
ÔA, Â

†
]
B̂†ρ̂

〉
+ Γ

〈
ÔAL

[
Â
]
ρ̂
〉
, (4)

d

dt

〈
ÔB

〉
=− i

2

[
λ− iΓηe−iϕ

] 〈[
ÔB , B̂

]
Âρ̂
〉

− i

2

[
λ+ iΓηe+iϕ

] 〈[
ÔB , B̂

†
]
Â†ρ̂

〉
+ η2Γ

〈
ÔBL

[
B̂†
]
ρ̂
〉
. (5)

The first two terms on the RHS of each equation describe the
coupling of the two systems resulting from both the direct (co-
herent) interaction Ĥint and the “dissipative” bath-mediated
interaction. The last term in each equation describes the addi-
tional, purely local dissipative effect of the bath on each sub-
system.

It is straightforward to see that we can chose parameters
such that the total interaction between the systems becomes
directional (e.g. system A influences the evolution of system B
observables, but system A observables evolve independently
of system B). One needs to balance the amplitude and phase
of the dissipative interaction against that of the coherent inter-
action, i.e. :

ϕ = ±π
2
, Γη = λ, (6)

where the sign of ϕ determines the direction of the non-
reciprocal interaction (i.e., it defines the direction of the ef-
fective information transfer). Note that these conditions only
constrain two of the three dimensionless parameters in our
system: the relative magnitude of the dissipative interaction
Γη/λ and the effective phase of this interaction ϕ.

To be explicit, consider the the case where we want A to
influence B but not vice-versa. This requires tuning the dissi-
pation to satisfy Eqs. (6) with ϕ = −π/2. The EOM for the
expectation values then take the form

d

dt

〈
ÔA

〉
= Γ

〈
ÔAL

[
Â
]
ρ̂
〉
, (7)

d

dt

〈
ÔB

〉
=− iλ

[〈[
ÔB , B̂

]
Âρ̂
〉

+
〈[
ÔB , B̂

†
]
Â†ρ̂

〉]
+ η2Γ

〈
ÔBL

[
B̂†
]
ρ̂
〉
, (8)
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with λ = ηΓ. System B is “forced” by system A in the same
way it would be if we had no dissipation and only the coupling
Ĥint, i.e., compare the order-λ terms in Eq. (5) with those in
Eq. (8). In contrast, system A observables evolve in a manner
independent of system B; they only feel a local dissipative
effect from the coupling to the reservoir.

Finally, we note that for non-Hermitian case, one could
equally as well obtained directionality using a master equa-
tion
d

dt
ρ̂ =− iλ

2

[
ÂB̂ + Â†B̂†, ρ̂

]
+ ΓL

[
Â† − e−iϕηB̂

]
, (9)

Tuning parameters as per Eq. (6) again gives rise to direc-
tional interactions. While the coupling terms in this scheme
are identical, the local damping terms generated by the dis-
sipation will be different: in the last term of Eq. (4), Â will
be replaced by Â†, and in the last term of Eq. (5), B̂† will be
replaced by B̂. .

III. HEURISTIC INSIGHT INTO DISSIPATIVE
NON-RECIPROCITY

A. Mapping to a measurement based feed-forward protocol

While the algebra underlying our general dissipation-based
recipe for non-reciprocity is straightforward enough, the un-
derlying intuition for why such a scheme works may remain
opaque. Here, we demonstrate that for the case where the
coupling operators Â and B̂ in Eq. (1) are Hermitian, there
is a direct correspondence between our reservoir-engineering
approach and the situation sketched in Fig. 1b. This figure
depicts a simple way to generate a non-reciprocal interaction
between systems A and B: an observer makes a continuous
measurement of the systemA observable Â, and uses her mea-
surement record to then apply an appropriate force to system
B; this force is taken to couple to the observable B̂. Even
at a heuristic level, one could imagine that in such a feed-
forward setup, the net result would be a directional interaction
of the form we are after. We now show rigorously that in
the limit where both the measurement and forcing steps are
ideally performed, the unconditional dynamics of this feed-
forward setup results in exactly our directional master equa-
tion defined by Eqs.(2) and (6). This demonstrates that at least
for Hermitian coupling operators Â and B̂, our scheme is the
reservoir-engineering (or coherent feedback) equivalent of the
measurement based protocol.

Our derivation makes use of standard continuous quantum
measurement theory (see, e.g., Ref. 25, 26 for recent peda-
gogical reviews). We start by describing the continuous mon-
itoring of the system A observable Â by our observer. The
measurement record in a particular run of the experiment I(t)
is determined by:

dI(t) =
√
k
〈
Â(t)

〉
dt+ dW (t), (10)

where k is a rate representing the strength of the measurement,
and dW is a standard Wiener increment (describing the white

imprecision noise in the measurement record). It fulfills the
usual conditions dW = 0 and dW 2 = dt, where the average
here is over measurement outcomes. The expectation value of
Â appearing above is determined by the conditional density
matrix of system, ρ̂c, which evolves as:

dρ̂c =
k

4
L
[
Â
]
ρ̂cdt+

√
k

2

[
Âρ̂c + ρ̂cÂ− 2

〈
Â
〉
ρ̂c

]
dW.

(11)

Next, we describe our observer’s forcing of system B using
the measurement record I(t); we assume the observer forces
system B by explicitly coupling to the Hermitian system-B
operator B̂. As a result of this forcing, system B will thus
evolve under the Hamiltonian

ĤFF(t) =
√
αFFI(t− τ)B̂, (12)

where αFF corresponds to the strength of the applied forcing
and has the units of a rate. We now want to write the full evo-
lution of the density matrix system A and B, averaged over all
possible measurement outcomes (i.e., the unconditional mas-
ter equation). One needs to expand the master equation to
second order before taking the average over outcomes; see
Ref. 26 for a detailed derivation. Taking the limit τ → 0+

(i.e., negligible delay in applying the feed-forward force), one
obtains the standard feed-forward (or feedback) master equa-
tion (FME) [26–29]

d

dt
ρ̂ =

k

4
L
[
Â
]
ρ̂+ αFFL

[
B̂
]
ρ̂− i

√
k αFF

2

[
B̂, Âρ̂+ ρ̂Â

]
.

(13)

One can show that this equation is indeed in Lindblad form.
The first term describes the backaction disturbance of system
A due the measurement, while the second term accounts for
the fact that noise in the feed-forward force (due to noise in the
measurement record) causes a dissipative evolution of system
B. Only the last term describes the effective directional cou-
pling between the two systems induced by the feed-forward
protocol.

While it may not be obvious, this master equation does
indeed describe a completely non-reciprocal interaction be-
tween systems A and B, where system A is completely un-
influenced by the evolution of system B (but not vice-versa).
A few lines of algebra show that it is completely equivalent
to our directional master equation (i.e., Eq. (2) with the con-
straint of Eq. (6)) if one makes the mapping:

αFF = η2Γ, (14)
k = 4Γ. (15)

We have thus demonstrated that for Hermitian coupling op-
erators Â and B̂, our reservoir-engineering protocol is for-
mally equivalent to the measurement-based feed-forward pro-
tocol. Despite this equivalence, our approach nonetheless pos-
sesses many practical advantages. The above derivation of
the feed-forward master equation assumed a perfectly quan-
tum limited measurement of Â, as well as a perfect imple-
mentation of the feed-forward force. These conditions would
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obviously be difficult to implement in practice. In contrast,
the reservoir engineering approach does not require a quan-
tum limited measurement or any ideal processing of a classi-
cal measurement record.

B. Mapping to interactions via chiral transport

An alternate method for obtaining some intuition into the
form of Eq. (2) is to show how it would arise if one could cou-
ple system A and B to an explicitly one-dimensional chiral
bosonic waveguide. The directionality inherent in this master
equation is then seen to directly mirror the directional bosonic
transport in the waveguide. Unlike the measurement-plus-
feed-forward derivation of the previous section, this “chiral
transport” derivation also applies if the coupling operators Â
and B̂ are non-Hermitian. The derivation here mirrors exactly
the original derivation of cascaded quantum systems given by
Carmichael [23] (see also Ref. 24).

Following Ref. 23, we start by assuming that systems A
and B couple locally to a zero-temperature chiral 1D bosonic
waveguide of right-moving photons (field operator ψ̂(x)) at
positions x = 0 and x = d (d > 0). This is described by an
interaction Hamiltonian of the form:

ĤSB = i
√
κA

(
ψ†(0)Â− h.c.

)
+ i
√
κB

(
ψ†(d)B̂† − h.c.

)
.

(16)
Here, κA and κB parameterize the strengths of the couplings.
As is demonstrated in Ref. 23 by making a standard Born-
Markov approximation, one can derive a master equation for
the “source retarded” reduced density matrix ρ̂R(t) describ-
ing the state of system B at time t and system A at time
t = t − d/v, where v is the waveguide velocity. In the
limit where d→ 0+, the time shift d/v can be neglected, and
this master equation is the generalized version of the standard
cascaded quantum systems master equation. If we make the
gauge change B̂ → iB̂, one can easily confirm that it has the
form of our general master equation Eq. (2) with the corre-
spondence:

λ =
√
κAκB , Γ = κA, η =

√
κB/κA, ϕ = −π/2. (17)

Comparison against Eq. (6) shows that the conditions needed
for directionality (i.e., balancing of coherent and dissipative
interactions) are of course satisfied. We thus see that the pa-
rameters in our effective directional master equation can be
tied to the strength of the two couplings to the chiral waveg-
uide.

The above derivation gives some intuition for how direc-
tional interactions arise. At x = 0, the interaction Hamilto-
nian ĤSB can create a photon in the waveguide while simulta-
neously acting on system A with operator Â. This excitation
then propagates to the right in the waveguide. When it reaches
x = d, ĤSB can destroy this photon while simultaneously act-
ing on system B with the operator B̂. We thus have the needed
directional interaction: the action of Â followed by B̂†. The
converse process is of course impossible as there is only right-
wards propagation in the waveguide.

A B
FIG. 2: Coupling system A and B to a 1D chiral waveguide with
coupling strength

√
κA and

√
κA respectively. The coupling is such

that a photon can be created in the waveguide at position x = 0 by
acting on systemAwith the operator Â. This photon then propagates
to x = d, where it can be destroyed while simultaneously having
the operator B̂ act on system B. The effective dynamics is then
equivalent to the general dissipation-based directionality recipe.

While the above model with a chiral waveguide helps pro-
vide intuition into our general directional master equation, it
is not intended as being the preferred recipe for how to imple-
ment directionality. As discussed in detail in Ref. 12 , one can
in many cases implement the directional version of our mas-
ter equation in Eq. (2) by simply using parametric couplings
between localized cavity modes. Remarkably, these systems
are able to completely mimic the chiral transport situation de-
scribed above: in both cases, the final dynamics of the rele-
vant system modes are directional in the same manner. We
also stress that the above derivation applies to both Hermitian
and non-Hermitian coupling operators Â, B̂. In the Hermitian
case, we can view the chiral waveguide as the observer per-
forming the feed-forward operation described in the previous
section.

Finally, it is worth noting that for non-Hermitian coupling
operators, the direct interaction Ĥint could always be ex-
pressed as the sum of two terms, each being the product of
only Hermitian operators; one simply uses the Hermitian and
anti-Hermitian parts of Â, B̂. For each one of these terms,
one could then use our directionality recipe for Hermitian
coupling operators. The result would be a master equation
having two dissipators. It would be completely equivalent
to two measurement-plus-feedforward processes. We stress
that this is not the same as directly implementing the direc-
tional version of Eq. (2), something that only requires a single
reservoir. In this case, one cannot interpret the final master
equation using the measurement-plus-feedforward interpreta-
tion of Sec. IIIA; only the “chiral transport” interpretation of
this section holds. This difference can have important physi-
cal consequences. It implies that for Hermitian coupling oper-
ators, our directional master equation can never generate en-
tanglement (as it is equivalent to performing local operations
and classical communication). For non-Hermitian coupling
operators, this is no longer true, and the directional master
equation can in principle generate entanglement between sys-
tems A and B.
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IV. THE IDEAL QUANTUM AMPLIFIER

A highly desired component in many quantum measure-
ment protocols is a directional quantum amplifier. It realizes
non-reciprocal amplification of weak input signals, implying
that any noise generated at the amplifier output (by e.g. more
classical amplifiers higher up in the measurement chain) does
not get amplified and drives the typically fragile quantum sig-
nal source. Directional amplifiers can reduce the number of
circulators needed in a measurement setup; given that such
circulators are often lossy and bulky, this is a great practical
advantage. So far all experimental realization for directional
amplifiers are based on a superconducting circuits architec-
ture, e.g. traveling wave amplifiers [30, 31] or Josephson para-
metric converters setups [14, 32–34].

In this section, we show how to construct a truly ideal di-
rectional quantum amplifier. By ideal we mean more than just
saying that the amplifier has quantum-limited noise: we also
want the amplifier to be phase preserving, i.e., both quadra-
tures of the photonic field are amplified, and to have an am-
plification bandwidth that does not degrade with increasing
gain (i.e., it is not limited by a conventional gain-bandwidth
constraint). As discussed in our previous work [12], either
one of these properties (but not both simultaneously) could
be achieved in a directional amplifier by using a single en-
gineered reservoir. We show now that one can achieve both
of these desirable conditions in a design that utilizes two en-
gineered reservoirs. The setup basically corresponds to the
combination of two feed-forward protocols, as illustrated in
Fig. 3. While a direct implementation of these feed-forward
processes would suggest a rather complicated coupling to the
engineered reservoirs, we show that in fact a relatively simple
implementation is possible.

A. A directional phase in-sensitive amplifier via two
engineered reservoirs

We start with a setup of two cavity modes (lowering op-
erators d̂1, d̂2) described via the quadrature field operators
X̂n, P̂n(n ∈ 1, 2), i.e., d̂n = (X̂n+iP̂n)/

√
2. We take the di-

rect, coherent interaction between the modes to take the form

Ĥ±coh = J
(
X̂1X̂2 ± P̂1P̂2

)
. (18)

One can easily check that the − sign realizes a phase-
insensitive parametric amplifier interaction between the
modes, while the + sign corresponds to a simple hopping or
beam splitter interaction. We work in a rotating frame where
the two cavities are effectively resonant, and thus the Hamil-
tonian is time independent.

To proceed, note first that if we only kept half of the inter-
action in Eq. (18) (e.g., Ĥcoh = JX̂1X̂2), the resulting QND
interaction would realize a phase sensitive coherent amplifier
with no gain-bandwidth limitation (see Sec. IIC of [12]). To
render such an interaction directional using our general recipe,
we would have to combine it with a dissipative interaction de-
scribed by a superoperator of the form L[X̂1−iX̂2] [12]. This

observer 1 

observer 2 

+
measurement feed-forward

feed-forwardmeasurement

FIG. 3: Illustration of the ideal amplifier scheme involving two mea-
surement feed-forward schemes. Observer 1 and 2 measure both
cavity-1 quadratures and feed-forward the measurement records to
cavity-2, i.e., the whole information of the quadratures X̂1 and P̂1 is
transferred to X̂2 and P̂2 but not vice versa.

results in a directional interaction from cavity 1 to cavity 2 in-
volving only a single quadrature, i.e., the phase information
is lost.

Our goal here however is to have a directional interaction
where phase information is not lost, i.e., both quadratures of
cavity 1 have to directionally force cavity 2. At the same time,
we want to keep the absence of a gain-bandwidth limit on our
amplifier. Our approach is simple: we will apply our general
recipe twice, introducing one engineered reservoir to make the
X̂1X̂2 interaction directional, and another to make the P̂1P̂2

interaction directional. We thus need two nonlocal dissipators.
The corresponding master equation has the form

d

dt
ρ̂ =− i

[
Ĥ±coh, ρ̂

]
+ ΓL

[
X̂1 − iηX̂2

]
ρ̂+ ΓL

[
P̂1 ∓ iηP̂2

]
ρ̂.

(19)

Note that we have taken the coupling rate Γ and asymme-
try parameter η characterizing the coupling to the engineered
reservoirs to be the same for each of the two reservoirs; this
ensures that ultimately, both input signal quadratures incident
on cavity 1 will be amplified equally. As per our recipe, we
have also picked the relative phase between the two terms in
each jump operator (i.e., ±i) to make both interactions direc-
tional, in that cavity 1 is not influenced by cavity 2.

From the master equation (19) we can derive the equations
of motion for the cavity modes expectation values, they read

d

dt

〈
X̂1

〉
=± [J − ηΓ]

〈
P̂2

〉
,

d

dt

〈
P̂1

〉
=− [J − ηΓ]

〈
X̂2

〉
,

d

dt

〈
X̂2

〉
=± [J + ηΓ]

〈
P̂1

〉
,

d

dt

〈
P̂2

〉
=− [J + ηΓ]

〈
X̂1

〉
. (20)

By setting J = ηΓ in Eq. (20) the system becomes directional
as desired: cavity 2 is influenced by cavity 1, but not vice-
versa.

We use the directional interaction between the two cavities
to construct an directional quantum amplifier, where an input
signal on cavity 1 leaves cavity 2 amplified and with not more
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added noise as allowed by quantum mechanics [35]. To un-
derstand how signals are transferred through the system we
move away from the master equation description and utilize
quantum Langevin equations. We couple both cavities to input
output waveguides with coupling strength κ and model the en-
gineered reservoir as a Markovian oscillator bath. This allows
us to use input/output theory as usual, and derive the scattering
matrix relating outputs in the two waveguides to correspond-
ing inputs. We work in the basis D̂ = [X̂1, P̂1, X̂2, P̂2]T and
obtain the scattering matrix s on resonance (zero frequency in
this rotated frame)

s[ω = 0] =


−1 0 0 0
0 −1 0 0
0 ∓

√
G0 −1 0√

G0 0 0 −1

 , D̂out = sD̂in + ~ξ,

(21)

where
√
G0 = 8J

κ corresponds to the amplitude gain. Cru-
cially, we have to take into account that there will be addi-
tional noise (~ξ) originating from the engineered reservoirs.
Without these noise contributions, one would erroneously
conclude that our system (a phase-preserving amplifier) vi-
olates the quantum limit on added noise. We discuss the noise
properties in more detail in Sec. IVC, showing that the added
noise (including all contributions) is at the minimal level re-
quired by the quantum limit.

The scattering matrix Eq.(21) describes directional phase-
insensitive amplification, the cavity-1 input-quadratures X̂1,in

an P̂1,in leave cavity 2 amplified, while any input on cavity 2
will never show up at cavity 1. Note that the there is a unity re-
flection of signals and noise incident on each cavity (described
by the diagonal elements of s). We stress that there is no gain
associated with these reflections. The unity level of reflection
could in principle be suppressed using impedance matching
techniques (see Ref.[12]).

B. Simpler coupling to dissipation

Each dissipator appearing in Eq. (19) could in principle be
realized by having a nonlinear (i.e., parametric) coupling be-
tween cavities 1 and 2 and an auxiliary, highly damped mode
that plays the role of a bath. By applying appropriate coher-
ent pump drives, the required dissipator can be obtained; this
strategy is discussed in great detail in Ref. [12], and was even
implemented experimentally in Ref. [13]. The pump tones
and nonlinearity basically allow one to couple the process of
creating or destroying a photon in a given cavity to creating a
quanta in the dissipative mode (which then rapidly dissipates).

More formally, let ĉ denote the lowering operator of the
heavily-damped bath mode that will play the role of one of our
engineered reservoirs. If this mode has nonlinear interactions
with the cavity modes, then the application of strong pump
tones can result in a mean-field interaction Hamiltonian of the
form

ĤSB = λĉ†ẑ + h.c., (22)

where ẑ is a linear combination of raising and lowering oper-
ators for both cavity 1 and 2, and λ is an effective interaction
amplitude. In the limit where ĉ is strongly damped, it can be
eliminated from the dynamics, resulting in a Lindblad super-
operator of the form

4|λ|2

γ
L [ẑ] . (23)

Here γ denotes the decay rate of the auxiliary mode. This
provides one route for generating the dissipators needed for
our ideal directional quantum amplifier setup.

This being said, the kind of dissipators required in Eq. (19)
involve jump operator like X̂1 + iX̂2. These involve photon
creation and destruction in both cavity 1 and 2, and would in
principle require four distinct pump tones. On the surface, this
would make realizing Eq. (19) quite challenging, as 8 pump
tones would be necessary.

Remarkably, a much simpler strategy is possible requiring
only 4 pump tones. The dissipators required in Eq. (19) can
be replaced by two far simpler dissipators (for both cases of
sign):

L
[
X̂1 − iX̂2

]
+ L

[
P̂1 − iP̂2

]
=L

[
d̂1 − id̂2

]
+ L

[
d̂†1 − id̂

†
2

]
,

(24)

L
[
X̂1 − iX̂2

]
+ L

[
P̂1 + iP̂2

]
=L

[
d̂1 − id̂†2

]
+ L

[
d̂†1 − id̂2

]
.

(25)

While mathematically equivalent, the RHS of the equations
above represent a simpler method for practically implement-
ing our scheme. An explicit method for implementing the
scheme in optomechanics (using the simplified dissipators) is
presented in Appendix B

C. Added noise and finite frequency gain

While we have established that our two-reservoir amplifier
scheme is indeed directional and phase preserving, we have
not established two other crucial desired properties: the ab-
sence of a standard gain-bandwidth product, and the presence
of quantum-limited added noise. We address both properties
in this subsection.

Let us address first the question of the bandwidth over
which input signals can be amplified. We still consider the
situation were the forward direction is from cavity 1 and 2,
and the reverse direction, from cavity 2 to 1, is blocked. Stan-
dard input-output theory yields for the frequency-dependent
forward photon-number gain

G[ω] ≡ |s32[ω]|2 = |s41[ω]|2 =
G0[

1 + 4ω2

κ2

]2 , (26)

with the zero-frequency gain G0 as defined after Eq. (21). The
gain is simply a Lorentzian squared with bandwidth in the or-
der of κ. Crucially, the bandwidth does not depend on the
gain, thus we have no fixed gain-bandwidth limit.
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FIG. 4: Characteristics of the directional phase-insensitive quantum limited amplifier. The left plot depicts the gain as a function of the coupling
strength Γ. The red solid line corresponds to the case of a perfect Markovian reservoir, i.e., γ/κ → ∞, where the zero-frequency gain scales
as G0 = (8Γ/κ)2. The orange dashed and dotted lines correspond to the case of finite ratios of the decay rates γ/κ for H−

coh, parameters
as denoted in the graph. There we observe mode-splitting, i.e., the gain curve has a double peak structure and the maxima of the peaks
increases strongly with Γ/κ. The middle graph shows results for the bandwidth. Including non-Markovian effects the bandwidth decreases
for a coherent beam-splitter interactionH+

coh, while it increases for the coherent amplifying interactionH−
coh, until the mode-splitting regime

is reached (gray solid lines). The right graph depicts the added noise for the system, assuming n̄T
r,1 = n̄T

r,1 ≡ n̄T
r .

We also want to make sure that our amplifier remains direc-
tional over the full amplification bandwidth. Again, standard
input-output theory yields for the reverse gain:

Ḡ[ω] ≡ |s23[ω]|2 = |s14[ω]|2 = 0. (27)

As desired, the reverse gain vanishes completely even for fi-
nite frequency. We have of course presented calculations for
the limit where the engineered dissipation has a vanishingly
small correlation time, i.e., in the Markovian limit. For results
involving a finite memory time of the engineered reservoir see
Appendix A.

The remaining question concerns the added noise of our
amplifier and its magnitude compared to the quantum limit
value. From input-output theory, we find that the the added
noise of the amplifier at zero frequency (expressed as an ef-
fective number of quanta at the amplifier input) is given by

n̄2,add =
1

2
+

1

2

(
n̄Tr,1 + n̄Tr,2

)
+

1

G0

(
n̄T2 +

1

2

)
, (28)

where we set Γ = κ
2 and η = 2

√
G0 for optimal noise per-

formance. Here n̄Tr,n correspond to the averaged thermal oc-
cupancies of the engineered baths, while n̄T2 characterizes the
thermal noise incident on cavity 2. In the large gain limit,
we see that the quantum limit is indeed achieved as long as
the two engineered reservoirs are at zero temperature, i.e.,
n̄Tr,1 = n̄Tr,2 = 0. Note that small thermal occupancies of
the reservoirs lead to only a small deviation from the quantum
limit.

Finally, note that the added noise in Eq. (28) was calculated
for Markovian reservoirs corresponding to the two dissipators
given in Eq. (19). If one instead realizes our ideal amplifier
using the simpler dissipators given on the RHS of Eqs. (24) or
Eqs. (25), the added noise is given by Eq. (B5). It is identical
to the expression in Eq. (28) as long as the two reservoirs have
identical thermal occupancies (i.e. n̄Tr,1 = n̄Tr,2).

V. CONCLUSION

In this article, we have extended the general recipe for di-
rectional interactions presented in our previous publication
Ref. [12]. We demonstrated that in many cases, this general
recipe is equivalent to the dynamics that would result from a
continuous measurement based feed-forward protocol. The
latter is directional from its basic nature and provides cru-
cial intuition into the underlying mechanism of our recipe.
We also extended the application of our ideas to the field of
directional quantum amplifiers, showing the utility of using
two engineered reservoirs. This allows for the construction
of a quantum-limited directional amplifier that is both phase-
preserving, and which does not suffer from a standard gain-
bandwidth constraint.
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Appendix A: Non-Markovian effects for finite frequency

In the main text we considered the Markovian limit when
deriving the gain and reverse gain for our ideal directional am-
plifier. In this appendix, we consider consider the more gen-
eral case where the engineered reservoirs have a finite corre-
lation time and thus deviate from the Markovian limit

We start by modeling the reservoirs with the system-bath
Hamiltonian

Ĥ±SB = λ1

[
X̂1V̂1 + P̂1V̂2

]
+ λ2

[
X̂2Û1 ± P̂2Û2

]
. (A1)

Here, we have two auxiliary damped modes that act as the
non-Markovian reservoirs; they are described by the quadra-
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ture operators Ûn and V̂n, (n = 1, 2). Both auxiliary modes
are themselves coupled to Markovian reservoirs, associated
with the decay rates γn ≡ γ. The effective correlation time
of the reservoirs is given by 1/γ. We combine the interac-
tion Ĥ±SB with the coherent interaction Ĥ±coh in Eq. (18). The
condition to achieve directionality now becomes J = 2λ1λ2

γ .
Again we can use input/output theory to calculate the scat-

tering matrix for the whole 6 mode system. We consider the
situation where we aim for directional amplification from cav-
ity 1 to cavity 2. The gain and reverse gain for finite frequency
become

G±[ω] =
G0
[
1 + ω2

γ2

] [
1 + 4ω2

γ2

]
∣∣∣∣[1− i 2ωγ ]2 [1− i 2ωκ ]2 ∓ i

4
ω
γ G0

[
1− iωγ

]∣∣∣∣2
,

Ḡ±[ω] =

ω2

γ2[
1 + ω2

γ2

]G±[ω], (A2)

as expected for zero frequency the reverse gain vanishes and
the gain takes the value G0. Note that the above expressions
do not assume anything about the magnitude of the decay rate
γ of the auxiliary reservoirs. We see that the directionality on
resonance is a robust feature and does not require Markovian
limit where γ is extremely large. Having a large γ is however
crucial if one wants directionality over a large bandwidth. The
reverse gain is suppressed for frequencies ω � γ, hence, for
large γ we have directionality over a large frequency regime.

Another important point is that the denominator of the gain
G±[ω] contains a term with the zero-amplitude gain squared,
which is suppressed in the strong damping regime. This term
can lead to mode-splitting for the case of a coherent para-
metric amplifier interaction between the two principal cavity
modes, i.e., for G−[ω] in Eq. (A2). Moreover, for a small ratio
γ/κ the amplification bandwidth is affected, i.e., the band-
width increases (decreases) for Ĥ−coh(Ĥ+

coh), cf. middle graph
of Fig. 4. We do not analyze this in more detail here. In gen-
eral, one sees that having a large γ is favorable.

Appendix B: An optomechanical realization of the ideal
amplifier

The two reservoir phase-insensitive amplifier introduced in
the main text could for example be realized in an optomechan-
ical setting, cf. Fig.5. Here two mechanical modes are used to
realize the required engineered reservoirs. We work in the ba-
sis of non-Hermitian operators, where b̂1,2 denote the mechan-
ical modes which are coupled to two cavity modes d̂1 and d̂2,
and aim for the non-local dissipators given in Eq.(24). This
implies that one mechanical mode realizes dissipative hopping
between the cavity modes and the second mode a dissipative
parametric amplification. This can be realized by having two
red detuned pumps at frequency ω1,m − ω1,2 for the hopping
case and two blue detuned tones at ω2,m + ω1,2 for the para-
metric amplification case. Note, it would be favorable that
both cavity resonance frequencies coincide, this could reduce

FIG. 5: Sketch of the optomechanical realization of a quantum-
limited, phase-insensitive and directional amplifier without a gain
bandwidth product. Two cavity modes (d̂1 and d̂2) are coupled di-
rectly via a coherent hopping interaction of strength J , and indi-
rectly via two mechanical modes (b̂1 and b̂2). The Markovian limit is
reached if the mechanical modes are strongly damped, i.e., for large
γ, in that case the mechanical modes can be adiabatically eliminated
and the effective master equation description holds, cf. Eq. 19.

the number of pump sources to two. Additionally, the two
cavities are coupled via a coherent hopping interaction with
strength J and are coupled to input/output waveguides with
strength κ. Working in an interaction picture with respect to
the free Hamiltonian we obtain (under a rotating wave approx-
imation)

Ĥ = λb̂†1

(
d̂1 + ηd̂2

)
+ λb̂†2

(
d̂†1 + ηd̂†2

)
+ Jd̂1d̂

†
2 + h.c.,

(B1)

where η are complex and account for an asymmetric coupling
of the cavity modes to the mechanical modes. This is not
crucial for the directionality in the system, but it will allow
us to optimize the noise properties of the resulting amplifier.
As usual we assume that the mechanical modes are strongly
damped and we can adiabatically eliminate them. This results
in the equation of motion for the cavity operators

d

dt
d̂1 =−

√
κd̂1,in −

κ

2
d̂1 + i

2λ
√
γ
b̂1,in + i

2λ
√
γ
b̂†2,in

−
[

2λ2

γ
(η − η∗) + iJ

]
d̂2,

d

dt
d̂2 =−

√
κd̂2,in −

κ

2
d̂2 + iη∗

2λ
√
γ
b̂1,in + iη

2λ
√
γ
b̂†2,in

−
[

2λ2

γ
(η∗ − η) + iJ

]
d̂1. (B2)

In general, the coupling of two cavities to one engineered
reservoir leads to local damping terms, which here cancel out
as we couple to two reservoirs. This is an important property
for the resulting bandwidth of the amplifier. We aim for di-
rectional signal propagation from cavity 1 to cavity 2, thus we
have the directionality condition

i
2λ2

γ
(η − η∗) ≡ J, (B3)
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which decouples cavity 1 from cavity 2. For optimal noise
performance we set 4λ2

γ ≡ κ
4 and define η = i

2

√
G0, which

leaves us with the output on resonance

d̂1,out =− d̂1,in + i
(
b̂1,in + b̂†2,in

)
,

d̂2,out =− d̂2,in −
√
G0b̂†2,in − i

√
G0d̂1,in, (B4)

this can be further optimized via impedance matching, which
would require more free parameters, e.g., λ1,2 instead of λ.
The frequency dependent gain and the added noise become

G[ω] =
G0(

1 + 4ω2

κ2

)2 , n̄add =
1

2
+ n̄Tm,2 +

1

G0

(
1

2
+ n̄Tc,2

)
.

(B5)

Here we have the same frequency dependent gain as obtained
in the quadrature basis; with the feature that the bandwidth
over which signals can be amplified is independent of the gain.
On the other hand, the added noise differs slightly from the
quadrature basis realization, cf. Eq. (28). Here only the noise
contribution from one mechanical mode (i.e., one reservoir)
shows up. However, both cases coincide if the reservoirs are
at the same temperature, i.e., n̄Tr,1 = n̄Tr,2 ≡ n̄Tm,2 in Eq. (28).
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