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Due to the topological nature of Aubry-André-Harper (AAH) model, interesting edge states have
been found existing in one-dimensional periodic and quasiperiodic lattices. In this article, we in-
vestigate continuous-time quantum walks of identical particles initially located on either edge of
commensurate AAH lattices in detail. It is shown that the quantum walker is delocalized among
the whole lattice until the strength of periodic modulation is strong enough. The inverse partic-
ipation ratios (IPRs) for all of the eigenstates are calculated. It is found that the localization
properties of the quantum walker is mainly determined by the IPRs of the topologically protected
edge states. More interestingly, the edge states are shown to have an evident ‘repulsion’ effect on
quantum walkers initiated from the lattice sites inside the bulk. Furthermore, we examine the role of
nearest-neighbour interaction on the quantum walks of two identical fermions. Clear enhancement
of the ‘repulsion’ effect by strong interaction has been shown.

PACS numbers: 37.10.Jk, 05.60.Gg, 05.40.Fb

I. INTRODUCTION

Quantum walks, the quantum analog of classical
random walks, describe the random dynamics of quan-
tum particles on a discrete lattice[1, 2], which is in-
herently governed by the time-dependent wavefunc-
tion of the system. Compared to the classical ran-
dom walks, dramatically different behavior shows in
quantum walks due to the coherent superposition and
interference of the wavefunction. For example, it is
well-known now that a quantum walker can propagate
linearly with respect to the expansion time, which is
much faster than its classical counterpart. This may
be exploited in the designing of more efficient quan-
tum search algorithm for quantum compuation[2–6].
Having witnessed the huge success of classical random
walks, people believe that quantum walks may have
widespread applications in quantum algorithms[2,
3], quantum computing[5], quantum information[7],
quantum simulation[8], quantum biology[9] and so on.
Motivated by this promising prospect, more and more
research activities on quantum walks have been under-
taken by both experimentalists and theorists. Actu-
ally, quantum walks have been experimentally imple-
mented in a variety of quantum systems[10], such as
optical resonator[11], nuclear magnetic resonance[12],
trapped ions[13], trapped cold neutral atoms[14, 15],
single photons in bulk[16], fiber optics[17], and cou-
pled waveguide arrays[18, 19]. On the theoretical side,
quantum walk has been proposed to investigate topo-
logical phases[20] and fundamental effects of quantum
statistics[21, 22], interactions[22–25], disorders[26–
28], defects[29, 30], and hopping modulations[25, 30–
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32] on quantum walks have been intensively investi-
gated.

In this article, we investigate the quantum walks of
one and two identical fermions on a one-dimensional
optical lattice with periodically modulated hoppings,
which is described by the commensurate off-diagonal
Aubry-André-Harper (AAH) model. The original ver-
sion of AAH model[33, 34] which contains an incom-
mensurate potential was initially introduced to study
the localization phenomena in one-dimension. Com-
pared to the one-dimensional Anderson localization
model[35], AAH model features the appearance of a
non-trivial localization transition which is more in-
teresting from the perspective of physics of disorder-
induced metal-insulator transition. Afterwards, the
original AAH model has been generalized to a variety
of versions adapting to different physical problems.
For instance, AAH model with pure off-diagonal cou-
plings has been used to investigate topological adia-
batic pumping[31, 37, 38]. And it has been shown that
AAH model with on-site and/or off-diagonal mod-
ulation is topologically equivalent to Fibonacci lat-
tices of the same quasiperiodicity[39, 40]. Topologi-
cally protected edge states have been found both in
incommensurate[31] and commensurate[41–43] AAH
models.

Here in this work, we first look at the quantum
walks of identical particles initially located at either
boundary of a period-2 commensurate off-diagonal
AAH lattice with topologically protected edge states
to investigate the effect of periodic hopping modula-
tions. It is found that the quantum walker is delo-
calized among the whole lattice until the strength of
the modulation on the hopping term is strong enough.
However, for the topological phase with the phase fac-
tor φ of the hopping modulations varying outside the
interval (−π/2, π/2), the quantum walker is always



2

delocalized. It is shown that this phenomena is at-
tributed to the topological properties of the commen-
surate off-diagonal AAH model. We calculate the in-
verse participation rations (IPRs) for all of the eigen-
states and find that the localization of the quantum
walker is mainly determined by the IPRs of the topo-
logically protected edge states. Secondly, we examine
the quantum walks of identical particles initially set-
ting out from lattice sites in the bulk. It turns out
that quantum walker initially located on any lattice
site in the bulk may expand ballistically as usual and
no evidence of localization shows as the strength of
the hopping modulation varies. However, an interest-
ing and subtle phenomenon emerges when we look at
either boundary of the lattice. It seems that the topo-
logically protected edge state has an interesting repul-

sion effect which make the lattice boundary unreach-
able for quantum walker setting out from bulk sites.
Thirdly, we investigate quantum walks of two iden-
tical fermions with nearest-neighbor interaction and
find that strong interactions enhance the interesting
repulsion effect of the edge states. Brief discussions
on the experimental realization of these effects and
their potential applications in the future’s quantum
information techniques are given therein.
The paper is organized as follows. In Sec. II, we in-

troduce the commensurate off-diagonal AAH model.
Nearest-neighbor interaction is also considered. We
construct the Hilbert space for quantum walkers and
briefly show the method we use to describe the time-
evolution of the density distribution of quantum walk-
ers. Single-particle quantum walks in commensurate
off-diagonal AAH model are shown in Sec. III. Time-
evolution of the density distributions and IPRs of all
the eigenstates are calculated. Detailed analysis cor-
responding to the dynamical properties is addressed
therein. In Sec. IV, we turn to investigate quantum
walks of two identical fermions with nearest-neighbor
interactions. Finally, a brief summary is given in Sec.
V.

II. MODEL AND METHOD

We investigate the continuous-time quantum walks
of one and two identical fermions on a one-dimensional
lattice with periodically modulated hoppings. The dy-
namics of such a system is governed by the so-called
commensurate off-diagonal AAH model. Additionally,
nearest-neighbor interaction between particles is also
considered. Therefore, the Hamiltonian of this system
reads,

H = −
∑

i

Jiĉ
†
i+1ĉi + V

∑

i

n̂in̂i+1, (1)

with

Ji = t+ λod cos(2πi/T + φ), (2)

where ĉ†i (ĉi) is the creation (annihilation) operator of

fermions, and n̂i = ĉ†i ĉi denotes the particle number
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FIG. 1: (Color online) Sketch of one-dimensional period-2
off-diagonal AAH lattice under different boundary condi-
tions. (a) Open boundary condition. (b) Periodic bound-
ary condition.

of ferimons on site i. The hopping amplitude t is set
to be the unit of energy (t = 1). All other param-
eters are scaled by t in the following numerical and
analytical investigations. λod describes the strength
of the cosine off-diagonal modulation, T is the peri-
odicity of the modulation, φ is a phase factor and V
is the strength of the nearest-neighbor interaction be-
tween particles. Since in this paper the AAH lattice
we considered is commensurate, T is set to be an in-
teger. Specifically, our analysis and discussions in the
following are mainly based on the period-2 case, i.e.,
T = 2, as shown in Fig.1. And the lattices we studied
in this paper are all finite.
To investigate the dynamics of quantum walkers

initially located on well defined sites of the com-
mensurate off-diagonal one-dimensional AAH lattice
of length L, we resort to numerical techniques to
solve the time-dependent Schrödinger equation ex-
actly. Since [N,H ] = 0, the total particle numberN =
∑

i n̂i is conserved and the system will evolve in the
Hilbert space with fixed particle number. For single-
particle quantum walks, the Hilbert space involved is

simply spanned by basis B(1) = {|i〉 = c†i |0〉 , 1 6

i 6 L}, where |0〉 denotes the vacuum state. With
these basis, it is easy to construct the single-particle
Hamiltonian matrix H(1). In units of ~ = 1, the time
evolution of an arbitrary single-particle state

∣

∣ψ(1) (t)
〉

obeys time-dependent Schrödinger equation,

i
d

dt

∣

∣

∣
ψ(1) (t)

〉

= H(1)
∣

∣

∣
ψ(1) (t)

〉

, (3)

with
∣

∣ψ(1) (t)
〉

=
∑

i ai(t) |i〉. Similarly, for quantum
walks of two identical fermions, the Hilbert space is

spanned by the basis B(2) = {|ij〉 = c†ic
†
j |0〉 , 1 6 i <

j 6 L}. And the the time evolution of an arbitrary
two-particle state

∣

∣ψ(2) (t)
〉

obeys,

i
d

dt

∣

∣

∣
ψ(2) (t)

〉

= H(2)
∣

∣

∣
ψ(2) (t)

〉

, (4)

where
∣

∣ψ(2) (t)
〉

=
∑

i<j aij(t) |ij〉.

By solving the time-dependent equation (3) or
(4) numerically, the wavefunction

∣

∣ψ1 (t)
〉

or
∣

∣ψ2 (t)
〉
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FIG. 2: (Color online) Single-particle quantum walks on
a one-dimensional period-2 off-diagonal AAH lattice with
L = 100. The quantum walker is initially positioned on
the left boundary site. (a-c) φ = 0, open boundary con-
dition. (d-f) φ = 0.6π, open boundary condition. (g-i)
φ = 0, periodic boundary condition. The first column is
corresponding to λod = 0.1, the second is λod = 0.3 and
the third is λod = 0.9.

which governs the dynamics of quantum walkers on
the AAH lattice is obtained. Therefore, the time-
dependent density distribution of quantum walkers is
given by

〈

n
(s)
i (t)

〉

=
〈

ψ(s)(t)
∣

∣

∣
ĉ†i ĉi

∣

∣

∣
ψ(s)(t)

〉

, (5)

with s = 1 or 2 corresponding to single-particle or
two-particle quantum walk.

III. SINGLE-PARTICLE QUANTUM WALKS

Firstly, we investigate continuous-time quantum
walks of single particles initially located on either
boundary of an off-diagonal AAH lattice with T = 2.
The corresponding results are shown in Fig.2. The
length of the one-dimensional AAH lattice is L = 100.
Fig.2(a-f) is for AAH lattice with open boundary con-
dition, while Fig.2(g-i) is under periodic boundary
condition. In Fig.2(a-c) and (g-i), the value of the off-
diagonal modulation phase is φ = 0, and in Fig.2(d-f),
the phase φ is chosen to be 0.6π.
It is found that the quantum walker is well local-

ized on boundary site of the AAH lattice for suffi-
ciently strong off-diagonal modulation, see Fig.2(c)
with λod = 0.9. In order to observe the localization
phenomenon more clearly, only 30 sites are shown.
This interesting localization phenomenon[31] is at-
tributed to the appearance of topologically protected
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FIG. 3: (Color online) Upper panel shows the edge states
of the one-dimensional period-2 off-diagonal AAH lattice
with L = 100 under open boundary condition. The lower
panel is the energy spectrum plotted as a function of φ.
(a,d) λod = 0.1. (b,c,e) λod = 0.9.

edge states [42] in the energy spectrum of AAH lat-
tices. As shown in Fig.3(e), a pair of edge states
indeed appear in the energy spectrum of the AAH
model with λod = 0.9. The probability amplitude dis-
tribution of corresponding eigenstates are shown in
Fig.3(b).
As we have seen in Fig.3(e), the interesting edge

states only occur in the regime with −π/2 < φ < π/2.
This is actually determined by the topological prop-
erties of the commensurate off-diagonal AAH model,
which could be characterized by Zak phase[44–46] i.e.
the one-dimensional Berry phase across the Brillouin
zone. The Zak phase is explicitly defined as

γ = i

∫

BZ

dk

〈

Φ(k)

∣

∣

∣

∣

d

dk

∣

∣

∣

∣

Φ(k)

〉

, (6)

where Φ(k) is the eigenstate of the occupied Bloch
band. In Fig.4, we have calculated the Zak phase
of the commensurate off-diagonal AAH model. It is
shown that this model has a nontrivial Zak phase of
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FIG. 4: (Color online) Phase diagram of the one-
dimensional period-2 off-diagonal AAH model. γ is the
Zak phase plotted as a function of the phase φ and the
strength λod of the off-diagonal modulations.
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FIG. 5: (Color online) (a) Inverse participation ratio of all
eigenstates plotted as a function of the strength of the off-
diagonal modulations λod for the one-dimensional period-2
off-diagonal AAH model under open boundary condition
with φ = 0 and L = 100. (b) Inverse participation ratio of
the edge state as a function of λod.

γ = π in the regime φ ∈ (−π/2, π/2). And it turns
out that the Zak phase is insensitive to the strength of
the off-diagonal modulations. Therefore, for weak off-
diagonal modulations, edge states also appear in the
energy spectrum under open boundary condition ac-
cording to the bulk-edge correspondence, as is shown
in Fig.3(d).
However, the quantum walker is not well localized

until the off-diagonal modulation is strong enough, see
Fig.2(a-c). To quantify the localization property of
the quantum walker, we compute the inverse partic-
ipation ratio (IPR) for all of the eigenstates of off-
diagonal AAH model with T = 2 and φ = 0. For an
eigenstate ϕn, which is spanned as ϕn =

∑

i u
n
i |i〉 in

the single-particle Hilbert space B(1), the IPR[47] is
defined as

IPR(n) =

∑

i |u
n
i |

4

(

∑

i |u
n
i |

2
)2 . (7)

In Fig.5(a), we show the IPRs for all of the eigen-
states. It turns out that the localization property of
the quantum walker is mainly determined by the IPRs
of the edge states since all of the rest of eigenstates are
delocalized. In Fig.5(b), the IPR of one of the edge
states is shown. It is found that for φ = 0 and T = 2,
the IPR of the edge state increases as the off-diagonal
modulation grows stronger.
For comparison, we also show in Fig.2(d-f) the dy-

namics of the quantum walker in a commensurate
off-diagonal AAH lattice with φ = 0.6π where the
model has a trivial Zak phase, i.e. γ = 0 and thus
there is no edge state in the system’s spectrum. It
is found that the quantum walker is well delocalized
as the strength of the off-diagonal modulation grows
from λod = 0.1 to λod = 0.9. The variation of the
off-diagonal modulation only slightly affects the ex-
pansion speed of the quantum walker. In Fig.2(g-i),
the dynamics of the quantum walker in a commensu-
rate off-diagonal AAH lattice under periodic bound-
ary condition is shown. The quantum walker shows no
localization phenomenon since no edge state exists in

FIG. 6: (Color online) Single-particle quantum walks on
a one-dimensional period-2 off-diagonal AAH lattice with
L = 30. The quantum walker is initially positioned on the
center site 15. (a-c) φ = 0, open boundary condition. (d-f)
φ = 0.6π, open boundary condition. (g-i) φ = 0, periodic
boundary condition. The first column is corresponding
to λod = 0.1, the second is λod = 0.3 and the third is
λod = 0.9.

the off-diagonal AAH lattice with periodic boundary
condition even for the phase of φ = 0.
Secondly, we investigate the dynamics of the quan-

tum walker initially located on the lattice sites inside
the bulk. As is shown in Fig.6(a-c), for open bound-
ary condition and phase φ = 0, the quantum walker
initiated from the center site expands ballistically and
no localization phenomenon is shown as the strength
of the off-diagonal modulation grows from λod = 0.1
to λod = 0.9. However, close and careful observation
reveals an intriguing effect of the topologically pro-
tected edge state. If we focus on the two boundary
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FIG. 7: (Color online) The time-dependent distribution of
the quantum walker on the left boundary site for a rel-
atively long time. The quantum walker is initially posi-
tioned on the center site 15. (a) φ = 0, open boundary
condition. (b) φ = 0.6π, open boundary condition. (c)
φ = 0, periodic boundary condition.
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FIG. 8: (Color online) Quantum walks of two identical
fermionic particles with nearest-neighbor interaction on
a one-dimensional period-2 off-diagonal AAH lattice with
L = 30 under open boundary condition. The phase φ = 0
and λod = 0.9. One quantum walker is initially positioned
on the left boundary site, and the other is located on the
center site 15. (a) V = 0. (b) V = 1.

sites of the lattice in Fig.6(a-c), we will find that as
the strength of the off-diagonal modulation increases,
the distribution of the quantum walker on the bound-
ary sites decreases gradually and finally disappears.
This may be seen as a repulsion effect of the edge
states and its strength is determined by the localiza-
tion properties of the edge states. To be much clearer,
we show the time-dependent distribution n1(t) of the
quantum walker on left edge of the lattice for a long
time period. It is evident that for strong off-diagonal
modulation λod = 0.9, the quantum walker is repelled
from reaching the boundary site as the distribution on
site 1 remains zero all the time, see Fig.7(a). Here in
Fig.6 and Fig.7, the lattice size is chosen to be L = 30
for clarity.
Conversely, for open boundary condition with phase

φ = 0.6π and periodic boundary condition with φ = 0
when there is no edge state in the spectrum of the off-
diagonal AAH model, the quantum walker could reach
the boundary sites easily, see Fig.6(d-i) and Fig.7(b-
c). The increasing of the off-diagonal modulation only
affects the expansion speed of the quantum walker.
In a word, we have shown that the existence of

topologically protected edge states in a period-2 off-
diagonal AAH model have an interesting trapping ef-
fect on the quantum walker initiated from the bound-
ary sites of the lattice making the quantum walker
localized and also, an intriguing repulsion effect on
the quantum walker set out from lattice sites inside
the bulk prohibiting the quantum walker from reach-
ing the boundary sites. These two interesting ef-
fects should be observable with existing experimental
platforms, for example, an array of coupled photonic
waveguides written in bulk glass using femtosecond
laser microfabrication technology as used in [31, 36].
And they may have potential applications in the de-
signing of micro-architectures for quantum informa-
tion and quantum computing. Imagine that two opti-
cal signals, one is injected into the phontonic waveg-
uide at the boundary, the other is injected into a phon-
tonic waveguide in bulk. By modulating λod or phase
φ, these two signals could be made to meet each other
or transmit separately.

FIG. 9: (Color online) Quantum walks of two identical
fermionic particles with nearest-neighbor interaction on
a one-dimensional period-2 off-diagonal AAH lattice with
L = 30 under open boundary condition. The phase φ = 0
and λod = 0.9. The initial state is prepared on |1, 2〉. (a)
V = 0. (b) V = 1.

IV. TWO-PARTICLE QUANTUM WALKS

In this section, we turn to investigate the
continuous-time quantum walks of two identical
fermionic particles on the commensurate off-diagonal
AAH lattice with T = 2. As is shown in Eq.(1), the
nearest-neighbor interaction between the two identical
fermionic particles is considered. We mainly focus on
the effect of nearest-neighbor interaction on dynamics
of the two quantum walkers setting out from different
initial states. Both in Fig.8 and Fig.9, open boundary
condition is adopted, the phase is set to φ = 0 and
the strength of the off-diagonal modulation is set to
be λod = 0.9 when the trapping and the repulsion ef-
fects of the topologically protected edge states come
into force on the dynamics of the quantum walkers.
For clear visibility, the length of the AAH lattice is
set to be L = 30.
At first, we consider the case that one quantum

walker is initially located on an edge site of the AAH
lattice and the other one is positioned on a site inside
the bulk of the lattice. In Fig.8, the initial state is
chosen to be |1, 15〉. According to the discussions on
single-particle quantum walks, we can infer that if no
interaction is considered (V = 0), the quantum walker
on the edge site will be localized and the other quan-
tum walker initiated from the center site will expand
inside the bulk. They will propagate separately. This
is exactly the picture shown in Fig.8(a). In Fig.8(b),
the nearest-neighbor interaction is set to V = 1. It is
found that the nearest-neighbor interaction dramati-
cally enhances the repulsion effect of the topologically
protected edge states existing in the spectrum of the
commensurate off-diagonal AAH model. The region
that can be reached by the quantum walker initiated
from inside the bulk is evidently compressed.
Then we investigate the quantum walks of two iden-

tical fermionic particles initially located on the left-
most two lattice sites of the off-diagonal AAH lattice,
i.e., the initial state is prepared as |1, 2〉. Similarly as
in Fig.8(a), when the strength of the nearest-neighbor
interaction V is zero, the two quantum walkers trans-
mit on the edge and inside the bulk respectively, see
Fig.9(a). However, in Fig.9(b) we show that the quan-
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FIG. 10: (Color online) (a,b) Density distributions of
eigenstates corresponding to the eigeneneries in (c,d) de-
noted by star symbols. (c,d)Eigenenergies in ascending or-
der for period-2 off-diagonal AAH lattice with λod = 0.9,
φ = 0, and L = 30 under open boundary condition. The
nearest-neighbor interaction is (c) V = 0; (d) V = 1.

tum walker on the second site can be firmly pinned

by the quantum walker on the boundary site when
the nearest-neighbor interaction is set to V = 1. This
is another interesting phenomenon that may have po-
tential applications in microarchitecture designing.

These intriguing behaviors of quantum walkers are
intimately related to the band structure and the eigen-
states of the commensurate off-diagonal AAH model.
In Fig.10(c), we show the eigenenergies in ascending
order for the off-diagonal AAH lattice with λod = 0.9,
V = 0, φ = 0 and L = 30 under open boundary
condition. The density distributions of two typical
eigenstates which contribute to the corresponding dy-
namical behavior of quantum walks in Fig.8(a) and
Fig.9(a) are shown in Fig.10(a). The feature of these
eigenstates is that half of the density of the quan-
tum walker dwelts on the single boundary site and
the other half of the density distributes among the
rest of lattice sites. The parameters in Fig.10(d) is the
same as in Fig.10(c) except the nearest-neighbor in-
teraction V = 1. Compared to Fig.10(c) with V = 0,
eigenstates with density distributions like those shown
Fig.10(b) are singled out by the nearest-neighbor in-
teraction. A small energy gap appears, see Fig.10(c).
As shown in Fig.10(b), almost all of the quantum
walkers are distributed among a small region sur-
rounding the lattice boundary. These eigenstates con-
tribute to the intriguing pinning effect demonstrated
in Fig.9(b). Actually, this phenomenon is essentially
resulted from the combination of topologically pro-
tected edge states and the well-known repulsively-
bound-pair [48] mechanism.

Furthermore, we investigate the case with attrac-
tive nearest-neighbor interaction, i.e. V < 0. Inter-
estingly, the repulsion effect of the topologically pro-
tected edge states is also clearly enhanced even under
attractive interaction, see Fig.11(a). For two quantum
walkers initially located on the two leftmost sites, the

FIG. 11: (Color online) Quantum walks of two identical
fermionic particles with attractive nearest-neighbor inter-
action on a one-dimensional period-2 off-diagonal AAH
lattice with L = 30 under open boundary condition. The
phase φ = 0, λod = 0.9 and V = −1. (a) The initial state
is prepared on |1, 15〉. (b) The initial state is prepared on
|1, 2〉.

pinning effect is also shown under attractive nearest-
neighbor interaction just as expected.

V. CONCLUSIONS

In summary, we have investigated the single-particle
and two-particle continuous-time quantum walks on a
one-dimensional commensurate off-diagonal AAH lat-
tice. Especially, the effect of the topological prop-
erty of the commensurate off-diagonal AAH model
on the dynamics of the quantum walks has been ad-
dressed. In the parameter region where the model
has a nontrivial Berry phase, edge states will emerge
in the spectrum of off-diagonal AAH lattice under
open boundary condition. The quantum walker ini-
tiated from the boundary site of the AAH lattice
will be localized when the IPRs of the edge states
are large, which can be modulated by the strength
of the off-diagonal modulation. When the quantum
walker initially set out from a lattice site inside the
bulk, it will encounter an intriguing repulsion ef-
fect of the topologically protected edge states. For
quantum walks of two identical fermions, it is found
that the nearest-neighbor interaction could dramati-
cally enhance the repulsion effect of these edge states.
Also, an interesting pinning effect is revealed in the
quantum walks of two identical fermions initially po-
sitioned on the two leftmost sites. These effects
may be observed experimentally in one-dimensional
array of photonics waveguides[31, 36], double-well
potentials[49–51], optical lattices[52, 53] or semicon-
ductor structures[54, 55]. And they may have prosper-
ous applications in the designing of microarchitectures
for quantum information and quantum computing.
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