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Abstract: The classical radio frequency antenna theory indicates that large cross 
sections can be realized through directional radiation. In this paper, a similar principle 
is applied in quantum systems, in which quantum antennas, constructed by a cluster of 
quantum two-level systems, explore the collective excitation of two-level systems to 
realize large directivity. Both the optical cross section and the coherent time can be 
dramatically enhanced in free space, far exceeding the case of a single two-level 
system.  
 
 
 
  



Emerging applications such as quantum information and low-power optical switching 
require strong interactions between single photons and quantum two-level systems 
(TLSs). One common technique to realize strong interactions is to confine photons in 
low dimensional spaces such as cavities or waveguides [1-3]. It leads to the 
tremendous success of cavity (waveguide) quantum electrodynamics [2,4-10]. On the 
other hand, it has been more difficult to achieve strong interactions in free space 
[11,12]. In the three-dimensional (3D) free space, the interaction can be characterized 
by the optical cross section [13-17]. The larger the cross section is, the easier it is for a 
photon to couple to the TLS [18,19]. However, it can be easily shown that the 
maximum cross section of a TLS with an electric dipole transition is ߪௗ ൌ  ߨଶ/2ߣ3
with ߣ being the transition wavelength [13,15,20]. The small size limits effective 
coupling in free space. 

 
Fig.1(color online) (a) A classical dipole antenna made of metallic rods (b) A Yagi-Uda antenna 
with three elements. The cross section increases as a result of the increased directivity of the 
radiation pattern. (c) The simplest quantum antenna is a TLS in the free space. (d) Three TLSs 
form an antenna with enhanced directivity and cross section. 

 
Large cross sections have been pursued for decades in the field of radio-frequency 
(RF) communication [17,20-22]. The goal is for a small circuit to capture free-space 
electromagnetic waves of an area as large as possible. The concept of RF antenna 



introduces a key idea: the cross section can be enhanced by directional radiation 
[23-25]. The directivity of an antenna is defined by the normalized radiation pattern ܦሺߠ, ߶ሻ ൌ ,ߠሺܷߨ4 ߶ሻ /  ܷሺߠ, ߶ሻ݀Ω, where ܷሺߠ, ߶ሻ is antenna’s power radiated 
to the direction of the polar ߠ and the azimuthal ߶ angles. Classical antenna theory 
[26] shows that the maximum cross section ߪ௫ is directly related to the maximum 
directivity ܦ௫ ؠ max ሺܦሺߠ, ߶ሻሻ by:  

௫ߪ  ൌ ఒమగ ௫ܦ .   (1) 

For an isotropic antenna, ܦ௫ ൌ 1 and the maximum cross sections is ߪ ൌ  .ߨ/ଶߣ
A dipole antenna has zero emission along the axial direction of the dipole and thus has 
a higher directivity of ܦ௫ ൌ 3/2 (Fig. 1a) [26]. Consequently, its maximum cross 
section is slightly enhanced to 3ߪ/2. In practice, sophisticated antennas [27-32] are 
designed to further enhance the directivity, such as the Yagi-Uda antenna [33-35] 
shown in Fig. 1b. It emits more strongly in one direction than the others. The 
maximum cross section can be further enhanced by several times than the dipole 
antenna. 
 
Here we show that theorems and techniques developed in classical antenna [36-39] 
are equally effective in quantum antenna. A quantum antenna can be as simple as a 
single TLS as shown in Fig. 1c, or a complex cluster of TLSs as shown in Fig. 1d. 
Enhanced directivity allows quantum antennas to gain cross section as well as the 
coherent time, often orders of magnitudes larger than those of a single TLS. Most 
importantly, all the enhancement is realized in free space. Large cross sections 
combined with long coherent time could be used for efficient interfacing of flying and 
stationary qubits in free-space network. 
 
We start by using quantum scattering theory to prove Eq. (1) for a quantum antenna. 
The antenna is represented by a nondegenerate resonance with a ground state |݃ۧ and 
an excited state |݁ۧ. These states can be realized in single atoms, quantum dots, or in 
complex systems such as the collective excitation states [40-42] in a cluster of atoms 
and quantum dots. The antenna’s full Hamiltonian [43] can be casted as ܪ ൌ ωߪறߪ  ∑ ߱ܿறܿܓ  ூܪ  . (2) 

The first two terms are the free Hamiltonians of the antenna and photons, respectively. 
Here ߪற ൌ |݃ۦۧ݁|  and ߪ ൌ |݁ۦۧ݃|  are the usual raising and lowering atomic 

operators. The creation (annihilation) operator for photons is ܿற (ܿ). ߱ and k are 

the angular frequency and the wavevector, respectively.  is the reduced Planck 
constant. The third term ܪூ describe the photon-antenna interaction, the specific 



form of which is not needed for proving Eq. (1).  
 
The optical cross section can be calculated from a scattering process. The initial state 
is |݃,  ۧ, with the antenna in its ground state g and a single photon incident from a
particular direction ሺߠ, ߶ሻ . During the transient process of photon-antenna 
interaction, the antenna is partially excited while generating emission at the same time. 
After the interaction, the antenna eventually relaxes back to the ground state and the 

photon is scattered to many directions, represented by the final state |݃,   .ൿ

 
The details of our quantum scattering theory is available in Appendix A. Unlike many 
approach that treat the incident light as a semi-classical field [44], we use Fock states 
as the basis to solve the transport properties of light scattered by a cluster of TLSs in 
free space. A non-perturbative method [45] is adopted from waveguide quantum 
electrodynamics [46-49] to calculate the exact eigenstates of the open system, from 
which the scattering matrix and the cross sections can be obtained. Based on this 
theory, we show that the cross section follows a conservation law:  
   ,ߠሺߪ ߶ሻ ݀Ω ൌ ଶ,  (3)ߣ4
 
It shows that the total optical cross section is fundamentally limited. But it also 
indicates that the cross section can be enhanced for certain directions if other 
directions can be suppressed. We can define the directivity of the cross section as ॰ሺߠ, ߶ሻ ൌ ,ߠሺߪߨ4 ߶ሻ/   ,ߠሺߪ ߶ሻ ݀Ω. Then Eq. (3) can be written as ߪሺߠ, ߶ሻ ൌఒమగ ॰ሺߠ, ߶ሻ, which is almost identical to Eq. (1) except that the directivity in Eq. (1) is 

defined for the radiation pattern. In Appendix B, we prove that the directivity is the 
same for the radiation pattern, the cross section and differential cross section.  
 
We can easily verify Eq. (1) by considering the directivity and cross section of a 
dipole-transition TLS. However, in order to illustrate Eq. (1) in complex quantum 
antennas, we will study a cluster of TLSs. An example of three identical TLSs spaced 
by 0.075ߣ  is shown in Fig. 1d. These TLSs are closely packed within a 
subwavelength space. The small spacing induces strong interactions, resulting in 
collective excitation that gives rise to complex directivity unattainable in single TLS. 
We will explicitly calculate the directivity, cross section, and the lifetime in these 
quantum antennas. The results not only verify Eq. (1) but also illustrate important 
ways of enhancing the light-TLS interaction in free space.  



 
Fig.2(color online) The cross section of the photon incident angles with (a) ߠ ൌ 0 and (b) ߠ ൌ 90. (c) 
The cross section spectra for incident angles from 0 to 90. (d) The cross section ߪሺߠ, ߶ሻ and 
directivities of three collective modes. The central column shows the complex excitation amplitudes of 
the constituent TLSs. The relative magnitude and phase of the complex excitation amplitudes ei are 
represented by the length and the direction of the blue arrows.  
 

The free Hamiltonian for three TLSs of the antenna is ω ∑ றߪ ଷୀଵߪ . The 

interaction Hamiltonian is ܪூ ൌ ݅ ∑ ∑ ൣ ߪறሻܿܚሺܸ െ றߪܓሻܿܚሺכܸ ൧ଷୀଵ , where ܚ is the position of the mth TLS. We assumed dipole transitions for all TLSs and the 

coupling constant is given by ܸሺܚሻ ൌ ߱ඥ1/ሺ2ߝ߱ܮଷሻ܌ · ሻܚሺݑ ሻ, whereܚሺݑ܍ ൌ ݁ܚ· and ܍ is the phase and unit polarization vector of electric field of 
the wave. We have incorporated the polarizations in the k summation. ܮଷ is the 
normalization volume.  
 
In order to solve the Hamiltonian, we use the scattering theory developed in 
waveguide quantum electrodynamics [46,47] where the Hamiltonian is converted to a 
real-space representation. The boundary condition of this open system is specified by 
the condition of the incident photon and the eigenstates can be explicitly expressed. 



Here we further develop this approach for three-dimensional free space. The 
eigenstate can be written as the summation of photon wave functions in different 

directions as|߶ۧ ൌ ሺ∑  றሻܿߦሺ߶ ߦ݀ ሺߦሻ  ∑ ݁ߪறଷୀଵ  ሻ|0, ݃ଵ, ݃ଶ, ݃ଷۧ, where ݁ 

is the excitation amplitude of the ݉௧ TLS. ߶ሺߦሻ is the wave-function of the 

photon in the direction specified by  with ߦ being the spatial coordinate along the 

direction. ܿற ሺߦሻ is the spatial creation operator of a propagating photon at position ߦ in the direction . In Appendix A, we show how to use the time-independent 
Schrodinger equation to solve this scattering problem, from which we can obtain the 
scattering matrix, photon’s wavefunctions, TLSs’ excitation amplitudes ݁, and the 
cross section.  
 
Figure 2a shows the spectrum of the cross section of the 3-TLS antenna when single 
photons are incident from ߠ ൌ 0° direction. It shows three collective modes with 
resonant frequencies shifted away from ߱. The linewidths are also quite different 
from the natural bandwidth Γ. This spectrum strongly depends on the incident angle ߠ: when ߠ ൌ 90°, the central peak completely disappears (Fig. 2b). The angular 
dependence of the cross section is displayed in Fig. 2c. Three stripes can be identified, 
corresponding to three collective modes. In Appendix C, we draw the relation 
between the spherical angles and the dipole moment. 
 

The broadest mode, labeled by A in Fig. 2, is the superradiant mode [50-52]. Its 
spectral bandwidth is about three times natural linewidth Γ ൌ 2.78Γ. Since all three 
TLSs oscillate in phase with nearly equal amplitudes ݁ଵ ൎ ݁ଶ ൎ ݁ଷ (Fig. 2d), the 
directivity ॰ሺߠ, ߶ሻ of the superradiant mode closely resembles that of a single TLS, 
i.e. the donut-shape directivity, as shown in Fig. 2d. The maximum directivity of ܦ௫ ൌ 1.6 and the maximum cross section of ߪ௫ ൌ  exactly follow the ߨ/ଶߣ1.6
relation dictated by Eq. 1. As limited by its dipolar directivity, the superradiant mode 
could not significantly enhance the cross section, regardless of the number of TLSs in 
the cluster. 
 
In contrast to the superradiant mode-A, the directivities of mode-B and -C are 
drastically different from the donut shape of a dipolar transition (second and third 
rows in Fig. 2d). A maximum directivity of ܦ௫ ൌ 3.6 is observed in mode-B. The 
increased directivity is caused by the out-of-phase oscillation of three TLSs, whose 
amplitudes are displayed in Fig. 2d. Destructive interference occurs for radiation in 



most directions, resulting in highly directional radiation. Strong directivity directly 
leads to an enhanced cross section of ߪ௫ ൌ  .ߨ/ଶߣ3.6
 
Modes-B and C are also referred to as the sub-radiant modes [50] because the 
destructive interference significantly decreases the spontaneous emission rates. 
Consequently, the lifetime is greatly enhanced. For example, a 20-fold enhancement 
of the lifetime is observed in mode-C as shown by the bandwidth narrowing in Fig. 2a. 
The longest lifetime generally increases with the number of TLSs in a quantum 
antenna. An example of 5-TLS antenna to be shown later has a lifetime enhanced by 
1143 times. Such super-long lifetime could provide long coherent storage of 
qubit[53-56]. 
 

 
Fig.3(color online) (a) The cross section spectra for different inter-TLS spacing d. The incident angle is ߠ ൌ 0. The values in the dashed box are multiplied by 20 times for easy visualization. (b) The cross 
sections ߪሺߠ, ߶ሻ for inter-TLS distances of 0. ݀  whenߪ௫ at different inter-TLS spacing d. It converges to the incoherent addition of 4.5ߪ respectively. (c) The maximum cross section ,ߣand 4 ߣ2 ب  .ߣ
(d) The lifetime of mode C as a function of the inter-TLS distance d. 
   
From the analysis of the collective modes, we see that the coupling among TLSs plays 
a key role for enhancing directivity. A single factor that has the strongest effect on the 



coupling is the inter-TLS distance d. On one hand, d must be smaller than the 
wavelength to ensure adequate radiative coupling, a prerequisite for collective modes. 
On the other hand, when d is too small, radiative coupling becomes too strong such 
that it splits the energies of collective modes. The result is only moderate 
enhancement at three different frequencies.  
 
Figure 3a shows the effect of d on cross section spectra. At a deep subwavelength ݀ ൏  three collective modes split far apart, as shown by three dark stripes. Each ,ߣ0.1
only has a moderately enhanced cross section in the range of 1.5ߪ ൏ ௫ߪ ൏  .ߪ4
On the other hand, at a large distance ݀ ب label ○1) ߣ  in Fig. 3a), the lack of the 
radiative coupling makes the TLSs independent of each other. The directivity returns 
to a donut shape as shown in Fig. 3b. The maximum cross section converges to a 
constant of 3 ൈ  , which is simply the incoherent addition of three independentߪ1.5
dipolar TLSs (Fig. 3c).  
 
An optimal antenna realizes the highest cross section when three collective modes just 
start to merge. It occurs when the inter-TLS distance ݀ is around 0.2ߣ, as labelled 
by ② in Fig. 3a. This distance strikes the optimal balance: the radiative coupling is 
strong enough to induce collective excitations but not too strong to split resonant 
frequencies far apart. The maximum cross section reaches ߪ௫ ൌ ߪ9  with a 
directivity drastically different the donut shape (Fig. 3b).  
 
In a similar way, the inter-TLS distance also has a dominant effect on the lifetime of 
the modes in quantum antennas. Figure 3d shows the lifetime of the collective mode 
with largest cross section. A lifetime of 73߬ is observed at ݀ ൌ 0.14λ. The lifetime 
quickly converges to the natural lifetime ߬ when the distance increases as shown in 
Fig. 3d.  
 
Lastly, we discuss another way commonly used to increase the directivity of classical 
antennas: increasing the number of emission elements. Figure 4 shows the cross 
section and coherent time of antennas consisting of a linear array of N identical TLSs. 
For each antenna, an optimized inter-TLS distance d is used, which all happens to be 
all around 0.2ߣሺ1 േ 5%ሻ . Indeed, the maximum cross section increases as N 
increases, with a super-linear scaling. It reaches ߪ௫ ൌ ߪ22.8  for N = 5. In 
comparison, the dashed line shows the incoherent addition of N independent TLSs, i.e. ܰ ൈ  . Quantum antennas perform far better than N independent TLSs. The insetsߪ1.5
of Fig. 4a show the cross section ߪሺߠ, ߶ሻ for N = 4 and 5. The maximum lifetime 
also increases with N as shown in Fig. 4c. It becomes remarkably long ߬ ൌ 1143߬ 
when N = 5. 



 
Fig. 4(color online) (a) The maximum cross section of a quantum antenna increases with the 
number of TLSs. The insets show ߪሺߠ, ߶ሻ for 4-TLS and 5-TLS antennas (marked with red dots), 
respectively. (b) The maximum coherent time also increases with N, reaching over 1000 times of 
natural lifetime ߬.  

 
Scattering cross section describes a quantum antenna’s capability in transferring 
photons from one far field to another. In practice, one might also want to transfer 
free-space photons to certain localized energy. The cross section for such transfer 
process can be easily calculated from the maximum scattering cross section, the rates 
of energy transfer to the localized energy and radiation [57]. 
 
In conclusion, directional quantum antennas greatly enhance the optical cross section 
and lifetime of TLSs in free space. Here we only showed the operation for single 
photons. It would certainly be interesting to extend the theory for multi-photon cases. 
Mediated by TLS’s Fermionic excitation, quantum antennas could induce strong 
photon-photon interactions, which can be useful for receiving and transmitting 
entanglement in free space. These efficient and yet compact receivers and transmitters 
could provide a scalable approach to construct quantum information network in free 
space. 
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APPENDIX A: Quantum Scattering Theory for Multiple TLSs 

Here we discuss the theoretical framework that we developed to solve the scattering 
problem of Fock-state photons scattered by multiple TLSs in free space. It is used to 
derive most of the analytical and numerical results shown in the main text. It uses a 
non-perturbative method to solve the scattering problem. Specifically, we solve the 



eigenstate of the full Hamiltonian, an open system that includes both TLSs and 
free-space photons. It treats incident light as Fock state instead of semi-classical 
electric fields that drive the master equation. A similar approach has been developed 
in 1D space in waveguide quantum electrodynamics (waveguide-QED) [47,58,59]. 
The theory here works in 3D free-space. 

We consider a cluster of ܯ TLSs in free space. The TLSs’ excited states are |݁ۧୀଵ,ڮ,ெ; the ground states are |݃ۧୀଵ,ڮ,ெ; the transition frequencies are ߱ୀଵ,ڮ,ெ; 
and transition dipole moments are ܌ୀଵ,ڮ,ெ . The TLSs are located at position ୀଵ,ڮ,ெ. With the electric dipole and rotating wave approximation, the Hamiltonian 
of the system with rotation-wave approximation (RWA) can be written as  ܪ ൌ  ߱ߪறெ

ୀଵ ߪ   ߱ܿற ܿ
 ݅  ൣ ߪறሺሻܿכܸ െ றߪሺሻܸܿ ൧

ெ
ୀଵ , (A1) 

where ߱ is the angular frequency of the incident photon with a wave vector of k.  
is reduced Planck constant. ܿற and ܿ are the bosonic creation and annihilation 
operator of the photon, respectively. ߪற  and ߪ are the raising and lowering atomic 
operators of the atoms, respectively. ܸሺሻ is the coupling constant between the mth 
TLS and photons with a wave vector of k.  

We will explicitly solve for the eigenstates of the full Hamiltonian of the open 
system described by Eq. (A1). For this purpose, we need to do some preparation to 
transform the Hamiltonian into a real-space representation.  

 



Fig. A1(color online) (a) Schematic of a cluster of TLSs in free space. (b) Distribution of channels in the ௫௬-space. 

The channels are discretized by ∆݇ ൌ  The allowed channels are located within the circle with radius of ݇. (c) .ܮ/ߨ2
Real-space bosonic creation operators. ܿி/,ற ሺߦሻ creates a forward or backward moving photon at the location ߦ in the ݊௧ channel. (d) Spatial single-photon wavefunctions in the ݊௧ channel. The coefficient are the amplitudes of forward 

(green line) and backward (purple line) directions between ݉௧ and ሺ݉  1ሻ௧ TLSs in the ݊௧ channel, repectively. 
Free-space Channels First, we introduce the method to describe the continuum radiation 

in 3D free space. We will discretize the space by using the box quantization in a periodic 
boundary condition in the x-y plane (Fig. A1a). The period is L. At the end of the derivation, 
we will take the limit of ܮ ՜ ∞ to recover the case of free space. Because of the periodicity, 
incident photon can only be scattered to a set of discrete directions. These directions are 

defined by the waves’ in-plane wavevectors ௫௬ ൌ ൫݉௫, ݉௬൯2ܮ/ߨ, where ݉௫ and ݉௬ 

are integers (Fig. A1b). We call these directions channels. As a convention of notation, the 

index ൫݉௫, ݉௬൯  in the upper semi-infinite space also includes the waves in lower 

semi-infinite space in the direction of  ൫െ݉௫, െ݉௬൯2ܮ/ߨ. Channels are all located within 

the circle of  ݇ ൌ ߱/ܿ for the interested frequency range around the resonant frequency ߱. The total number is ܰ ൌ ߣ ଶ, whereۂߣ/ܮہߨ ൌ  . is the resonant wavelength݇/ߨ2
The floor operator ۂܣہ gives the largest integer smaller than ܣ. Using channels, we 
can convert the Hamiltonian to: 

ܪ ൌ  ߱ߪறெ
ୀଵ ߪ    ߱ܿ,ற ܿ,ே

ୀଵ
 ݅   ൣ ܸכ൫ߦ,൯ܿ,ற ߪ െ ܸ൫ߦ,൯ܿ,ߪற ൧

ே
ୀଵ

ெ
ୀଵ . (A2) 

Here ߦ, is the projected position of mth TLS along the direction of nth channel. The 

coupling coefficient ܸ൫ߦ,൯ is given by ܸ൫ߦ,൯ ൌ ߱ට ଵଶఌబఠೖయ ܌ ·  ,݁క,܍

where ߝ is vacuum permittivity, and ܍ is polarization direction of the electric 
field of photons. By using ∑ ൌ ∆݇  ݀݇ , we convert the Hamiltonian to ܪ ൌ  ߱ߪறெ

ୀଵ ߪ   න ݀݇ ߱ሺ݇ሻܿறሺ݇ሻܿሺ݇ሻே
ୀଵ  

݅   න ݀݇ ඨ ߨ2ܮ ൣ ܸ,ሺ݇ሻ݁ିక,ܿறሺ݇ሻߪே
ୀଵ

ெ
ୀଵ െ ܸ,ሺ݇ሻ݁క,ܿሺ݇ሻߪற ൧, 

(A3) 

where ܿறሺ݇ሻ ൌ ඥܿߨ2/ܮ,ற  and ܿሺ݇ሻ ൌ ඥܿߨ2/ܮ, . ܸ,ሺ݇ሻ ൌ ߱ට ଵଶఌబఠೖయ ܌ . By further defining ෨ܸ,܍· ൌ ܸ,ሺ݇ሻඥߨ2/ܮ, we can simplify Eq. (A3) to 



ܪ ൌ  ߱ߪறெ
ୀଵ ߪ   න ݀݇ ߱ሺ݇ሻܿறሺ݇ሻܿሺ݇ሻே

ୀଵ  

݅   න ݀݇ ෨ܸ,ൣܿறሺ݇ሻ݁ିక,ߪ െ ܿሺ݇ሻ݁క,ߪற ൧ே
ୀଵ

ெ
ୀଵ  , (A4) 

There are two propagation directions in each channel, i.e. the forward- and backward 
propagation directions. Thus, we can express the second term on the right-hand side 
in Eq. (A4) as  න ݀݇ ߱ሺ݇ሻܿறሺ݇ሻܿሺ݇ሻே

ୀଵ ൌ  න ݀݇ ߱ሺ݇ሻܿி,ற ሺ݇ሻܿி,ሺ݇ሻே
ୀଵ  න ݀݇ ߱ሺ݇ሻܿ,ற ሺ݇ሻܿ,ሺ݇ሻே
ୀଵ , 

(A5) 

and the last term as  ݅   න ݀݇ ෨ܸ,ൣܿறሺ݇ሻ݁ିక,ߪ െ ܿሺ݇ሻ݁క,ߪற ൧ே
ୀଵ

ெ
ୀଵ  

ൌ ݅   න ݀݇ ෨ܸ,ሼሾܿி,ற ሺ݇ሻܿ,ற ሺ݇ሻሿ݁ିక,ߪே
ୀଵ

ெ
ୀଵ െ ሾܿி,ሺ݇ሻ  ܿ,ሺ݇ሻሿ݁క,ߪற ሽ . 

(A6) 

 
Convert to Real-space Hamiltonian--Now that we have expressed the free space 

radiation in terms of channels, we begin to convert the Hamiltonian to a real-space 
representation. Each channel is effectively a one-directional waveguide, which allows 
us to apply an important technique developed in waveguide QED [46]. Specifically, 

we will convert the k-space operators ܿி,ற ሺ݇ሻ, ܿ,ற ሺ݇ሻ , ܿி,ሺ݇ሻ  and ܿ,ሺ݇ሻ to 

real space operators by applying the following Fourier transformation [46] ܿி/,ற ሺ݇ሻ ൌ ߨ2√1 න ܿி/,ற ሺߦሻ݁కஶ
ିஶ ߦ݀ , (A7a)ܿி/,ሺ݇ሻ ൌ ߨ2√1 න ܿி/,ሺߦሻ݁ିకஶ

ିஶ ߦ݀ , (A7b)

where ܿி/,ற ሺߦሻ  and  ܿி/,ሺߦሻ  (illustrated in Fig. A1c) create and annihilate a 

forward- and backward- propagation photon at position ߦ  in the nth channel, 
respectively. Using above Fourier transformation, the Hamiltonian can be expressed 
in real space as 



ܪ ൌ  ߱ߪறெ
ୀଵ ߪ

  න ሺെ݅ܿሻሾܿி,றߦ݀ ሺߦሻ ߦ݀݀ ܿி,ሺߦሻஶ
ିஶ

ே
ୀଵെ ܿ,ற ሺߦሻ ߦ݀݀ ܿ,ሺߦሻሿ

 ݅   න ߦ൫ߜߦ݀ െ ,൯ߦ ܸ,ஶ
ିஶ ൛ൣܿி,ற ሺߦሻ  ܿ,ற ሺߦሻሿߪே

ୀଵ
ெ

ୀଵെ ሾܿி,ሺߦሻ  ܿ,ሺߦሻሿߪற ൧ൟ , 

(A8) 

where ߦ, is the projected location of the mth TLS in the nth channel. Here we have 
used the dispersion relation ߱ሺ݇ሻ ൌ ܿ݇  and ߱ሺ݇ሻ ൌ െܿ݇  for the forward- and 
backward- propagating waves, respectively. The coupling constant is ܸ, ൌ√2ߨ ෨ܸ,.  

Eigenstates of real-space Hamiltonian.-- The general form of the eigenstates of Eq. 
(A8) is given by |߶ۧ ൌ ൝ න ൣߦ݀ ߶ ி,ሺߦሻ  ܿி,ற ሺߦሻ  ߶ ,ሺߦሻ  ܿ,ற ሺߦሻ൧ே

ୀଵ   ݁ߪறெ
ୀଵ ൡ |0, ݃ଵ, ڮ , ݃ெۧ, (A9) 

Here we only consider the single photon case. ߶ ி,ሺߦሻ and ߶ ,ሺߦሻ are the spatial 
wave-functions of forward- and backward- propagating photons in the ݊௧ channel, 
respectively. |0, ଵ݃, ڮ , ݃ெۧ is the zero photon state with all the TLSs in the ground 
states. ݁ is the excitation amplitude of mth TLS. By solving the time-independent 
Schrödinger equation ܪ|߶ۧ ൌ ۧ߶|ܧ , where ܧ ൌ ߱  is the eigen energy of the 
system, we get  െ݅ܿ ߦ݀݀ ߶ி,ሺߦሻ  ݅  ܸ,ெ

ୀଵ ߦ൫ߜ െ ,൯݁ߦ ൌ ߱߶ி,ሺߦሻ , (A10)

݅ܿ ߦ݀݀ ߶,ሺߦሻ  ݅  ܸ,ெ
ୀଵ ߦ൫ߜ െ ,൯݁ߦ ൌ ߱߶,ሺߦሻ , (A11)

߱݁ െ ݅  ܸ,ே
ୀଵ ൣ߶ி,൫ߦ,൯  ߶,൫ߦ,൯൧ ൌ ߱݁ , (A12)

To be specific, we consider a photon incident from the th channel. The wave 
function in the ݊th channel can be written as  



 
߶ ி,ሺߦሻ ൌ ݁క ߠ൫ߦଵ, െ ߜ൯ߦ   ݂,ெିଵ

ୀଵ ߦ൫ߠ െ ାଵ,ߦ൫ߠ,൯ߦ െ ൯ߦ
 ெ݂,ߠ൫ߦ െ ெ,൯൩, (A13)ߦ

߶ ,ሺߦሻ ൌ ݁ିక ܾ,ߠ൫ߦଵ, െ ൯ߦ   ܾ,ெିଵ
ୀଵ ߦ൫ߠ െ ାଵ,ߦ൫ߠ,൯ߦ െ ൯൩ . (A14)ߦ

Here ߠሺߦሻ is the step function, ߜ is Kronecker delta. The coefficients ݂, and ܾ, are the amplitudes of forward- and backward- propagating waves between ݉௧ 
and ሺ݉  1ሻ௧  TLSs in the ݊௧  channel, respectively. They are schematically 
shown in Fig. A1d. 
 
Substituting Eq. (A13) into Eq. (A10), we can get  െ݅ܿ݁కభ,൫െߜ  ଵ݂,൯  ݅ ଵܸ,݁ଵ ൌ 0 , (A15a) െ݅ܿ݁క,൫െ ݂ିଵ,  ݂,൯  ݅ ܸ,݁ ൌ 0 , (A15b)െ݅ܿ݁కಾ,൫െ ெ݂ିଵ,  ெ݂,൯  ݅ ெܸ,݁ெ ൌ 0 , (A15c)

Substituting Eq. (A14) into Eq. (A11), we also can get  ݅ܿ݁ିకభ,൫ܾଵ, െ ܾ,൯  ݅ ଵܸ,݁ଵ ൌ 0 , (A16a) ݅ܿ݁ିక,൫ܾ, െ ܾିଵ,൯  ݅ ܸ,݁ ൌ 0 , (A16b)݅ܿ݁ିకಾ,൫െܾெିଵ,൯  ݅ ெܸ,݁ெ ൌ 0 , (A16c)

Next ， we can directly solve Eq. (A15) and get the amplitudes of the 
forward-propagating waves 

ଵ݂, ൌ ଵܸ,ܿ ݁ିకభ,݁ଵ   , (A17a)ߜ

݂, ൌ ܸ,ܿ ݁ିక,݁  ڮ  ଵܸ,ܿ ݁ିకభ,݁ଵ  , (A17b)ߜ

ெ݂, ൌ ெܸ,ܿ ݁ିకಾ,݁ெ  ڮ  ଵܸ,ܿ ݁ିకభ,݁ଵ   , (A17c)ߜ

Similarly, we solve Eq. (A16) and get the amplitudes of backward-propagating waves ܾ, ൌ ெܸ,ܿ ݁కಾ,݁ெ  ڮ  ܸ,ܿ ݁క,݁ ڮ  ଵܸ,ܿ ݁కభ,݁ଵ, (A18a)ܾିଵ, ൌ ெܸ,ܿ ݁కಾ,݁ெ  ڮ  ܸ,ܿ ݁క,݁, (A18b)ܾெ, ൌ ெܸ,ܿ ݁కಾ,݁ெ. (A18c)

Now, we use these results to calculate the summation in Eq. (A12) and get 



߱݁ െ ݅ ൭ ܸ,݁క,   ܸ,ଶ2ܿே
ୀଵ ݁

   ܸ, ܸ,2ܿே
ୀଵ

ெ
ୀଵ,ஷ ݁|క,ିక,|݁൱ ൌ ߱݁ , (A19)

Equation (A19) can be written in a more compact form. For this purpose, we define ߁, ൌ ,మ  and  ߁ ൌ ∑ ,మଶேୀଵ ൌ ∑ ,ேୀଵ߁ ߁  .  is the spontaneous emission 

rate of the mth scatterer. Sum over all the channels, then Eq. (A19) can be written as  ሺ߱ െ ߱  ݅ 2߁ ሻ݁   ൬െΞ  ݅ 2߁ ൰ெ
ୀଵ,ஷ ݁ ൌ െ݅ ܸ,݁క, , (A20)

Here we also use the collective spontaneous rate ߁ and the induced dipole-dipole 
interaction Ξ arising from the coupling between the mth and the lth TLSs through 

the vacuum field ߁ :[41,60]  ൌ ඥ߁߁ ଷଶ ሻߦሺ݇ܨ  and Ξ ൌ
ඥ߁߁ ଷସ Էሺ݇ߦሻ  , where ሻߦሺ݇ܨ  ൌ ∑ ೖ|,ష,|ଶேୀଵ ൌ ሾࢊ · ࢊ െ ሺࢊ ࢊොሻሺ࢘· · ොሻሿ࢘ ୱ୧୬ሺకሻక  ሾࢊ · ࢊ െ 3ሺࢊ · ࢊොሻሺ࢘ · ොሻሿሺୡ୭ୱሺకሻሺకሻమ࢘ െ ୱ୧୬ሺకሻሺకሻయ ሻ,and Էሺ݇ߦሻ ൌ െሾࢊ · ࢊ െ ሺࢊ · ࢊොሻሺ࢘ · ොሻሿ࢘ ୡ୭ୱሺకሻక  ሾࢊ · ࢊ െ 3ሺࢊ ࢊොሻሺ࢘· · ොሻሿሺୱ୧୬ሺకሻሺకሻమ࢘  ୡ୭ୱሺకሻሺకሻయ ሻ. Here ߦ and ࢘ො are the distance and the unit vector 

between the mth and the lth TLSs, respectively. 
 
Cross sections-- Using Eqs(A17c) and (A18a), we can derive the scattering cross 
section[61]    σሺωሻ ൌ ∑ ൫ ெ݂,ற ൯ ெ݂,  ∑ ሺܾ,ற ሻܾ,ேୀଵேୀଵ ଶܮ/1  

ൌ ߨଶ2ߣ3   2߁ |݁̃|ଶெ
ୀଵ    2߁ ݁̃̃݁כெ

ୀଵ
ெ

ୀଵ,ஷ ൩. (A21)

Here we use the relation ݁ ൌ ටଷఒమଶగ ଵଶ ଵ ݁̃. Analytical solutions for one and two TLSs 

can be directly derived[45]. But for more than two TLSs, we resort to numerical 
calculation in main text.  

The rotation-wave approximation is applied in the interaction part of our quantum 
scattering theory in Eq. (A1). Here we also calculate the results without using 
rotation-wave approximation [62]. The results are shown by black solid curves in Fig. 
A2. Compared to the red curves obtained from RWA, the magnitudes of the cross 



sections remain is not affected significantly despite slight frequency shift of the 
resonant peaks. 

 Fig. A2. The scattering cross section calculated with (red lines) and without (black solid lines) rotation-wave approximation for light incident from two different directions. 
Conservation law--Here we prove that the total cross section of a single 
non-degenerate TLS is fundamentally constrained, regardless of specific 
implementation of the resonance.  

The Hamiltonian ܪ of the system under study can be written as two parts  
ܪ  ൌ ܪ  ூ (A22)ܪ

where ܪ=ωߪறߪ  ∑ ߱ܿܓறܿܓܓ  is the free Hamiltonian of the TLSs and photons, 

and ܪூ is the interaction between them. Here, we cosider the initial and final states of 
the scattering process are eigenstates of the free Hamiltonian. For scattering of single 
photons, the initial state and final state of the scattering process is represented by |݃, ,݃| ۧ and   .ൿ, respectively

The scattering cross section is given by ߪ ൌ ∑ ்ః , where Φ ൌ య  is the the 

density of photon flux and ܶ ൌ ଶగ หԱหଶδሺ߱ െ ߱ሻ is the transition rate from 

the initial state to the final state [44]. Here Ա is the transition matrix. The period L, 
which is larger than wavelength, is used for normalization purpose. In general, we 

consider the resonant scattering, i.e., the incident photon frequency ߱ equals to the 

transition frequency ω of the TLS.  
 

The transition matrix can be obtained from the time evolution of the system[63], 
which can be written as   
 

 Ա ൌ ൻ݃, ,݁|ூܪ| ,݁ۦ0ۧ ,݃|ூܪ|0 ۧ߱ െ ߱ െ Δ  ߨ݅ ∑ หൻ݃, ,݁|ூܪ| 0ۧหଶδሺ߱ െ ߱ሻ , (A23)



where Δ ൌ ଵ Ե ∑ หൻ,|ு|,ۧหమఠబିఠ  is the frequency shift and Ե indicates the Cauchy 

principal value. The transition matrix element Ա  is a complex number which 
exhibits a resonance for ߱ ൌ ߱  Δ. At resonance, Ա is purely imaginary and it 
amplitude is maximal.  
 

The scattering cross section now can be written as 

 

,ߠሺߪ ߶ሻ
ൌ ଷܿܮ2 ߨ ∑ หൻ݃, ,݁|ூܪ| ,݁ۦ0ۧ ,݃|ூܪ|0 ۧหଶδ ቀ߱ െ ߱ቁሺ߱ െ ߱ െ Δሻଶ  ቂߨ ∑ หൻ݃, ,݁|ூܪ| 0ۧหଶδ ቀ߱ െ ߱ቁ ቃଶ  , (A24)

We can further simplify Eq. (A) to  

 

,ߠሺߪ ߶ሻ ൌ ܿߨଷܮ2 ሾ|݁ۦ, ,݃|ூܪ|0 ∑ۧ|ሿଶቂ หൻ݃, ,݁|ூܪ| 0ۧหଶߜ ቀ߱ െ ߱ቁ ቃ    
            ൈ ቂߨ ∑ หൻ݃, ,݁|ூܪ| 0ۧหଶߜሺ߱ െ ߱ሻ ቃଶ

ሺ߱ െ ߱ െ ߂ሻଶ  ቂߨ ∑ หൻ݃, ,݁|ூܪ| 0ۧหଶߜሺ߱ െ ߱ሻ ቃଶ , (A25)

At the resonance scattering peak for ߱ ൌ ߱  Δ, the cross section is  

,ߠሺߪ  ߶ሻ ൌ ܿߨଷܮ2 ,݁ۦ|ߨ ,݃|ூܪ|0 ߨۧ|ଶ ∑ หൻ݃, ,݁|ூܪ| 0ۧหଶδ ቀ߱ െ ߱ቁ  (A26)

The denominator summation over scattered state in Eq.(A26) can be converted into an 
integration over frequency and solid angle ݀Ω  by the relation ∑ ՜ యሺଶగሻయ  ఠమయ ݀߱݀ Ω . Integrating Eq. (A26) over 4ߨ solid angle, we can easily 

get the integration as  

 න ,ߠሺߪ ߶ሻ ݀Ω ൌ ܿߨଷܮ2 ߨ ,݁ۦ| ,݃|ூܪ|0 ۧ|ଶ ݀Ωߨ ,หൻ݃ ,݁|ூܪ| 0ۧหଶ݀Ω ρሺωሻ ൌ ρሺωሻ , (A27)ܿߨଷܮ2

where  ߩሺ߱ሻ ൌ యሺଶగሻయ ఠబమయ is the density of the photon[63]. Therefore, the total cross 

section is given by  

 න ,ߠሺߪ ߶ሻ ݀Ω ൌ 4λଶ, (A28)

Equation (A28) indicates the conservation law of total cross section. Note we do not 
need the specific form of ܪூ  to obtain Eq. (A28). It holds true for any 
non-degenerate TLS. 
 

APPENDIX B: The directivity of radiation, cross section, and differential cross 
section  

In this appendix， we prove that the directivities of radiation pattern, cross section 



and differential cross section are the same.  

The radiation pattern can be obtained by considering the evolution of an excited 
state without incident photons, i.e. |݁, 0ۧ. The power radiated to a direction ሺߠ, ߶ሻ 
is related to the transition probability amplitude ݃ۦ, ݇|ܪூ|݁, 0ۧ. The directivity of the 
radiation pattern is given by ܦሺߠ, ߶ሻ ൌ ߨ4 ,݃ۦ ݇|ܪூ|݁, ,݁ۦ0ۧ ,݃|ூܪ|0 ݇ۧ∑ ,݁ۦ ,݃|ூܪ|0 ݇ۧ݃ۦ, ݇|ܪூ|݁, 0ۧ   , 
Here |݇ۧ represents a photon in the direction of ݇. The numerator is the probability 
of the excited state decaying to a photon in the direction ݇. The denominator is the 
total probability of decaying to all directions 

The total cross section for a particular incident direction ݇ is proportional to the 
summation of the transition probability to all final states as ∑ หൻ݃, ݇|ܪூ|݁, ,݁ۦ0ۧ ,݃|ூܪ|0 ݇ۧหଶ . Thus the directivity of the cross section can be 

calculated as  ॰ሺߠ, ߶ሻ ൌ ߨ4 ∑ หൻ݃, ݇|ܪூ|݁, ,݁ۦ0ۧ ,݃|ூܪ|0 ݇ۧหଶ∑ หൻ݃, ݇|ܪூ|݁, ,݁ۦ0ۧ ,݃|ூܪ|0 ݇ۧหଶ,  , 
where the denominator accounts for the summation over all incident directions. We 
can easily show that 

॰ሺߠ, ߶ሻ ൌ ߨ4 ∑ หൻ݃, ݇|ܪூ|݁, 0ۧหଶ ,݁ۦ| ,݃|ூܪ|0 ݇ۧ|ଶ∑ หൻ݃, ݇|ܪூ|݁, 0ۧหଶ ∑ ,݁ۦ| ,݃|ூܪ|0 ݇ۧ|ଶ   
ൌ ߨ4 ,݁ۦ| ,݃|ூܪ|0 ݇ۧ|ଶ∑ ,݁ۦ| ,݃|ூܪ|0 ݇ۧ|ଶ ൌ  . ܦ

The directivity of the differential cross section can also be calculated from the 
transition probability as Ðሺߠ, ߶ሻ ൌ ߨ4 หൻ݃, ݇|ܪூ|݁, ,݁ۦ0ۧ ,݃|ூܪ|0 ݇ۧหଶ∑ หൻ݃, ݇|ܪூ|݁, ,݁ۦ0ۧ ,݃|ூܪ|0 ݇ۧหଶ  . 
  We can further simply as     Ðሺߠ, ߶ሻ ൌ ߨ4 ,݁ۦ| ,݃|ூܪ|0 ݇ۧ|ଶหൻ݃, ݇|ܪூ|݁, 0ۧหଶ|݁ۦ, ,݃|ூܪ|0 ݇ۧ|ଶ ∑ หൻ݃, ݇|ܪூ|݁, 0ۧหଶ  . 
It is straight forward to verify that ܦ ൌ ॰ ൌ Ð. The radiation pattern, cross section, 
and differential cross section have the same directivity. 

 
APPENDIX C: Definition of the angles used in the derivation.  

 
The spectrum of the cross section shown in Figure 2(a)-2(c) depend on the 



incident and polarization direction of the single photons. Without loss of generality, 
here we arrange the TLSs along z-axis and define the dipole directions along the 
x-axis directions. ߠ  and ߮  are the polar and azimuthal angles of the incident 
photon. ࢋ is the polarization direction of the incident photon which perpendicular to 
the incident direction. In figure 2(a)-2(c), we define φ ൌ 0. The polarization of the 
incident photon is parallel with the dipole direction.  

 

Fig. C(color online) The TLSs arrangement along the z-axis and the dipole moment ࢊ along the 
x-axis. ࢋ is the polarization of the incident direction and is perpendicular to the incident direction. ߠ 

and ߮ are the polar and azimuthal angles of the incident photon. 
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