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In this work we present a systematic theoretical analysis regarding dark-bright solitons and their interactions,

motivated by recent advances in atomic two-component repulsively interacting Bose-Einstein condensates. In

particular, we study analytically via a two-soliton ansatz adopted within a variational formulation the interaction

between two dark-bright solitons in a homogeneous environment beyond the integrable regime, by considering

general inter/intra-atomic interaction coefficients. We retrieve the possibility of a fixed point in the case where

the bright solitons are out of phase. As the inter-component interaction is increased, we also identify an expo-

nential instability of the two-soliton state, associated with a subcritical pitchfork bifurcation. The latter gives

rise to an asymmetric partition of the bright soliton mass and dynamically leads to spontaneous splitting of the

bound pair. In the case of the in-phase bright solitons, we explain via parsing the analytical approximations and

monitoring the direct dynamics why no such pair is identified, despite its prediction by the variational analysis.

PACS numbers: 03.75.Lm,03.75.Mn,67.85.Fg

I. INTRODUCTION

Over the past decade, multi-component Bose-Einstein con-

densates (BECs) have offered a fertile ground for the exami-

nation of nonlinear wave phenomena [1]. Such systems and

their solitary waves were explored earlier in settings of nonlin-

ear optics [2]. There, structures such as the dark-bright (DB)

solitons have been ubiquitously identified in two-component

systems featuring self- and cross-repulsion (or self- and cross-

phase modulation). As a result, these solitary wave states

were extensively studied [3–9], and pioneering experiments

featuring individual DBs, as well as molecules thereof were

performed [10, 11]. In the far more recent atomic realm, the

possibility of exploring in ultracold gases different hyperfine

states of, e.g., 87Rb and 23Na, has created a new and ex-

tremely controllable venue for identifying and revealing the

dynamics of such DB states. Following the theoretical pro-

posal of [12], recent experiments have, thus, examined sys-

tematically the interaction of DB solitons with each other, as

well as the interplay with external traps [13–17]. Addition-

ally, variants thereof involving SO(2) rotation in the form of

dark-dark solitons have also been monitored [18, 19].

In this context, the examination of DB soliton interactions

is an especially intriguing topic. For dark one-component

solitons, the interaction effect for (local) cubic nonlineari-

ties is one of repulsion [20, 21]. On the other hand, for

bright solitons, the effect is crucially dependent on their rel-

ative phase, as has been recently experimentally also illus-

trated in the atomic realm in [22] for attractive condensates.

DB solitons bear both of these features and additionally ex-

hibit interactions of the dark solitons of one component with

bright ones of the other, an interaction, arguably, less ex-

plored. The theoretical and experimental work of [11] already

formulated one of the most important pieces of the relevant

intuition: namely, while dark solitons repel, bright ones in
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self-defocusing media will attract if they are out-of-phase and

repel if they are in-phase, oppositely to what is the case for

self-attractive/focusing media. Hence, the combination of re-

pulsion, mediated by the dark solitons at short distances, and

attraction, mediated by the bright solitons at longer distances

(see below regarding the different range of the interactions),

should lead to an effective two-soliton equilibrium. Thus, this

mechanism may create a genuine and potentially robust bound

molecule consisting of two DB solitons. This possibility was

further explored in the context of atomic BECs in [16] also

including the effect of a parabolic trap.

However, numerous questions still remain. A principal one

explored here is that of the persistence of such a state under

parametric variations. In particular, motivated by the tunabil-

ity of interatomic interactions, by modifying the s-wave scat-

tering lengths via the well established technique of Feshbach

resonances [23–25], we revisit DB solitons and their interac-

tions through a direct analytical and numerical investigation

of their static and dynamical properties, when the integrabil-

ity is broken due to unequal inter and intra-species interaction

coefficients. As a case example, we fix the intra-species coef-

ficients g11 and g22 to ratios of interest for 87Rb experiments

(i.e., 1 and 0.95 respectively [26]; see also [27]) and vary the

experimentally accessible inter-component interaction coeffi-

cient g12. This leads us to identify symmetry-breaking bifur-

cations of the state with the anti-symmetric bright component

and associated instabilities leading to travelling and redistri-

bution of the corresponding mass. Another question concerns

the fate of the case where the bright solitons are in-phase. For

the latter, our numerical computations (both fixed point and

dynamical ones) strongly suggest that no equilibrium config-

uration exists. For both cases, we employ an analytical cal-

culation based on a variational two-soliton ansatz. Upon ex-

ploring the adequacy of the ansatz, we use it in both the in-

and out-of-phase cases. For the latter, we predict the location

of the equilibrium in good agreement with the full numerical

results. The former also appears to identify an equilibrium, al-

though the full numerical computation does not support it. We

use this as a cautionary tale about the validity of the conclu-
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sions of the variational approximation. Additional spurious

features resulting from the ansatz are also discussed. Finally,

we complement the analytical investigations with direct nu-

merical simulations corroborating our existence and stability

conclusions.

The paper is organized as follows: in Section II we present

our theoretical considerations. We start by introducing the

physical model – a system of coupled Gross-Pitaevskii equa-

tions (GPEs) – and describe previous analytical results exist-

ing in the literature regarding single DB solitons for general

inter/intra-atomic species interactions. Subsequently, we use

the single DB soliton solution as a building block in order

to consider two DB solitons, and study their static and dy-

namical properties. From the analytical side, an extension of

the effective particle picture put forth in [16] that captures the

aforementioned properties for multiple DB solitons and ar-

bitrary interatomic interaction settings is developed. The re-

sulting effective energy landscape is presented and discussed.

We show results for both in-phase (IP) and out-of-phase (OP)

bright soliton components, and in both the miscible and im-

miscible regimes. Recall that the latter refer to the absence

or presence of phase separation depending on whether or not

(respectively) the condition g11g22 > g212 is met [28]. In Sec-

tion III, we test the theoretical predictions by means of full

numerical computations. Stationary states are attempted to be

identified by fixed point iterations. When they are, their sta-

bility is explored by means of Bogolyubov-de Gennes (BdG)

linearization analysis [1] to identify the fate of small pertur-

bations. Then, the fully nonlinear dynamics is employed in

order to reveal the fate chiefly of the unstable solutions. Fi-

nally, in Section IV we summarize our findings and discuss

future challenges.

II. THEORETICAL ANALYSIS

A. Basic properties of single dark-bright solitons

Our system of interest consists of a two-component elon-

gated (along the x-direction) repulsive BEC, composed of two

different hyperfine states of the same alkali isotope, such as
87Rb. Assuming that the trap is highly anisotropic, with the

longitudinal and transverse trapping frequencies being such

that ωx ≪ ω⊥, we may describe this system by the following

two coupled GPEs [29, 30]:

i~∂tψj =

(

− ~
2

2m
∂2x + V (x)− µj +

2
∑

k=1

gjk|ψk|2
)

ψj .

(1)

Here, ψj(x, t) (j = 1, 2) denote the mean-field wave func-

tions of the two components normalized to the numbers of

atomsNj =
∫ +∞

−∞
|ψj |2dx,m, and µj are the atomic mass and

chemical potentials, respectively. The effective 1D coupling

constants are given by gjk = 2~ω⊥ajk , where ajk denote

the three s-wave scattering lengths (note that a12 = a21) that

account for collisions between atoms belonging to the same

(ajj) or different (ajk, j 6= k) species, and V (x) represents

the external trapping potential.

Measuring densities |ψj |2, length, time and energy in units

of 2a11, a⊥ =
√

~/ (mω⊥), ω
−1
⊥

and ~ω⊥, respectively, we

may cast Eqs. (1) into the following dimensionless form:

i∂tud =− 1

2
∂2xud + V (x)ud + (|ud|2 + g12|ub|2 − µd)ud,

(2)

i∂tub =− 1

2
∂2xub + V (x)ub + (g12|ud|2 + g22|ub|2 − µb)ub.

(3)

In the above equations, we have used the notation ψ1 ≡ ud
and ψ2 ≡ ub, indicating that the component 1 (2) will be sup-

porting a dark (bright) soliton. Furthermore, µj , (j = d, b)
are the chemical potentials that characterize each compo-

nent, while the interaction coefficients are normalized to the

scattering length a11, that is g12 ≡ g12/g11, and g22 ≡
g22/g11. Upon considering a standard harmonic potential

confining the atoms its form in dimensionless units is given

by: V (x) = (1/2)Ω2x2, where the normalized trap strength

is Ω = ωx/ω⊥, thus also representing a natural small param-

eter of the system. In what follows, to avoid the additional

complications of the trap, we will consider the simplest possi-

ble case of the homogeneous system, setting Ω → 0.

Then, rescaling space-time coordinates as t → µdt, x →√
µdx, and the densities |ud,b|2 → µ−1

d |ud,b|2, the above sys-

tem of coupled GPEs takes the form:

i∂tud +
1

2
∂2xud − (|ud|2 + g12|ub|2 − 1)ud = 0, (4)

i∂tub +
1

2
∂2xub − (g12|ud|2 + g22|ub|2 − µ)ub = 0, (5)

where µ ≡ µb/µd is the rescaled chemical potential.

The above system of equations conserves the total energy:

E =
1

2

∫ +∞

−∞

Edx,

E = |∂xud|2 + |∂xub|2 + (|ud|2 − 1)2 + g22|ub|4
− 2µ|ub|2 + 2g12|ud|2|ub|2, (6)

as well as the number of atoms in each component Nd and

Nb and the total number of atoms, N = Nd + Nb =
∑

i=d,b

∫∞

−∞
dx|ui|2. Furthermore, in the special case where

the nonlinear coefficients are all equal to each other, i.e.

g12 = g22 = 1, Eqs. (4)-(5) correspond to the integrable

Manakov model [31]. In such a case, the system admits exact

single DB soliton solutions of the form:

ud(x, t) = (cosφ tanh [D(x− x0(t))] + i sinφ) , (7)

ub(x, t) = ηsech [D(x− x0(t))]

× exp [ikx+ iθ(t) + i(µ− 1)t] , (8)

subject to the boundary conditions |ud|2 → 1, and |ub|2 → 0
for |x| → ∞. In the aforementioned solutions, φ is the so-

called soliton’s phase angle, while cosφ and η denote the am-

plitude of the dark and bright component respectively. Fur-

thermore, x0(t) and D correspond to the soliton’s center and
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inverse width respectively, while k = D tanφ is the constant

wave-number of the bright soliton, associated with the speed

of the DB soliton, and θ(t) is its phase.

In the variational considerations that follow, we will uti-

lize Eqs. (7)-(8) as an ansatz for the general case where the

interaction coefficients are unequal. However, note in pass-

ing that substituting Eqs. (7)-(8) into the original system of

Eqs. (4)-(5), leads to certain conditions that the soliton pa-

rameters must satisfy for such a solution to exist (as an exact

solution). As shown in Ref. [33], the soliton parameters are

connected via the following equations:

D2 = cos2 φ− g12η
2, (9)

D2 = g12 cos
2 φ− g22η

2, (10)

ẋ0 = D tanφ, (11)

θ(t) =
1

2
(D2 − k2)t+ (1 − g12)t, (12)

where ẋ0 = dx0/dt is the DB soliton velocity, together

with the closure conditions regarding the width and ampli-

tude of the solitons: η2 = cos2 φ (g12 − 1) / (g22 − g12), and

D2 = cos2 φ
(

g22 − g212
)

/ (g22 − g12) . We also note that in

the rescaled system, the amplitude η of the bright soliton, as

well as the inverse width parameter D of the DB-soliton are

connected to the number of atoms of the bright component by

means of the following equation: Nb ≡
∫

|ub|2dx = 2η2/D.
It is important to highlight that we will not rely on Eqs. (9)–

(12) for the analytical considerations that follow. This is be-

cause these “restrictive” special solutions only represent par-

ticular members of the family of DB solutions that is also

parametrically restricted by the conditions of positivity of η2

and D2 in the above expressions. Here we would like to con-

sider the interaction coefficients and, in principle, also the

chemical potentials as free parameters, widely varying over

both the miscible and the immiscible regime. Then, generally,

exact DB solitons following the profile of Eqs. (7)-(8) do not

exist, but numerically we can identify similar DB states that

deviate only slightly from the tanh-sech shape over a wide

range of model parameters.

B. Interactions of two dark-bright solitons for general

nonlinear coefficients

In what follows, we will attempt to generalize the findings

of Refs. [16, 33] by considering the interaction of two DB

solitons in the more general case of arbitrary interaction co-

efficients, thus going beyond the integrable limit. To describe

a two DB soliton state in the absence of a confining poten-

tial, we will use as initial ansatz both for the analytical and

the numerical considerations to be presented below, a pair of

two equal-amplitude single DB solitons travelling in opposite

directions and having the form:

ud(x, t) = (cosφ tanhX− + i sinφ)

× (cosφ tanhX+ − i sinφ) , (13)

ub(x, t) = η sechX− ei[kx+θ(t)+(µ−1)t]

+ η sechX+ ei[−kx+θ(t)+(µ−1)t] ei∆θ. (14)

Here X± = D (x± x0(t)), 2x0 is the relative distance be-

tween the two DB solitons, while ∆θ is the relative phase be-

tween the bright solitons. Below we will consider both the IP,

∆θ = 0, and OP, ∆θ = π, case. As noted above, using a

tanh-sech profile for the individual DB soliton is in itself an

approximation away from the integrable limit. Its validity will

be discussed further in the next section.

In what follows, we will employ a Hamiltonian varia-

tional approach, where the ansatz of Eqs. (13)-(14) is sub-

stituted into the energy of Eq. (6). Furthermore, and so as

to perform the relevant integrations, we assume that the soli-

ton’s velocity is sufficiently small, thus cos(kx) ≈ 1, and

sin(kx) ≈ 0. The final result for the total energy reads:

E = 2E1 +Edd +Ebb +Edb using the notation of Ref. [16]

for a direct comparison of the results. Introducingχ = 4η2/D
(satisfying χ ≈ Nb if the bright solitons are sufficiently sep-

arated), the different contributions to the energy are given by

the following expressions:

E1 =
4

3
D3 +

1

6
χD2

(

2g12 + 3 tan2 φ+ 1
)

+
1

6
χ2D

(

g22 − g212
)

+ χ (g12 − µ) , (15)

Edd ≈ 16 cos2 φ

[

1

3
D cos2 φ+D + 2(cos2 φ−D2)x0

− 3 + 4 cos2 φ

3D
cos2 φ

]

e−4Dx0 , (16)

Ebb ≈ χ
[

2D
(

D (1−Dx0)− k2x0
)

+ g22Dχ
]

× cos∆θe−2Dx0

+ g22Dχ
2 (2Dx0 − 1)

(

1 + 2 cos2 ∆θ
)

e−4Dx0 , (17)

Edb ≈ −4χ
[

Dx0 (µ− g12) + g12 cos
2 φ
]

× cos∆θe−2Dx0

+ g12χ cos2 φ

[

16

3
cos2 φ− 16Dx0 + 8

]

e−4Dx0 . (18)

The terms in the aforementioned equations correspond to: the

energy of a single DB soliton E1 (contributing twice to the to-

tal energy), a result compatible with the one found in the very

recent work of Ref. [33], and the interaction energies between

the two dark, the two bright and the dark and bright solitons

denoted as Edd, Ebb and Edb respectively. It is important to

note here that the above expressions, similarly to [16], capture

the dominant contributions of the different energies thereby

removing higher order terms (e.g., proportional to e−6Dx0 and

higher). This is an assumption that we will relax below.

By a direct comparison of the above results with the ones

stemming from the integrable limit of the theory, obtained in
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FIG. 1. (Color online): Profiles of the fitted single DB solitons,

where ud and ub denoted by solid lines respectively correspond to the

analytical solution for the single DB case, while dashed and dashed-

dotted lines refer to the fitted profiles for the bright and the dark

soliton respectively, with (a) g12 = 0.85, and (b) g12 = 1.2. Notice

the very good agreement of the fitted solutions upon passing from

the miscible to the immiscible regime.

Ref. [16], it is immediately evident that the interaction en-

ergy between the two dark solitons is identical to the expres-

sion of [16], a feature which is expected given our effective

rescaling of the interaction coefficients by g11. In particular,

also by this comparison, it becomes evident that the differ-

ence in the total energy of the system for general gij comes

from the bright solitons hosted in the second component of

the coupled GPEs, Eq. (5). Notice the pre-factors g22 enter-

ing in both terms of Eq. (17), and g12 appearing in all terms

of Eq. (18). Furthermore, and even more importantly, an ex-

tra term enters in the interaction energy,Edb, between the DB

solitons, i.e. the first term appearing in Eq. (18). Such a term,

which was not accounted for in the respective integrable limit

of the theory studied in Ref. [16], will significantly contribute

in the final expression for the forces acting between the two

DB solitons. Furthermore, and since this term is a leading

order contribution to the interaction energy, it directly sug-

gests depending on its sign, that the possibility may exist of

identifying bound states even for IP bright solitons for general

nonlinear coefficients.

An important improvement of the results of [16], in addi-

tion to evaluating the relevant formulae for general gij is that

we have also been able to analytically integrate the relevant

expressions i.e., to obtain the “exact” rather than approximate

integral results. The resulting energy forms are as follows:

Edd = − 11

3D
cos8 φ csch7(2Dx0) sinh(6Dx0) +

4

D
cos4 φ csch2(2Dx0)

[

− 1 + 2Dx0 coth(2Dx0)
]

+
1

3D
cos8 φ csch7(2Dx0)

[

12Dx0 (9 cosh(2Dx0) + cosh(6Dx0))− 27 sinh(2Dx0)
]

+
1

3
D cos4 φ csch5(2Dx0)

[

− 24Dx0 cosh(2Dx0) + 9 sinh(2Dx0) + sinh(6Dx0)
]

− 4

3D
cos6 φ csch5(2Dx0)

[

− 24Dx0 cosh(2Dx0) + 9 sinh(2Dx0) + sinh(6Dx0)
]

+
1

3
D cos2 φ

[

− 24Dx0 csch
3(2Dx0) cosh(2Dx0) + 12 csch2(2Dx0)

]

, (19)

Ebb = −4η2k2x0 csch(2Dx0) cos∆θ + 2η2D csch3(2Dx0) cos∆θ
[

−Dx0 [3 + cosh(4Dx0)]
]

+
4

D
g22η

4 csch3(2Dx0) cos∆θ
[

− 4Dx0 + sinh(4Dx0)
]

− 8µη2x0 csch(2Dx0) cos∆θ

+
4

D
g22η

4 csch2(2Dx0)
(

1 + 2 cos2 ∆θ
)

[

− 1 + 2Dx0 coth(2Dx0)
]

+ 2η2D csch3(2Dx0) cos∆θ sinh(4Dx0), (20)

Edb = 8g12η
2x0 csch(2Dx0) cos∆θ −

8

D
g12η

2 cos2 φ csch2(2Dx0)
[

− 1 + 2Dx0 coth(2Dx0)
]

+
4

3D
g12η

2 cos4 φ csch5(2Dx0)
[

− 24Dx0 cosh(2Dx0) + 9 sinh(2Dx0) + sinh(6Dx0)
]

+
4

D
g12η

2 cos4 φ csch5(2Dx0) cos∆θ
[

4Dx0 [2 + cosh(4Dx0)]− 3 sinh(4Dx0)
]

− 4

D
g12η

2 cos2 φ csch3(2Dx0) cos∆θ
[

− 4Dx0 + sinh(4Dx0)
]

. (21)

From these equations, the asymptotic results of Eqs. (16)-(18) can be recovered by expanding with respect to exp(−2Dx0).
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FIG. 2. (Color online): Comparison between the exact (solid red

lines) and the approximate (dashed blue lines) expressions, within

the Hamiltonian variational formulation, for the individual interac-

tion energies [see Eqs. (19)-(21) and Eqs. (16)-(18)] for IP bright

soliton components. From top left to bottom right shown are Edd,

Ebb, Edb and Etot respectively. (a)-(d) and (e)-(h) correspond to

g12 = 0.85 and g12 = 1.2, respectively. In all cases the inset pro-

vides a magnified version of the respective extremum.

A key realization is that both the bright-bright soliton energy

Ebb and the cross-component interaction energy Edb depend

on cos(∆θ), i.e., on the relative phase and their contribution

appears at the same order. Hence, the key underlying intuition

of OP bright solitons yielding attraction that will counteract

the repulsion of the dark solitons enabling the existence of

equilibria may not be sufficient, in terms of providing quanti-

tatively accurate results. The significant contribution of the in-

teraction of the dark solitary waves of one component with the

bright ones of the other must be factored in. On the other hand,

we also see why, at least in principle, a bound state is possible.

The different asymptotic rates of decay of the dark soliton in-

teraction, i.e. faster decaying as exp(−4Dx0) and dominant

at shorter distances [see also Eq. (16)], with the bright (and

DB) interaction, more slowly decaying as exp(−2Dx0) and

dominant at longer distances [see Eqs. (17)-(18)], may create

the possibility of an equilibrium, especially for the OP bright

soliton scenario.

III. NUMERICAL RESULTS

Before we embark into an examination of the energies for

the different values of the parameters, it is relevant to address

the issue of how good the fit of the single DB is with respect
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FIG. 3. (Color online): Same as Fig. 2 but for OP bright soliton

components.

to the analytically available expression of Eqs. (7)-(8). Re-

call, once again, that the expressions of Eqs. (9)-(12) are not

used, hence the inverse width parameterD and the bright soli-

ton amplitude parameter η are obtained from the exact numer-

ical –up to the prescribed accuracy– single soliton solution

upon fitting. As shown in Fig. 1, and in line with the find-

ings of [33], the analytical expression [see Eqs. (7)-(8)] is in

very good agreement with the numerically obtained solution

for g12 in the immiscible regime [see Fig. 1 (b)], and espe-

cially as g12 becomes large. On the other hand, in the misci-

ble regime for g12, the tendency of the components to over-

lap deteriorates the quality of the approximation, especially

for g12 ≪ 1 [see Fig. 1 (a)]. We remind the reader that the

miscibility-immiscibility threshold (after rescaling) is given

by g212 = g22 [28]. Hence, we expect our analytical approxi-

mation to be progressively more accurate as we go deeper into

the immiscible regime and to be least adequate for ratios of

inter- to intra-component interactions well below unity. More-

over, the improved quality of the fit is also assisted by the fact

that upon increasing g12 while keeping µ fixed, a steady de-

crease of the bright amplitude is observed (cf. also Fig. 6(i)
below). This acts in favor of the tanh-sech ansatz as it brings

the system closer to the (integrable again) dark-only single-

component limit.

We now turn to an examination of the different energy con-

tributions for the IP case in Fig. 2 and for the OP case in Fig. 3.

Focusing on stationary solutions, we choose φ = 0, k = 0
and ∆θ = 0 (IP) or ∆θ = π (OP). The chemical potential

ratio is fixed to µ = 2
3 . At varying g12 we numerically iden-

tify the single-DB profile and extract the effective values ofD
and η by fitting the tanh-sech ansatz to it. As in most of the
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cases that will follow, we provide a representative case exam-

ple in the miscible regime with g12 = 0.85 and another in the

immiscible regime with g12 = 1.2. The remaining rescaled

nonlinearity coefficient has been fixed to g22 = 0.95, moti-

vated by the relevant ratios in the case of 87Rb. Starting with

the case of the dark-dark soliton interaction [Fig. 2 (a), (e)],
we observe that it looks “attractive” in the sense that a regular

particle would tend towards the center, upon the imposition

of such a potential energy landscape. Yet, the negative effec-

tive mass of the DB solution [34] should be factored in and

in that case, indeed the interpretation is one of repulsion, as

expected from the above. The top right and bottom left panels

of each quartet of panels in Fig. 2, represent respectively Ebb

[Fig. 2 (b), (f)], and Edb [Fig. 2 (c), (g)] confirming their

opposite trend as well as their comparable value. In the IP

case, at large distances, the bright-bright interaction is repul-

sive, while the DB is attractive. In the results shown, both

the exact, Eqs. (19)-(21), and the asymptotic, Eqs. (16)-(18),

forms of the energy expressions are given (denoted by solid

red and dashed blue lines respectively in Figs. 2, 3). Expect-

edly, they coincide at large x0 where exp(−2Dx0) becomes

small, while at short distances the deviations can be substan-

tial, even qualitatively. It should be borne in mind here that

neither of these expressions is sufficiently good when the DB

solitons are sufficiently close (distances 0 < x0 < 1.5 typi-

cally for our results herein). There, the solitons are essentially

overlapping and hence, the superposition ansatz of Eqs. (13)-

(14) clearly fails.

Coming to the main conclusion of the theoretical analysis,

let us examine the OP case of Fig. 3. The key panel to consider

is that of the total energy [Fig. 3 (d), (h)]. The identification

of a local maximum there for both the cases of g12 = 0.85
and g12 = 1.2 (and for all values of g12 in between) sug-

gests the existence of an effective local minimum represent-

ing a stable equilibrium, at least in as far as the OP vibration

of the two DBs around it is concerned. Note here that due to

the translational invariance, the two-DB center of mass can al-

ways be displaced freely. This prediction can be tested against

the direct numerical computations of the original PDE system

of Eqs. (4)–(5). In the latter, we use a fixed point (Newton-

Raphson) iteration to obtain the OP equilibrium [32]. Subse-

quently, we identify the location of the (coincident between

the two components) soliton center and compare it to the cor-

responding theoretical value. The result is shown in Fig. 4 and

is quite satisfactory in terms of capturing the relevant trend.

The increasing tendency of the equilibrium x0 as a function

of g12 as the miscibility threshold is crossed and as we move

deeper into the immiscibility regime can be intuitively under-

stood as follows. In the OP case, the bright-bright interaction

[Fig. 2 (b), (f)] is attractive at the tails and the DB interac-

tion is repulsive [Fig. 2 (c), (g)]. This becomes even more

pronounced as g12 increases as can be seen from Eq. (21) [see

also Eq. (18)] and thus the equilibrium is expected to be found

at larger distances due to this stronger repulsion.

Now, we turn to a series of spurious features that the theory

may produce. By far the most significant is that if, by compar-

ison, we examine the total energy in the bottom right panels of

the quartets in Fig. 2 (d), (h), we will notice the existence of
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FIG. 4. (Color online): Equilibrium location x0 as a function of the

nonlinear coefficient g12 for OP bright soliton components. Black

circles depict the numerically obtained two DB soliton center, while

blue stars correspond to the semi-analytical prediction of the effec-

tive particle picture.
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FIG. 5. (Color online): Variationally predicted equilibrium positions

between two DB solitons as a function of g12. (a) [(b)] shows the

extrema for IP (OP) bright soliton components. Blue circles denote

the location of the minimum of the total energy Etot, while blue

crosses correspond to the respective maxima. Red stars refer to the

extrema predicted via the fully numerical evaluation of the energy

(see text). The chemical potential is fixed to µ = 2/3.

a local minimum, which is tantamount to an effective energy

maximum, and is expected to correspond to a saddle point in

the case of the IP bright solitons (within the two DBs). This

is found to exist only for sufficiently small g12’s i.e., it exists

for g12 = 0.85, but not for g12 = 1.2 (cf. (a)-(d) vs. (e)-(h)
quartets of panels in Fig. 2). This feature, if present, would

suggest that while in the IP case the dark-dark and bright-

bright interactions are both repulsive, the DB one is attractive

and enough to counter both to produce an equilibrium, albeit

an unstable one. However, an extensive effort to identify this

feature in the PDE did not lead to fruition. While we cannot

fully exclude the possibility that such an equilibrium exists,

both our fixed point iteration results and the direct numeri-

cal simulations (presented below) suggest its absence. Our

explanation for this “negative” result is that this equilibrium

arises at relatively short distances and rapidly moves towards

the origin. The relevant dependence on g12 can be found in

Fig. 5 (a) denoted by blue circles. Here, we observe that the
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FIG. 6. (Color online): Left column: (a) anti-symmetric station-

ary DB soliton pair for g12 = 1.1, (c) anti-symmetric state with

g12 = 1.3, (e) asymmetric state for g12 = 1.1, and (g) fully asym-

metric D-DB state for g12 = 0.95. Right columns [(b) to (h)] are

the associated BdG spectra, where the lowest twenty eigenvalues are

shown with (black/red) circles. In all cases red circles denote the

anomalous modes. λA1
, and λA2

, (indicated by black arrows) are

the two modes related to the observed symmetry breaking, and the

OP vibration of the 2-DB state respectively. (i): Nb as a function of

g12 for the two different branches [36].

equilibrium occurs at moderate distances only for the smallest

values of g12 considered (close to 0.7) where we know that

the ansatz is the worst (within our range) as regards captur-

ing the true waveform of the DB soliton. As g12 increases,

while the ansatz gradually improves, the equilibrium distance

rapidly decreases, rendering the ansatz inadequate due to the

overlap (and constructive interference in this case) between

the solitons. Therefore, the individual character of the soli-

tons is lost and hence the ansatz again fails. Thus, we intend

this part as a cautionary tale about the potential inadequacies

of the variational ansatz, either due to the failure of the pro-

file of Eqs. (7)-(8) or because of the failure of the two-soliton

waveform.

An additional feature that we have identified when taking

the Hamiltonian variational formulation at face value can be

seen in the insets of Figs. 2 and 3, when looking at sufficiently
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FIG. 7. (Color online): (a) Trajectories of the squared eigenval-

ues of the two anomalous modes, λ2 upon varying g12 for the anti-

symmetric stationary solutions of Eqs. (4)-(5). Blue circles corre-

spond to the trajectory of the mode related to the OP vibration of the

2-DB state. Green stars denote the trajectory of the mode responsible

for the symmetry breaking bifurcation that occurs at g12cr = 1.18.

(b) bifurcation diagram, obtained via measuring the center of mass

and the mass imbalance of the bright component (see the text for the

relevant definitions) as functions of g12. The two arrows indicate

the different axes used. Four branches are identified: three unstable

ones (dashed-dotted black and dashed blue/green lines) and a stable

branch (solid green line). Notice that the asymmetric branches exist

before the critical point and are unstable, i.e. the pitchfork is subcrit-

ical.

large distances in the case of g12 = 1.2. Examining the total

energy plots at the bottom right panel of each of the afore-

mentioned figures [Fig. 2 (h) and Fig. 3 (h)], we find that

an additional extremum appears to arise. The trajectory of

this extremum (in both cases) is illustrated in Fig. 5 (a) (blue

crosses) for the IP and in Fig. 5 (b) (blue circles) for the OP

case. A careful inspection of the relevant energy scales of

Figs. 2 and 3 confirms that this is a miniscule effect of the or-

der of 10−5, in this case example. Again, an extensive search

for corresponding stationary solutions on the PDE level re-

mained unsuccessful, which suggests that the miniscule large-

x0 extrema of the Etot energy curves may be artifacts of the

variational approach that are absent in the true dynamics.

In fact, in an attempt to explore these spurious extrema fur-

ther and to disentangle the errors stemming from the single-

DB fitting process and its concomitant identification ofD and

η on the one hand and the two-DB ansatz in Eqs. (13)-(14) on
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the other hand, we also attempted a “purely numerical” con-

struction of the energy. That is, upon identifying the single-

DB waveform, we numerically constructed the 2-DB profile,

multiplying two darks and adding (for the IP case) two brights

centered at varying distances, i.e. in the spirit of Eqs. (13)-(14)

but avoiding the tanh-sech fit. Then, we numerically evaluated

the resulting energy by numerically integrating the expression

of Eq. (6). This side-steps the inadequacies of the single soli-

ton ansatz, yet it does not avoid the issues of the two soliton

ansatz upon close proximity of the bright solitons. Within this

latter approach, we do not find the miniscule large-x0 maxi-

mum in Etot for the IP case, suggesting that this is a spurious

feature induced by the imperfect tanh-sech fit. In contrast,

the more substantial in-phase energy minimum for g12 . 1.1
qualitatively persists even without performing this fit [see red

stars in Fig. 5 (a)]. Its predicted quantitative position, how-

ever, is shifted to considerably larger values of x0 for small

g12. This discrepancy highlights the inaccuracies of the fit in

the miscible regime, but the existence of the spurious IP min-

imum itself seems to be induced not by the imperfect single-

DB fit but by the construction of the two-DB ansatz. Finally,

in the OP case the fully numerical variational approach pre-

dicts a bond length of the DB pair that agrees well with that

from the tanh-sech fit approach, underlining the robustness

of this key result. The fit-based method also predicts a lo-

cal minimum in Etot which annihilates the bound-state max-

imum in a saddle-center bifurcation at g12 = 1.48. Without

the tanh-sech fit, the bound state is predicted to persist up to

g12 = 1.55, beyond which the bright norm is zero [see red

stars in Fig. 5 (b)]. In the numerical variational framework

we do not see a minimum in Etot here, but possibly the afore-

mentioned termination of the bound-pair branch could also be

caused by a saddle-center bifurcation happening at large x0
(where all energies become extremely small and ultimately

lie below our numerical resolution).

It is then clear that out of the four possible extrema pre-

sented in the in and out of phase cases, only the out of phase

equilibrium is relevant for the system. Hence, we explore the

latter further, before delving into the associated dynamics. To

assess the stability of this fixed point, we perform a BdG anal-

ysis, linearizing around the equilibrium as follows:

ud = u
(eq)
d +

(

a(x)e−iωt + b⋆(x)eiω
⋆t
)

, (22)

ub = u
(eq)
b +

(

c(x)e−iωt + d⋆(x)eiω
⋆t
)

. (23)

The resulting linearization system for the eigenfrequencies

ω (or equivalently eigenvalues λ = iω) and eigenfunctions

(a, b, c, d)T is solved numerically. If modes with purely real

eigenvalues (genuinely imaginary eigenfrequencies) or com-

plex eigenvalues (eigenfrequencies) are identified, these are

tantamount to the existence of an instability [1]. Remarkably,

indeed this is the case, as we increase g12. An eigenvalue pair

crosses the origin and becomes real, resulting in an exponen-

tial instability that we will trace soon in the dynamics as well.

Presently, we inquire which mode could be responsible for

such an instability. We note that in addition to 6 modes in the

spectrum at λ = ω = 0 due to symmetries (the conservations

of Nd and Nb, as well as due to the momentum-conservation-
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FIG. 8. (Color online): Typical examples of the space-time evolution

of the density of a 2-DB soliton state for IP bright solitons. (a), (b)
densities for g12 = 0.85 and equilibrium distance x0 = 1.37. (c),
(d) same as the above, but for g12 = 1.2 and x0 = 5.45. In both

cases (a), (c) [(b), (d)] refer to the evolution of the dark [bright]

soliton component.

inducing invariance with respect to translation), there are two

additional modes of interest that are “hidden” within the con-

tinuous spectrum of the problem, see the BdG spectrum in the

middle right panel of Fig. 6 where black arrows indicate the

modes in question denoted by red circles. These modes are

so-called anomalous or negative energy modes. They possess

negative energy or negative Krein signature [35]. The mode

energy (or Krein signature) is defined as

K = ω

∫

(

|a|2 − |b|2 + |c|2 − |d|2
)

dx, (24)

in a multi-component system like the one considered herein.

Our computations show that there are two such modes in the

system. One is the anticipated one, related to the out-of-phase

vibration of the two DB solitons (λA2
in Fig. 6 (b)). How-

ever, as suggested by the energetics discussed previously it

remains stable (pertaining to oscillations in the effective en-

ergy landscape discussed above). The second mode (λA1
in

Fig. 6 (b)) is the one associated with symmetry breaking of

the bright component. I.e., adding the corresponding eigen-

vector to the bright component breaks its symmetry and re-

sults in two bright solitons of unequal amplitudes. It is the

latter mode that destabilizes at the instability threshold of the

out of phase configuration. The existence (and destabiliza-

tion) of such a mode suggests the presence of a pitchfork

bifurcation associated with the symmetry breaking. Indeed,

we have been able to identify the asymmetric branches re-

lated to this pitchfork bifurcation. Interestingly, the branches

exist before the critical point of the anti-symmetric solution

destabilization and are unstable themselves. That is to say

the pitchfork is subcritical. A similar, yet crucially differ-

ent, bifurcation mechanism was identified in the work of [37]

in the presence of a parabolic trap. In that setting, an effec-

tive single-component description was found to be applicable,
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where the two dark solitons together with the trap act as an ap-

proximately static double-well potential for the bright compo-

nent. Within a two-node tight-binding approximation this then

maps to the bosonic Josephson junction model which features

a symmetry-breaking supercritical pitchfork bifurcation from

the OP branch. Correspondingly, the emerging asymmetric

modes are found to be stable in the trapped framework, while

they are unstable in our present setting [see the linearization

spectra in Figs. 6(f, h)], highlighting the fundamentally dif-

ferent nature of the symmetry-breaking pitchfork bifurcations

in the trapped and untrapped cases, respectively.

In Fig. 6 (a), an anti-symmetric solution is shown together

with its linearization spectrum for g12 = 1.1 [Fig. 6 (b)].
Two anomalous modes are identified, indicated by the arrows.

The lowest of these eigenvalues, namely λA1
, moves towards

zero with increasing g12 and eventually crosses to the real

axis, which signals the pitchfork bifurcation. In panels (c)-
(d), an example of an anti-symmetric equilibrium state is il-

lustrated past its destabilization threshold. Furthermore, in

panels (e)-(h) asymmetric solutions are identified and shown

together with their respective linearization eigenvalues man-

ifesting their instability. In particular, (e)-(f) correspond to

an asymmetric solution for g12 = 1.1, providing a straight-

forward comparison of its BdG spectrum with the respective

spectrum of the anti-symmetric state in (a)-(b). Notice in par-

ticular the absence of the anomalous mode λA1
. Moreover,

in panels (g)-(h) another example of the asymmetric state at

smaller g12 is depicted. Here, a total transfer of mass of the

bright component to one of the dark solitons has occurred,

resulting in a bound state of one purely dark and one dark-

bright soliton. Note again the crucial difference to the self-

trapped states of the bosonic Josephson junction here, since in

the present setting the pitchfork bifurcation phenomenology

arises in a spatially homogeneous setting. Finally, Fig. 6(i) il-

lustrates the decrease of the bright soliton norm upon increas-

ing g12 for both the anti-symmetric and asymmetric solitonic

states.

All of the above findings are summarized in Fig. 7. In par-

ticular, Fig. 7 (a) shows the trajectory of the squared eigen-

values of the two anomalous modes as g12 increases. Notice

that among these two trajectories the lowest one (blue circles)

asymptotically tends to zero, and as such it remains stable for

all values of g12. This trajectory corresponds to the OP vi-

bration of the two DB state. However, a completely different

picture is painted by the trajectory of the second mode (green

stars). Closely following this trajectory [see also the inset in

Fig. 7 (a)] we see that this mode destabilizes at g12cr = 1.18
(which corresponds to the eigenvalue zero crossing). This

destabilization signals the bifurcation and the emergence of

the upper (black dotted) branch. Note that for clarity rea-

sons we only show values of g12 in the vicinity of the bi-

furcation. The respective bifurcation diagram is shown in

Fig. 7 (b). To obtain this diagram we simply measure the

center of mass between the two bright solitons in the sec-

ond component, i.e. xCM =
∫∞

−∞
x|ub|2dx/

∫∞

−∞
|ub|2dx,

upon varying g12. This way, we can identify both the sta-

ble anti-symmetric branch [solid green line in Fig. 7 (b)] as

well as the three unstable branches, two asymmetric and one
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FIG. 9. (Color online): Typical examples of the space-time evolution

of the density of a stationary 2-DB soliton state for OP bright soli-

tons and g12 = 0.85. Evolution of the dark soliton density (a), and

the respective bright one (b), initialized at the predicted equilibrium

distance with x0 = 1.65. (c), (d) same as the above, but slightly

inside of the predicted fixed point at x1 = 1.45.

anti-symmetric [see dashed-dotted black lines and dashed-

dotted green line respectively in Fig. 7 (b)]. Notice that the

asymmetric branches exist before the critical point, verify-

ing the subcritical pitchfork nature of the relevant bifurca-

tion. It is also worth mentioning the “neck” in xCM that oc-

curs at the immiscibility to miscibility transition. This fea-

ture is found to coincide with a change in the character of

the symmetry-broken soliton configuration, i.e. the transition

from a gradually asymmetric DB-DB pair as in Fig. 6 (e) to

a maximally asymmetric dark/dark-bright (D-DB) state as in

Fig. 6(g). This is seen in the relative bright imbalance defined

as ∆Nb ≡
(

∫ 0

−∞
|ub|2dx−

∫∞

0 |ub|2dx
)

/
∫∞

−∞
|ub|2dx and

shown in dashed blue lines in Fig. 7(b).

Finally, we turn to direct numerical simulations corroborat-

ing the existence and stability results presented above. Firstly,

in Fig. 8, we examine the (theoretically predicted, yet argued

as spurious) equilibria of the theoretical energy analysis pre-

sented above. We see in the figure that both in the case of

g12 = 0.85 [Fig. 8 (a), (b)] and in that of g12 = 1.2 [Fig. 8

(c), (d)], as well as in all the additional cases that we have ex-

amined (not shown here), repulsive dynamics is manifested

between the two DBs. We have tried different distances,

smaller as well as larger than the equilibrium one, always find-

ing this type of repulsive behaviour. If the prediction of a sad-

dle point was an accurate one, the solitons should have moved

inward (rather than outward, i.e., featuring attraction) when

initially positioned below the equilibrium distance. In fact,

what we find is that at short distances the soliton repulsion is

fairly dramatic. As the figure suggests, this is partially the re-

sult of constructive interference in the case of our initial con-

ditions. I.e., while adjusting from an initial profile through a

transient stage, the solitary waves emit radiative wavepackets.

Some of these move outward (and do not pose concerns, pro-
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FIG. 10. (Color online): Same as Fig. 9 but for g12 = 1.2, i.e. well

inside the immiscible regime. (a), (b) initialization at x0 = 1.78,

coinciding with the semi-analytical prediction of the stationary 2-

DB state. (c), (d) initialization at x1 = 1.58. Notice that symmetry

breaking occurs towards the end of the simulation, resulting in an

almost complete transfer of mass from the left bright soliton to the

right one [(b), (d) counterpart of each doublet].

vided that the integration domain is sufficiently large). How-

ever, some of these move inward, constructively interfere and

exert upon return a substantial effective force which assists the

solitons towards initiating their outward trajectory. Thus, our

direct simulations also confirm the expectation that the varia-

tionally predicted fixed point is an artifact of the ansatz and is

dynamically absent in the IP case.

Hence, we hereafter focus on the OP case. We explore the

latter both when initiated at equilibrium, as well as when initi-

ated near equilibrium. This is done for the case of g12 = 0.85
in Fig. 9, as well as for that of g12 = 1.2 in Fig. 10. In the

former case, our BdG stability analysis predicts that the anti-

symmetric bright soliton configuration (and the whole DB

pair) will be dynamically robust. Indeed, this is what we ob-

serve; when initializing at the equilibrium, [Fig. 9 (a), (b)]
the solitary waves stay put, while when initiating at slightly

smaller or larger distances [Fig. 9 (c), (d)], we simply excite

the stable OP vibrational mode of the two-soliton molecule.

However, a fundamentally different picture is shown in Fig. 10

for the case of g12 = 1.2. Here, while for a long time

the configuration appears to be quiescent eventually for times

t > 800, the bright soliton redistributes its mass dramatically

[see Fig. 10 (b)], resulting in a strong repulsion between the

ensuing single DB (with a much larger bright soliton mass)

and the dark soliton (respectively, stripped of its soliton mass,

Fig. 10 (a)). This leads to the strong separation of the solitary

waves as a result of the dynamics. The same feature can be

seen in the case of oscillations around the equilibrium, Fig. 10

(c), (d); while the solitons appear robust for many oscillation

cycles, we can see them eventually redistributing the bright

component [Fig. 10 (d)] and splitting as a result. Although the

instability appears to be dramatic and instantaneous, a more

careful monitoring of the system suggests otherwise. In par-

0 200 400 600 800 1000

10
−10

10
0

t

10
−10

10
0

|ub(0, t)|
2

|ub(0, t)|
2

(a)

(b)

FIG. 11. (Color online): Semi-logarithmic representation, showing

the central bright density between the two solitons throughout the

propagation depicted in Fig. 10. This way, we monitor the expo-

nential growth of the instability, that clearly builds up from the first

instant (initially hidden in the noise below our numerical accuracy

threshold) and fully manifests itself when it becomes of order O(1)
Panels (a) and (b) correspond to the symmetry breaking observed in

panels (b) and (d) of Fig. 10.

ticular in Fig. 11, we monitor the evolution of the bright den-

sity at the central point between the two solitons. Examining

the relevant diagnostic in a semilog scale, we clearly infer that

the instability is building over the entire horizon of the simu-

lation, featuring a remarkable exponential growth over many

orders of magnitude until eventually it produces an effect of

order unity resulting in the symmetry breaking. We confirm

by examining the growth rate of this exponential growth, that

it is indeed occurring with the unstable eigenvalue of the two-

DB state.

IV. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, the intriguing problem of DB soliton

interactions has been revisited. Motivated by recent experi-

mental studies of the problem, the relevant formulation has

been extended in a number of ways. We have considered the

effect of general (and beyond integrable) inter-atomic interac-

tion coefficients and identified full analytical expressions of

the variational energy-based formulation, rather than solely

approximate ones, focusing on the former as being more accu-

rate than the latter. Our aim was to explore the conclusions of

the energy based calculation monoparametrically varying the

inter-component scattering length. This led to the identifica-

tion of key additional features in the energy such as the signifi-

cant role of DB soliton interaction, often overlooked in earlier

studies. We carefully considered which of the features of the

variational formulation are credible for leading to accurate re-

sults and which ones should be discarded and for what reason

i.e., which assumptions and approximations in the variational

formulation may turn out to fail. Focusing on the predominant



11

nontrivial feature, namely the existence of an equilibrium in

the out-of-phase case, we showcased the predictive strength of

the formulation and identified a subcritical pitchfork bifurca-

tion instability-inducing scenario that had not been previously

observed, to the best of our knowledge. The consequences

of the instability were dynamically explored and observed to

lead to the key phenomenon of mass redistribution.

There is a multitude of intriguing questions that are worth

examining in future efforts. On the one hand, it would be

particularly interesting to explore if the variational formula-

tion might predict the potential for symmetry-breaking insta-

bility provided the relevant freedom. More concretely, we can

utilize an ansatz for the bright solitons involving two hyper-

bolic secants with distinct amplitudes η1 and η2. An impor-

tant question is: is this sufficient (as one might hope/expect

based on the above description) to observe the instability at

the level of the few degree of freedom system? In the context

of this symmetry-breaking, it would moreover be interesting

to explore the crossover from our present untrapped setting

with its subcritical pitchfork bifurcation to the harmonically

trapped case where in [37] a supercritical pitchfork bifurcation

has been found to destabilize the out-of-phase mode. Exten-

sions of the present considerations would also be worthwhile

to pursue in other settings including ones involving a higher

number of components, as well as higher dimensions. In the

former one, solitary waves such as dark-dark-bright and dark-

bright-bright ones [38] have been predicted, so it would be

interesting to see how the relevant phenomenology general-

izes. In the latter one, the role of dark solitons is played by

vortices [39, 40]. Such “vortex-bright” solitons are quite ro-

bust and furthermore their vorticity is topologically protected,

so it would be interesting to examine whether they would form

similar bound states and what the stability and dynamics of the

latter would be. Studies along these directions are reserved to

future works.
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